
8.323 Problem Set 7 Solutions

April 4th, 2023

Question 1: Momentum Conservation (10 points)
Consider an interacting field theory of a real scalar φ. Assume that the theory is translation invariant.
Introduce the Fourier transform of

Gn(x1, . . . , xn) = 〈ΩTφ(x1) · · ·φ(xn)|Ω〉

G̃n(p1, . . . , pn) =

∫
d4x1 · · · d4xne−i

∑
i pi·xiGn(x1, . . . xn)

Show that

G̃n(p1, . . . , pn) ∝ (2π)4δ(4)(p1 + · · ·+ pn)

The idea is to use translation invariance to remove the x1 dependence in Gn, so taking its Fourier transform
gives a δ-function when integrating over x1.
We compute:

G̃n(p1, . . . , pn) =

∫
d4x1 · · · d4xne−i

∑n
i=1 pi·xiGn(x1, x2, . . . , xn)

=

∫
d4x1d

4x2 · · · d4xne−i
∑n

i=1 pi·xiGn(0, x2 − x1, . . . , xn − x1)

=

∫
d4x1d

4x′2 · · · d4x′ne−ix1·p1e−i
∑n

i=2(x
′
i+x1)·piGn(0, x

′
2, . . . , x

′
n)

=

∫
d4x′2 · · · d4x′ne−i

∑n
i=2 x

′
i·piG(0, x′2, . . . , x

′
n)

∫
d4x1e

−ix1·
∑n

i=1 pi

= (2π)4δ(4)(p1 + · · ·+ pn)G̃
′(p2, . . . pn)

In the second line we use translation invariance of the correlator. In the third line we change variables
x′i = xi − x1 for i ≥ 2. In the last line we define G′(x2, . . . , xn) := G(0, x2, . . . , xn) and G̃′(p2, . . . , pn) its
Fourier transform. We see that integrating over the x1-dependence has given us the desired δ-function.
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Question 2: Feynman Rules for a Complex Scalar Field (20 points)
For a complex scalar field particles and antiparticles are distinct, which we can think of as positively
and negatively charged. The Feynman rules must distinguish them. We can make the distinction by
including an arrow for each propagator indicating the flow of charge (note that this is separate from
arrows indicating the flow of momentum, which are arbitrary). For a particle it is customary to point the
arrow away from the external point in the initial state, and towards the external point in the final state.
For an antiparticle, the direction is reversed. The charge arrows for propagators of the rest of a diagram
then follow from charge conservation.

In order to avoid 2 kinds of arrows, we can simply align momentum arrows with the charge ones.
(a) Consider a complex scalar field theory

L = −∂µφ∂µφ∗ −m2φ∗φ− λ

4
(φ∗φ)2

Write down the momentum space Feynman rules for this theory.
There are 2 Feynman rules: the propagator and a 4-point vertex. These correspond to the quadratic and
4th order terms in L.

φ φ

−i
p2 +m2 − iε

φ

φ

φ

φ

−iλ

(b) Draw the connected diagrams for the scattering amplitude for the process

φ+ φ∗ → φ+ φ∗

to order O(λ2), where φ and φ∗ denote particle and antiparticle.
We have 1 diagram at order λ. The rest are at order λ2, corresponding to s, t, u-channel scattering.
Note that we also have order λ2 diagrams coming from corrections to the propagator, with loops on any
of the 4 external legs, but these can be dropped since only amputated diagrams contribute to scattering
amplitudes.

(c) Now suppose φ interacts with a real field χ via

LI = λ′χ∂µφ∗∂µφ

That is, the full Lagrangian is the sum of the free (φ, φ∗) theory, the free χ theory, and LI . Suppose
χ has mass M . Use a solid line for the φ propagator and a dashed line for the χ propagator. Write
down the momentum space Feynman rules for the full theory.

We write down the new Feynman rules, for the χ propagator and the χφ∗φ interaction: In the second
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χ χ

−i
p2 +M2 − iε

χ

φ∗

φ

−iλ′p1 · p2

diagram, the particles φ and φ∗ have momentum p1 and p2, respectively. The Feynman rule comes from
writing iLI is momentum space, giving us the factor iλ′(ip1 · p2) = −iλ′p1 · p2.

(d) Suppose both λ, λ′ ∼ O(ε), with ε a small parameter. Draw all the connected diagrams to order O(ε2)
for the amplitude of the decay process

χ→ φ+ φ∗

We have 1 diagram at order ε given by the 3-point vertex. The rest at order ε2 come from corrections to
the external φ-propagators (which do not contribute to the decay process), and the 1-loop correction to
the 3-point vertex (shown below).
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Question 3: Higgs Production at LHC (10 points + 10 bonus)
The LHC collides protons with protons at very high energies. Each proton contains a number of quarks
and gluons, so collisions of protons can also be considered as collisions of gluons. Here we consider a baby
version of the Standard Model, which contains 3 types of scalar fields:

• Real gluon field g. Use a wavy line to denote its propagator.
• Complex quark field q. Use a solid line with an arrow to denote its propagator.
• Real Higgs field H. Use a dashed line to denote its propagator.

Suppose the interaction part of the theory is given by

L = λ1gq
†q + λ2Hq

†q

Note that there is no direct coupling between the gluon g and Higgs H. Assume that the couplings λ1,
λ2 are small and of copmarable strength.
(a) The dominant channel of Higgs production at the LHC is gluon fusion, schematically written as

g + g → H

Draw the leading Feynman diagram(s) for this process.
The leading diagrams contribute at order λ21λ2, and are given by the 2 ‘triangle diagrams’ below. These 2
diagrams give equal contributions in our case, but with realistic vector gluons and fermionic quarks, they
do not.

(b) Bonus. Another channel for Higgs production is

g + g → H + q + q̄

where q̄ denotes antiquark. Draw the leading Feynman diagram(s) for this process.
The leading diagrams contribute at order λ21λ2, and there are 6 of them given below.
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Question 4: Properties of Gamma Matrices (25 points)
Without resorting to a particular representation, prove the following identities.
(a) Tr γµ = 0
The canonical way to do this is define the matrix γ5 = iγ0γ1γ2γ3γ4. Using {γµ, γν} = 2ηµν , we immediately
have {γµ, γ5} = 0 and γ25 = 1.

Now, we compute

Tr γµ = Tr γµγ5γ5 = −Tr γ5γµγ5 = −Tr γµγ5γ5 = −Tr γµ

In the third equality we use that γ5 anticommutes with γµ, and in the 4th line we use the cyclicity of the
trace. Therefore, Tr γµ = 0.
Note that the same argument goes through with γ5γ5 replaced by some γργρ (no sum over ρ), with ρ 6= µ.

(b) Tr γµγν = 4ηµν

We compute

Tr γµγν =
1

2
Tr ({γν , γµ}) = 1

2
Tr 2ηµν1 = 4ηµν

In the second equality we use the cyclicity of the trace.

(c) Tr γµγνγλ = 0
Again we use the γ5 trick in (a):

Tr γµγνγλ = Tr γµγνγλγ5γ5 = (−1)3Tr γ5γµγνγλγ5 = −Tr γµγνγλγ5γ5 = −Tr γµγνγλ

Therefore Tr γµγνγλ = 0. Note that the same argument goes through with γ5γ5 replaced by some γργρ
(no sum over ρ), with ρ 6= µ, ν, λ

(d) /p/q = 2p · q − /q/p = p · q − 2iΣµνpµqν , where we define /p = pµγ
ν , and Σµν =

i

4
[γµ, γν ]

The first equality follows from contracting both sides of the anticommutation relation γµγν = 2ηµν−γνγµ
with pµqν . To show the second equality, we use

γµγν =
1

2
{γµ, γν}+ 1

2
[γµ, γν ] = ηµν − 2iΣµν

Contracting both sides by pµqν gives the desired result.

(e) γµ/pγµ = −2/p
First note that

γµγµ = ηµνγ
µγν =

1

2
ηµν{γµ, γν} = ηµνη

µν1 = 41

We thus compute

γµγνγµ = −γµγµγν + 2γµηµ
ν = −4γν + 2γν = −2γν

Contracting with pν gives the desired result.
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Question 5: Conserved ‘Probability’ Current of the Driac Equation (15 points)
Starting from the Dirac equation

(γµ∂µ −m)ψ = 0

(a) Show that one can construct a current jµ which is conserved,

∂µj
µ = 0

Note that taking the adjoint of the Dirac equation gives

0 = ψ†((γµ)†(−
←−
∂µ)−m) = ψ†(

←−
∂µγ

0γ0(γµ)†)−mγ0) = −ψ̄(
←−
∂µγ

µ +m)γ0

In the first equality we use that the derivative ∂µ = −ipµ is anti-Hermitian, since the momentum is
Hermitian. In the second equality we use (γ0)2 = −1. In the third equality we use (γ)µ = γ0γµγ0.
Therefore ψ̄(

←−
∂µγ

µ +m) = 0.

Now consider the object jµ := ψ̄γµψ, where ψ̄ := ψ†γ0. We compute

∂µj
µ = ψ̄(

←−
∂µγ

µ)ψ + ψ̄(γµ
−→
∂µ)ψ = −mψ̄ψ +mψ̄ψ = 0

(b) Show that the jµ you constructed is real.
We take the conjugate:

(jµ)∗ = (ψ̄γµψ)∗ = ψ†(γµ)†(γ0)†ψ = ψ†(−(γ0)2)(γµ)†(−γ0)ψ = ψ̄γ0(γµ)†γ0ψ = ψ̄γµψ = jµ

Hence our current is real. In the 3rd equality we used that (γ0)† = γ0γ0γ0 = −γ0.

(c) Show that by choosing the overall sign of jµ, the zeroth component of jµ

ρ := j0

can be made to be postive definite.
We compute

ρ = j0 = ψ̄γ0ψ = ψ†γ0γ0ψ = −ψ†ψ

This is negative definite. Thus by defining jµ := −ψ̄γµψ, we have ρ = j0 = ψ†ψ positive definite.
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