
8.323 Problem Set 8 Solutions

April 11, 2023

Question 1: Proofs of Spinor Identities (21 points)
(a) From the definition

Λµν =
(
e−

i
2
ωρσJ ρσ

)µ
ν , S(Λ) = e−

i
2
ωρσΣρσ

Prove the identity

S(Λ)γµS−1(Λ) = (Λ−1)µνγ
ν

Hint: use the identity

[Σρσ, γµ] = −(J ρσ)µνγν

By the Baker-Campbell-Hausdorff formula we have

eABe−A =

∞∑
n=0

1

n!
Ln(A,B), Ln(A,B) := [A, . . . , [A, [A,B]] . . .]︸ ︷︷ ︸

n times

We wish to use this with A = − i
2ωρσΣ

ρσ and B = γµ. Following the hint, we use the identity

[Σρσ, γµ] = −(J ρσ)µνγν

We now compute

Ln(A,B) = Ln−1(A, [A,B]) = Ln−1

(
A,

i

2
ωρσ(J ρσ)µνγν

)
=
i

2
ωρσ(J ρσ)µνLn−1(A, γν)

=

[
i

2
ωρσ(J ρσ)µν

] [
i

2
ωρσ(J ρσ)νλ

]
Ln−2(A, γλ) = · · · =

[(
i

2
ωρσJ ρσ

)n]µ
ν

γν

In the last expression the power is taken in Lorentz space, i.e. [(ω ·J )n]µν = (ω ·J )µα(ω ·J )αβ · · · (ω ·J )λν .
Substituting this into the BCH formula, we have

S(Λ)γµS−1(Λ) =
∞∑
n=0

1

n!

[(
i

2
ωρσJ ρσ

)n]µ
ν

γν =
(
e+

i
2
ωρσJ ρσ

)µ
ν
γν = (Λ−1)µνγ

ν

(b) Prove the identity

S† = −γ0S−1γ0

From the definition, we start with

S(Λ)† = exp

(
i

2
ωρσΣ

ρσ†
)
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Now we use the conjugation of the gamma matrices, and (γ0)2 = −1.

Σµν† = − i
4
[γµ, γν ]† = − i

4
[γν†, γµ†] = − i

4
[γ0γνγ0, γ0γµγ0] = − i

4
γ0[γµ, γν ]γ0 = −γ0Σµνγ0

Substituting this in the exponential, we have

S(Λ)† = exp

(
− i
2
ωρσγ

0Σρσγ0
)

=
∞∑
n=0

1

n!

(
− i
2
ωρσγ

0Σρσγ0
)n

= γ0
∞∑
n=0

1

n!

(
− i
2
ωρσΣ

ρσ

)n
(−1)n−1γ0 = −γ0

∞∑
n=0

1

n!

(
i

2
ωρσΣ

ρσ

)n
γ0 = −γ0S−1(Λ)γ0

In the third equality we use that (γ0)2 = −1 exactly n− 1 times to pick up a factor of (−1)n−1.

(c) From the Lorentz transformation of ψ, show that ψ̄ψ and ψ̄γµψ transform as a scalar and vector.
We know that under a Lorentz transformation,

ψα(x)→ ψ′
α(x) = Sα

β(Λ)ψβ(Λ
−1x) = S(Λ)ψ(Λ−1x)

Using the result from (b), the Dirac conjugate transforms as

ψ̄(x)→ ψ′†(x)γ0 = ψ†(Λ−1x)S(Λ)†γ0 = ψ†(Λ−1x)(−γ0S(Λ)−1γ0)γ0 = ψ̄(Λ−1x)S(Λ)−1

Now we can compute

ψ̄ψ(x)→ ψ̄S(Λ)−1S(Λ)ψ(Λ−1x) = ψ̄ψ(Λ−1x)

ψ̄γµψ(x)→ ψ̄S(Λ)−1γµS(Λ)ψ(Λ−1x) = ψ̄S(Λ−1)γµS−1(Λ−1)ψ(Λ−1x) = Λµνψ̄γ
νψ(Λ−1x)

where in the last equality of the second line we use the result from (a). These are the transformation laws
for a scalar and vector.
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Question 2: More Spinor Identities (8 points)
Without using any explicit form uf us and vs, show either one of

u†r(k)us(k) = 2Eδrs, v†r(k)vs(k) = 2Eδrs

In other words, show one of the following.

u†r(k)us(k) = −
iE

m
ūr(k)us(k), v†r(k)vs(k) =

iE

m
v̄r(k)vs(k)

The idea is to use the Dirac equation twice, once on u†(k) (or v†(k)), and once on u(k) (or v(k)).
The Dirac equation, in all its forms, is given by

mus(k) = i/kus(k), ūs(k)m = ūs(k)i/k

mvs(k) = −i/kvs(k), v̄s(k)m = −v̄s(k)i/k

We thus compute:

u†r(k)us(k) = −
1

2

(
ūr(k)γ

0us(k) + ūr(k)γ
0us(k)

)
= − i

2m

(
ūr(k)/kγ

0us(k) + ūr(k)γ
0/kus(k)

)
= − i

2m
ūr(k)kµ{γµ, γ0}us(k) =

ik0
m
ūr(k)us(k) = −

iE

m
ūr(k)us(k) = 2Eδrs

v†r(k)vs(k) = +
1

2

(
v̄r(k)γ

0vs(k) + v̄r(k)γ
0vs(k)

)
= +

iE

m
v̄r(k)vs(k) = 2Eδrs

In the last step of both calculations we use the normalizations

ūr(k)us(k) = 2imδrs, v̄r(k)vs(k) = −2imδrs
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Question 3: Stress Tensor and Hamiltonian for the Dirac Theory. (21 points)
(a) The Dirac action is translationally invariant. Use the Noether procedure the construct the conserved

currents Θµν , i.e. the energy-momentum tensor.
The ‘charge’ density Θ00 for time translation is the energy density. Show that Θ00 indeed coincides
with the Hamiltonian density H derived in class, i.e.

Θ00 = H = iψ̄(γi∂i −m)ψ

We begin with the Lagrangian density L = −iψ̄(/∂ −m)ψ.
The Noether current for a transformation is given by

jµ =
∂L

∂(∂µΦA)
δΦA −Fµ, δL = ∂µFµ

Under an spacetime transformation xµ → xµ + ϵµ the Lagrangian density transforms as δL = −ϵµ∂µL.
The fields transform as δψ = −ϵµ∂µψ. Putting everything together, we have

jµ = −iψ̄γµ(−ϵν∂νψ) + ϵµL = ϵν(iψ̄γµ∂νψ − iψ̄ηνµ(/∂ −m)ψ) = iϵνψ̄(γ
µν − ηµν(/∂ −m))ψ

We find that jµ = ϵνΘ
µν for the stress-energy tensor

Θµν = iψ̄(γµ∂ν − ηµν(/∂ −m))ψ

In particular, the energy density is

Θ00 = iψ̄(γ0∂t + (/∂ −m))ψ = iψ̄(−γ0∂t + γ0∂t + γi∂i −m)ψ = iψ̄(γi∂i −m)ψ = H

(b) Show that using the Dirac equation, the Hamiltonian can be written as

H = i

∫
d3xψ†∂tψ

Express H in terms of the operators ask, a
s†
k , csk, c

s†
k .

The Dirac equation tells us that

0 = iψ̄(/∂ −m)ψ = iψ̄(γ0∂0 + γi∂i −m)ψ =⇒ iψ̄(γi∂i −m)ψ = −iψ̄γ0∂0ψ = iψ†∂tψ

Therefore,

H =

∫
d3xΘ00 =

∫
d3xiψ̄(γi∂i −m)ψ = i

∫
d3xψ†∂tψ

Now we substitute the mode expansion:

ψ(x) =

∫
d̄3k√
2ωk

[
askus(k)e

ik·x + cs†k vs(k)e
−ik·x

]
In terms of creation and annihilation operators, the Hamiltonian is thus

H = i

∫
d3x

d̄3k√
2ωk

d̄3k′
√
2ωk′

[
ar†k u

†
r(k)e

−ik·x + crkv
†
r(k)e

ik·x
]
(−ik′0)

[
ask′us(k

′)eik
′·x − cs†k′vs(k

′)e−ik
′·x
]

=

∫
d3x

d̄3k√
2ωk

d̄3k′
√
2ωk′

k′0

[
ar†k a

s
k′u†r(k)us(k

′)e−i(k−k
′)·x − ar†k c

s†
k′u

†
r(k)vs(k

′)e−i(k+k
′)·x

+crka
s
k′v†r(k)us(k

′)ei(k+k
′)·x − crkc

s†
k′v

†
r(k)vs(k

′)ei(k−k
′)·x

]
=

∫
d̄3k

2

[
ar†k a

s
ku

†
r(k)us(k)− e2iωktar†k c

s†
−ku

†
r(k)vs(−k) + e−2iωktcrka

s
−kv

†
r(k)us(−k)− crkc

s†
k v

†
r(k)vs(k)

]
=

1

2

∫
d̄3k

[
ar†k a

s
ku

†
r(k)us(k)− crkc

s†
k v

†
r(k)vs(k)

]
=

∫
d̄3k ωk

[
as†k a

s
k + cs†k c

s
k − 2(2π)3δ(3)(0)

]
=

∫
d̄3kωk(Nk + N̄k) + E0
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In the third equality we integrate over x to get a delta function in k and k′, and subsequently do the
integral over k′. In the fourth equality we use the identities u†r(k)vs(−k) = v†r(k)us(−k) = 0. In the

fifth equality, we use {crk, c
s†
k′} = δrs(2π)

3δ(3)(k− k′) to move the c-creation operator to the left, and the

normalization u†r(k)us(k) = v†r(k)vs(k) = 2k0δrs. In the final equality, we identify

Nk = as†k a
s
k, N̄k = cs†k c

s
k, E0 = −

∫
d3k 2ωkδ

(3)(0)

(c) What is the vacuum energy density? Discuss the differences with that of a scalar.

The vacuum energy Eψ0 is identified in (b). To get the vacuum energy density εψ0 , we use that δ
(0) =

∫
d3x1

and take the integrand:

εψ0 = −
∫
d3k 2ωk = −4

∫
d3k

ωk

2

We can compare this to a complex scalar field:

εϕ0 = 2

∫
d3k

ωk

2

A real scalar field has 2 degrees of freedom per momentum k, each of which is a harmonic oscillator with
negative vacuum energy ωk/2. A Dirac field has 4 degrees of freedom per momentum k (u1,2, v1,2), each
of which is a harmonic oscillator with positive vacuum energy −ωk/2. In particular, if we have 2 complex
scalars for each Dirac fermion, then the vacuum energy is exactly zero.
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Question 4: Angular Momentum Operators (30 points)
The Dirac action is Lorentz invariant.
(a) Write down an infinitesimal Lorentz transformation for ψ.
We consider an infinitesimal Lorentz transformation Λµν = δµν − i

2ωρσ(J
ρσ)µν .

A spinor and its conjugate transform as

δψα(x) = ψ′
α(x)− ψα(x) = Sα

β(Λ)ψβ(Λ
−1x)− ψα(x)

=

(
δβα −

i

2
ωρσ(Σ

ρσ)α
β

)(
ψβ(x) +

i

2
ωκλi(η

κµδλν − ηλµδκν )xν∂µψβ(x)
)
− ψα(x)

= −ωρσ
(
i

2
(Σρσ)α

β + δβαx
σ∂ρ

)
ψβ(x)

δψ̄α(x) = ψ̄′
α(x)− ψ̄α(x) = ψ̄β(Λ

−1x)(S−1(Λ))βα − ψ̄α(x)

=

(
ψ̄β(x) +

i

2
ωκλi(η

κµδλν − ηλµδκν )ψ̄β(x)
←−
∂µxν

)(
δβα +

i

2
ωρσ(Σ

ρσ)βα

)
− ψ̄α(x)

= −ωρσψ̄β(x)
(
− i
2
(Σρσ)βα + δβα

←−
∂ρxσ

)

(b) Use the Noether procedure to construct the conserved charges Mµν for with Lorentz transformations,
and show that Mµν can be written in terms of a ‘spin’ part and ‘orbital angular momentum’ part,

Mµν = Sµν + Lµν

Show that the orbital part Lµν has the same form as that of a scalar

Lµν =

∫
d3x(xµΘ0ν − xνΘ0µ)

Where Θµν is the energy-momentum tensor from 3(a). Show that the spin part Sµν can be written as

Sµν = −
∫
d3xψ†Σµνψ

We start with L = −iψ̄(/∂ −m)ψ. Under the Lorentz transform in (a), L transforms as

δL = −i(δψ̄(/∂ −m)ψ + ψ̄(/∂ −m)δψ)

= iωρσ

[
ψ̄

(
− i
2
Σρσ +

←−
∂ρxσ

)
(/∂ −m)ψ + ψ̄(/∂ −m)

(
i

2
Σρσ + xσ∂ρ

)
ψ

]
= −ωρσxσ∂ρL+ iωρσψ̄γ

σ∂ρψ +
1

2
ωρσψ̄(Σ

ρσ /∂ − /∂Σρσ)ψ

= −ωρσxσ∂ρL+ iωρσψ̄γ
σ∂ρψ − 1

2
ωρσ(J ρσ)κλψ̄γλ∂κψ

= −ωρσxσ∂ρL = −ωρσ∂ρ(xσL)

Note that in the third line, the second term comes from the product rule, in particular by /∂ acting on the
xσ of the previous expression. In the fourth line we use that [Σρσ, γµ] = −(J ρσ)µνγν . In the last line we
use the explicit form of (J ρσ)µν , and that ωρσ is antisymmetric.
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Therefore, the Noether current is:

jρ =
∂L

∂(∂ρΦA)
δΦA −Fρ = −iψ̄γρδψ + ωρσxσL

= ωµν

(
−1

2
ψ̄γρΣµνψ + ixνψ̄γρ∂µψ + ηµρxνL

)
= ωµν

(
−1

2
ψ̄γρΣµνψ +Θρµxν

)
where we recall the energy-momentum tensor

Θµν = iψ̄(γµ∂ν − ηµν(/∂ −m))ψ = iψ̄γµ∂νψ + ηµνL

We have an independent Noether current for each independent component of ωµν , of which there are 6.
Therefore, we can define jρ = −1

2ωµνJ
ρµν , for the conserved currents

Jρµν =
1

2
ψ̄γρΣ[µν]ψ −Θρ[µxν] = ψ̄γρΣµνψ + xµΘρν − xνΘρµ

The Noether charges are

Mµν =

∫
d3xJ0µν =

∫
d3x

[
−ψ†Σµνψ + xµΘ0ν − xνΘ0µ

]
= Sµν + Lµν

where we identify

Sµν = −
∫
d3xψ†Σµνψ, Lµν =

∫
d3x(xµΘ0ν − xνΘ0µ)

Note that Sµν and Lµν are not separately conserved.

(c) Express the Sµν in terms of the operators ask, a
s†
k , csk, c

s†
k .

We need the mode expansion

ψ(x) =

∫
d̄3k√
2ωk

[
askus(k)e

ik·x + cs†k vs(k)e
−ik·x

]
The process is straightforwards, very similar to 2(b). We substitute the mode expansion into Sµν , and
expand to get 4 terms. We perform the integral over x to get a δ(3)(k− k′) or δ(3)(k+ k′) for each term,
and perform the k′ integral to set k′ = k for the u†Σµνu and v†Σµνv terms, and set k′ = −k for the
u†Σµνv and v†Σµνu terms. The result is

Sµν = −
∫

d̄3k

2ωk

[
ar†k a

s
ku

†
r(k)Σ

µνus(k) + e2iωktar†k c
s†
−ku

†
r(k)Σ

µνvs(−k)

+e−2iωktcrka
s
−kv

†
r(k)Σ

µνus(−k) + crkc
s†
k v

†
r(k)Σ

µνvs(k)
]
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(d) From the expression in (c) for Sij , keep only the time-independent part, denoted S̃ij . Define

J2 =
1

2
S̃ijS̃ij

Show that the one-particle states constructed by acting as†k and cs†k with k = 0 (i.e. in the rest frame)
on the vacuum are eigenstates of J2 with eigenvalues corresponding to that of a spin-12 particle.

We note that Sµν has time-dependent terms. This is fine, since only the combination Mµν = Sµν + Lµν

is expected to be conserved. Thus in the analysis of angular momentum we may throw away these terms.
We further normal order our operator by placing annihilation operators to the right, to get S̃µν . The
spatial components of this tensor are

S̃ij = −
∫

d̄3k

2ωk

[
ar†k a

s
ku

†
r(k)Σ

µνus(k)− cs†k c
r
kv

†
r(k)Σ

µνvs(k)
]

Note that the second term picks up a −1 from normal ordering, because the operators are fermionic.

Now we compute the action of J2 = 1
2 S̃

ijS̃ij on the 1-particle state at†0 |0⟩.

J2at†0 |0⟩ =
1

2

∫
d̄3k

2ωk

d̄3k′

2ωk′

[
u†r(k)Σ

ijus(k)
] [
u†r′(k

′)Σijus′(k
′)
]
ar†k a

s
ka

r′†
k′ a

s′
k′a

t†
0 |0⟩

=
1

2

1

(2ω0)2
u†r(0)Σ

ijus(0)u
†
s(0)Σijut(0)a

r†
0 |0⟩

=
1

8m2
u†r(0)Σ

ijΣij [us(0)u
†
s(0)]ut(0)a

r†
0 |0⟩

=
1

8m2
u†r(0)Σ

ijΣijus(0)(2mδst)a
r†
0 |0⟩ =

1

4m
u†r(0)Σ

ijΣijut(0)a
r†
0 |0⟩

=
1

4m

3

2
u†r(0)ut(0)a

r†
0 |0⟩ =

3

4
at†0 |0⟩

In the first line, note that any terms containing c’s vanish, since the lowering operator anticommutes with
at† to annihilate the vacuum. In the second line we use that

ar†k a
s
ka

r′†
k′ a

s′
k′a

t†
0 |0⟩ = δs

′t(2π)3δ(3)(k′)ar†k a
s
ka

r′†
k′ |0⟩ = δs

′tδsr
′
(2π)6δ(3)(k′)δ(3)(k− k′)ar†k |0⟩

In the third line we use that us(0)u
†
s(0) = i(i/k +m)|k=0 = m(i + γ0). Further noting that {γ0, γi} = 0,

we see that this commutes with Σij = i
4 [γ

i, γj ]. In the fourth line (and fifth line), we use the identity

u†r(k)us(k) = 2Eδrs. Finally, in the fifth line we also use that

ΣijΣij = −
1

16
[γi, γj ][γi, γj ] = −1

8
(γiγjγiγj − γiγjγjγi)

= −1

8
(−(γiγi)2 + 2γiγi − 3γiγi) = −1

8
(−9 + 6− 9) =

3

2

Therefore, we see that the one-particle state at†0 |0⟩ is an eigenstate of J2 with eigenvalue s(s+ 1) = 3
4 , as

expected from a spin-1/2 particle.

The calculation is almost identical with the one-particle state ct†0 |0⟩: one merely replaces a’s with c’s
and u’s with v’s. The one difference is in the third line, where instead we need to use the identity
vs(0)v

†
s(0) = i(i/k − m)|k=0 = m(−i + γ0). However, this still commutes with Σij , so the same proof

follows through.
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