
8.323 Problem Set 9 Solutions

April 18, 2023

Question 1: Some Identities (10 points)
Define γ5 as

γ5 = iγ0γ1γ2γ3

Show it has the following properties: (a) (γ5)† = γ5 and (γ5)2 = 1
We compute:

(γ5)† = −i(γ3)†(γ2)†(γ1)†(γ0)† = −i(γ0γ3γ0)(γ0γ2γ0)(γ0γ1γ0)(γ0γ0γ0)
= −(−1)4iγ0γ3γ2γ1 = −i(−1)3γ0γ1γ2γ3 = γ5

In the 2nd equality we use that (γ0)2 = −1. In the 4th equality we use the anticommutation properties
of the gamma matrices.

Furthermore,

(γ5)2 = −γ0γ1γ2γ3γ0γ1γ2γ3 = −(−1)3(−1)2(−1)1γ0γ0γ1γ1γ2γ2γ3γ3 = −η00η11η22η33 = −1

In the 3rd equality we use (γµ)2 = 1
2{γ

µ, γν} = ηµν (no sum over µ).

(b) {γ5, γµ} = 0 and Trγ5 = 0
This is not difficult to compute for each µ = 0, 1, 2, 3. Using the anticommutation relations, we have:

{γ5, γ0} = i(γ0γ1γ2γ3γ0 + γ0γ0γ1γ2γ3) = i((−1)3γ0γ0γ1γ2γ3 + γ0γ0γ1γ2γ3) = 0

{γ5, γ1} = i(γ0γ1γ2γ3γ1 + γ1γ0γ1γ2γ3) = i((−1)2γ0γ1γ1γ2γ3 + (−1)γ0γ1γ1γ2γ3) = 0

{γ5, γ2} = i(γ0γ1γ2γ3γ2 + γ2γ0γ1γ2γ3) = i((−1)γ0γ1γ2γ2γ3 + (−1)2γ0γ1γ2γ2γ3) = 0

{γ5, γ3} = i(γ0γ1γ2γ3γ3 + γ3γ0γ1γ2γ3) = i(γ0γ1γ2γ3γ3 + (−1)3γ0γ1γ2γ3γ3) = 0

Furthermore,

Trγ5 = Tr(γ5γ0γ0) =
1

2
(Tr(γ5γ0γ0) + Tr(γ0γ

0γ5))

=
1

2
(Tr(γ5γ0γ0) + Tr(γ0γ5γ0)) =

1

2
Tr({γ5, γ0}γ0} = 0

In the 3rd equality we use the cyclicity of the trace, and in the last equality we use the previous result
that {γ5, γ0} = 0. Note that instead of γ0 we could have chosen any γµ matrix.
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Question 2: Feynman Propagator for Dirac Spinors (10 points)
Show that the Feynman Green function

Dαβ
F (x− y) = ⟨0|Tψα(x)ψ̄β(y)|0⟩ = i(/∂ +m)αβGF (x− y)

where GF is the Feynman propagator for a free complex scalar of the same mass m.
We start by computing the Wightman function using the mode expansion of ψ.

⟨0|ψα(x)ψ̄β(y)|0⟩ =
∫

d̄3k√
2ωk

d̄3k′
√
2ωk′

⟨0|arka
†s
k′ |0⟩urα(k)ūsβ(k′)ei(k·x−k′·y)

=

∫
d̄3k√
2ωk

d̄3k′
√
2ωk′

δrs(2π)
3δ(3)(k− k′)urα(k)ū

s
β(k

′)ei(k·x−k′·y) =

∫
d3k

2ωk
Λ+
αβ(k)e

ik·(x−y)

= i(/∂ +m)αβ

∫
d3k

2ωk
eik·(x−y) = i(/∂ +m)αβG+(x− y)

In the 3nd equality we use the identity∑
s

usα(k)ū
s
β(k) = Λ+

αβ(k) = i(i/k +m)αβ

In the last equality we identify G+(x− y) =
∫

d3k
2ωk

eik·(x−y).

Similarly, we have:

⟨0|ψ̄β(y)ψα(x)|0⟩ =
∫

d̄3k√
2ωk

d̄3k′
√
2ωk′

⟨0|cskc
†r
k′ |0⟩vrα(k)v̄sβ(k′)e−i(k·x−k′·y)

=

∫
d̄3k√
2ωk

d̄3k′
√
2ωk′

δrs(2π)
3δ(3)(k− k′)vrα(k)v̄

s
β(k

′)e−i(k·x−k′·y) =

∫
d3k

2ωk
Λ−
αβ(k)e

−ik·(x−y)

= −i(/∂ +m)αβ

∫
d3k

2ωk
e−ik·(x−y) = −i(/∂ +m)αβG+(y − x)

Now we compute the Feynman Green’s function:

Dαβ
F (x− y) = θ(x0 − y0)⟨0|ψα(x)ψ̄β(y)|0⟩ − θ(y0 − x0)⟨0|ψ̄β(y)ψα(x)|0⟩

= θ(x0 − y0)i(/∂x +m)αβG+(x− y) + θ(y0 − x0)i(/∂x +m)αβG+(y − x)

= i(/∂x +m)αβGF (x− y)− i(/∂xθ(x
0 − y0))G+(x− y)− i(/∂xθ(y

0 − x0))G+(y − x)

= i(/∂x +m)αβGF (x− y)− iγ0(δ(x0 − y0)G+(x− y)− δ(x0 − y0)G+(y − x))

= i(/∂x +m)αβGF (x− y)

In the second last line we use that ∂x0θ(x0 − y0) = −∂x0θ(y0 − x0) = δ(x0 − y0). In the last line, we use
that G+(0,x− y) = G+(0,y − x), which can easily be seen from the formula for G+ above. This leaves
us with the resired result.
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Question 3: Chiral and Majorana Fermions. (50 points)
We consider the chiral representation, and write a Dirac spinor in terms of 2 chiral spinors ψL, ψR as

ψ =

(
ψL

ψR

)
(a) Show that under a rotation with parameters ωij = ϵijkθk, ψL,R transform as

ψ′
L(x

′) = e
i
2
θ·σψL(x), ψ′

R(x
′) = e

i
2
θ·σψR(x)

A Dirac fermion transforms as

ψ′(x′) = S(Λ)ψ(x) = e−
i
2
ωµνΣµν

ψ(x)

In the chiral basis,

Σij =
i

4

[(
0 iσ̄i

iσi 0

)
,

(
0 iσ̄j

iσj 0

)]
=
i

4

(
[σi, σj ] 0

0 [σi, σj ]

)
Therefore for a rotation,

ψ′
L(x

′) = e
1
8
ωij [σ

i,σj ]ψL(x) = e
1
8
ϵijkθk(2iϵijlσl)ψL(x) = e

i
2
θ·σψL(x)

ψ′
R(x

′) = e
1
8
ωij [σ

i,σj ]ψR(x) = e
i
2
θ·σψR(x)

(b) Show that under a boost with parameters ω0i = βi, ψL,R transform as

ψ′
L(x

′) = e−
1
2
β·σψL(x), ψ′

R(x
′) = e+

1
2
β·σψR(x)

Proceeding analogously, in the chiral basis,

Σ0i =
i

4

[(
0 i
i 0

)
,

(
0 iσ̄i

iσi 0

)]
= − i

2

(
σi 0
0 −σi

)
= −Σi0

Therefore for a boost,

ψ′
L(x

′) = e−
1
4
(ω0iσ

i−ωi0σ
i)ψL(x) = e−

1
2
βiσ

i
ψL(x) = e−

1
2
β·σψL(x)

ψ′
R(x

′) = e+
1
4
(ω0iσ

i−ωi0σ
i)ψL(x) = e+

1
2
βiσ

i
ψR(x) = e+

1
2
β·σψR(x)

(c) The Lagrangian density fo the Dirac theory contains a mass term of the form

L = · · ·+ imψ̄ψ = · · · −m(ψ†
LψR + ψ†

RψL)

Using the transformations in (a), (b), show that the mass term is Lorentz invariant, while a term of

the form mψ†
LψL or mψ†

RψR is not.
We expand the Lagrangian into chiral spinors, in the chiral representation:

L = −iψ̄(/∂ −m)ψ = −i(ψ†
L, ψ

†
R)

(
0 i
i 0

)(
−m iσ̄µ∂µ
iσµ∂µ −m

)(
ψL

ψR

)
= iψ†

Lσ
µ∂µψL + iψ†

Lσ̄
µ∂µψL −m(ψ†

LψR + ψ†
RψL)
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Under a rotation, (ψL, ψR) → (e
i
2
θ·σψL, e

i
2
θ·σψR), and (ψ†

L, ψ
†
R) → (ψ†

Le
− i

2
θ·σ, ψ†

Re
− i

2
θ·σ) by Hermiticity.

The mass terms are both invariant. Under a boost, (ψL, ψR) → (e−
1
2
β·σψL, e

+ 1
2
β·σψR), and (ψ†

L, ψ
†
R) →

(ψ†
Le

− 1
2
β·σ, ψ†

Re
+ 1

2
β·σ). The mass terms are again invariant, establishing full Lorentz invariance.

However, under a boost ψ†
LψL or ψ†

RψR are not invariant:

ψ†
LψL → ψ†

Le
−β·σψL, ψ†

RψR → ψ†
Re

+β·σψR

(d) The discussion in (c) may give the impression that it is not possible to write down a mass term with
ψL or ψR alone. This is possible, with some more sophistication. For this purpose, first show that

σ2σ⃗σ2 = −σ⃗∗

From this, show that σ2ψ∗
L transforms under Lorentz transformations in the same was as ψR.

We can check directly, either by explicit multiplication or using {σi, σj} = 2δij , that

σ2σ1σ2 = −σ1 = −(σ1)∗, σ2σ3σ2 = −σ3 = −(σ3)∗, σ2σ2σ2 = σ2 = −(σ2)∗

Now consider the transformation properties of σ2ψ∗
L.

Under rotations,

σ2ψ
′∗
L (x

′) = σ2(e
i
2
θ·σ)∗ψ∗

L(x) = σ2e−
i
2
θ·σ∗

σ2σ2ψ∗
L(x) = e

i
2
θ·σ∗

σ2ψ∗
L(x)

In the last equality we make use of the above identity. This can be made more precise by expanding the
exponential as a power series, inserting 1 = σ2σ2 between powers of σ, using said identity, and resumming
the series.
Under boosts,

σ2ψ
′∗
L (x

′) = σ2(e−
1
2
β·σ)∗ψ∗

L(x) = σ2e−
1
2
β·σ∗

σ2σ2ψ∗
L(x) = e+

1
2
β·σ∗

σ2ψ∗
L(x)

Therefore, σ2ψ∗
L transforms like ψR.

(e) From the observation in (d), construct a mass term using ψL alone, which is both Lorentz invariant
and real. This is called the Majorana mass term. Show that it is identically zero if ψL consists of
ordinary functions, while it is non-zero if ψL are anticommuting variables.

Consider the mass term mψ†
Lσ

2ψ∗
L. This is Lorentz invariant, as we showed in (c) that ψ†

LψR is invariant,
and in (d) that σ2ψ∗

L transforms in the same way as ψR. To make it real, we add its Hermitian conjugate,
which must also be Lorentz invariant. Therefore, consider

Lχm = −1

2
mψ†

Lσ
2ψ∗

L − 1

2
(mψ†

Lσ
2ψ∗

L)
∗ = −m

2
(ψ†

Lσ
2ψ∗

L + ψT
Lσ

2ψL)

To see whether this vanishes, we write the second term in components:

ψT
Lσ

2ψL = ψLa(σ
2)abψ

b
L = (−1)ϵψb

L(σ
2)abψLa = −(−1)ϵψb

L(σ
2)b

aψLa = −(−1)ϵψT
Lσ

2ψL

Here we introduce the notation (−1)ϵ, where ϵ = 0 for regular functions, and ϵ = −1 for Grassmann
functions. When ϵ = 0 we see that the term is the negative of itself, and vanishes. The same holds for its
Hermitian conjugate, thus the Lagrangian vanishes identically. If the field is Grassmann, we get no such
constraint.

(f) Now write down a Lorentz invariant full action using ψL alone, including both kinetic and mass terms.
Write down equations of motion.
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Consider now the Lagrangian

L = iψ†
Lσ

µ∂µψL − m

2
(ψ†

Lσ
2ψ∗

L + ψT
Lσ

2ψL)

Treating ψL and ψ∗
L as independent variables, the equations of motion are

iσµ∂µψL −mσ2ψ∗
L = 0

−i∂µψ†
Lσ̄

µ −mψT
Lσ

2 = 0

(g) Does the theory of part (f) have a conserved charge? Argue that such a theory can only describe
neutral particles.

The theory has the usual conserved charges corresponding to spacetime and Poincaré symmetry. However,
there are no internal symmetries, as the mass term is not invariant under a U(1) rotation ψ → eiαψ.
Therefore, there is no U(1) conserved charge, and particle number is not conserved. This cannot describe
charged particles, as it would violate charge conservation.

5



Question 4: Majorana Fermions (10 points)
In the Majorana representation, γµ are real, and thus ψ can be chosen to be real. Such a spinor is called a
Majorana spinor. This has important physical consequences. Upon quantization, being real, a Majorana
particle should not have an antiparticle (or equivalently, it is its own antiparticle).
We discussed in lecture that the concept of a Majorana spinor can be generalized to any representation
of γ. If we can find a matrix B satisfying

BγµB−1 = (γµ)∗

the Majorana condition is

ψ∗ = Bψ

(a) In lecture we showed that in the chiral representation we can choose B = γ2. Solve the Majorana
condition in the chiral representation. Show that in this representation a Majorana spinor ψ can be
expressed in terms of ψL alone.

For B = γ2, the Majorana condition in the chiral representation is

Bψ =

(
0 −iσ2
iσ2 0

)(
ψL

ψR

)
=

(
ψ∗
L

ψ∗
R

)
= ψ∗

This gives us ψ∗
L = −iσ2ψR, and ψ

∗
R = iσ2ψL. Therefore ψR = −i(σ2)∗ψ∗

L = iσ2ψ∗
L, and we can write ψ

in terms of purely ψL:

ψ =

(
ψL

iσ2ψ∗
L

)

(b) Plug in the expression (in terms of ψL) for the Majorana spinor ψ from (a) into the Dirac action.
Show it reduces to the action in part 3(f).

The Dirac Lagrangian becomes:

L = −iψ̄(/∂ −m)ψ = iψ†
Lσ

µ∂µψL + iψ†
Rσ̄

µ∂µψR −m(ψ†
LψR + ψ†

RψL)

= iψ†
Lσ

µ∂µψL + iψT
Lσ

2σ̄µσ2∂µψ
∗
L − im(ψ†

Lσ
2ψ∗

L − ψT
Lσ

2ψL)

To write this in a more familiar form we integrate the second term by parts and discarding the boundary
contribution.

iψT
Lσ

2σ̄µσ2∂µψ
∗
L = −i(∂µψT

L)σ
2σ̄µσ2ψ∗

L = −i((∂µψT
L)σ

2σ̄µσ2ψ∗
L)

T = iψ†
L(σ

2σ̄µσ2)T∂µψL

= iψ†
L(σ

2σ̄µσ2)∗∂µψL = iψ†
Lσ

µ∂µψL

In the third equality, we pick up a sign when we take the transpose because the fermionic fields anticom-
mute. In the 4th equality we use the Hermiticity of the σµ’s. In the last equality we use the relation from
3(d) that (σ2σ̄µσ2)∗ = σµ.

Therefore, the Lagrangian becomes:

L = 2iψ†
Lσ

µ∂µψL − im(ψ†
Lσ

2ψ∗
L − ψT

Lσ
2ψL)

This is identical to the Majorana action from problem 3(f) with the field redefinition ψL →
√
2e−iπ/4ψL.
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