
8.323 Problem Set 11 Solutions

May 2, 2023

Question 1: Quantization of Maxwell Theory in the Lorentz Gauge (50 points)
In the Lorentz gauge we consider the action

L = −1

4
FµνF

µν − ξ

2
(∂µA

µ)2

where ξ is an arbitrary real parameter (and different ξ’s give equivalent theories). It is convenient to take
ξ = 1, in which case

L = −1

2
∂µAν∂

µAν

The complete set of solutions to the operator equations are

Aµ(x) =

∫
d̄3k√
2ωk

3∑
α=0

[
E(α)
µ a

(α)
k eik·x + E(α)∗

µ a
(α)†
k e−ik·x

]
where ωk = |k|, and kµ = (|k|,k). The polarization vectors E(α)

µ are defined by

E(0)
µ = (1,0), E(3)

µ = (0,k/|k|), E(1,2)
µ = (0, ϵ1,2), ϵ1,2 · k = 0

where ϵ1,2 are orthogonal unit-norm spatial vectors.

With the canonical commutation relations

[Aµ(t,x), π
ν(t,x′)] = iδνµδ

(3)(x− x′), πµ = ∂0A
µ

we find that

[a
(α)
k , a

(β)†
k′ ] = ηαβ(2π)3δ(3)(k− k′)

with all other commutators vanishing. We define the vacuum as

a
(α)
k |0⟩ = 0, ∀α,k

and the ‘big’ Hilbert space is defined as

Hbig = {|ψ⟩ obtained by acting a
(α)†
k on |0⟩}

As discussed in lecture, Hbig contains states with negative norms, and thus unphysical states. Indeed
Hbig follows from the gauge-fixed Lagrangian, which by itself is not Maxwell theory.

To obtain the Maxwell theory, we still need to impose ∂µA
µ = 0 and get rid of the residual gauge freedom.

We will see in this problem that by imposing ∂µA
µ = 0 we get rid of the negative-norm unphysical states
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in Hbig. But this is not enough: we will observe that some states possess zero norm, which can be
attributed to the presence of residual gauge freedom. By eliminating these null states, we obtain the
physical Hilbert space, which contains only 2 transverse massless degrees of freedom rather than 4.

The enforcement of ∂µA
µ at the quantum level is subtle. Remember that in the Coulomb gauge, classically

we apply the gauge condition ∇iAi = 0 as part of the equations of motion, which becomes an operator
equation at the quantum level. In the Lorentz gauge, classically we only need to impose ‘boundary
conditions’ to ensure that the equation ∂2(∂µA

µ) = 0 has the trivial solution ∂µA
µ = 0. This implies

that, at the quantum level, we cannot enforce ∂µA
µ = 0 as an operator equation. Instead, we will have

to do something weaker, imposing a variant of it as a condition on the physical states.
(a) Calculate

[A0(t,x), ∂µA
µ(t,x′)]

and from your result explain why we cannot impose ∂µA
µ = 0 as an operator equation.

In the mode expansion for A0, only the α = 0 components survive, since E(0) is the only polarization with
a time-like component.

A0 =

∫
d̄3k√
2ωk

[
a
(0)
k eik·x + a

(0)†
k e−ik·x

]
Next, we compute ∂µA

µ in the mode expansion.

∂µA
µ = i

∫
d̄3k√
2ωk

3∑
α=0

[
(k · E(α))a

(α)
k eik·x − (k · E(α)∗)a

(α)†
k e−ik·x

]
= i

∫
d̄3k

√
ωk

2

[
(a

(0)
k + a

(3)
k )eik·x − (a

(0)†
k + a

(3)†
k )e−ik·x

]
where we use k · E(0) = ωk, k · E(1,2) = 0, k · E(3) = ωk by using the explicit form of the polarizations.
Therefore,

[A0(t,x), ∂µA
µ(t,x′)] =

i

2

∫
d̄3kd̄3k′√
ωk/ωk′

[
a
(0)
k eik·x + a

(0)†
k e−ik·x, (a

(0)
k′ + a

(3)
k′ )e

ik′·x′ − (a
(0)†
k′ + a

(3)†
k′ )e−ik′·x′

]
= − i

2

∫
d̄3kd̄3k′√
ωk/ωk′

(
[a

(0)
k , a

(0)†
k′ ]ei(k·x−k′·x′) + [a

(0)
k′ , a

(0)†
k ]ei(−k·x+k′·x′)

)
= −i

∫
d̄3kd̄3k′

√
ωk′

ωk
(−(2π)3δ(3)(k− k′))ei(kẋ−k′·x′)

= i

∫
d̄3keik·(x−x′) = i(2π)3δ3(x− x′)

In the 3rd equality, we used that the two terms in line 2 are equal, upon change of variables k ↔ k′.

We see that the commutator is non-vanishing. This prevents us from imposing ∂µA
µ = 0 as an operator

equation, which would imply the commutator vanishes identically.

(b) We also cannot impose that ‘physical states’ satisfy

∂µA
µ|ψ⟩ = 0

as ∂µA
µ|0⟩ ̸= 0, and we want to keep the vacuum as physical. So, to define physical states we need a

weaker condition. It turns out the condition eliminating all negative norm states while keeping |0⟩ is

∂µA(−)
µ |ψ⟩ = 0
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where A
(−)
µ denotes the annihilation part of Aµ. We now impose that the set of physical states

Hsmall ⊆ Hbig satisfies this equation. Show that there is no negative-norm state in Hsmall.

We show that any negative-norm state |ψ⟩ ∈ Hbig does not satisfy the defining condition ∂µA
(−)
µ |ψ⟩ = 0,

and thus does not belong to Hsmall.

From the calculation in part (a), we have:

∂µA(−)
µ = i

∫
d̄3k

√
ωk

2
(a

(0)
k + a

(3)
k )eik·x

The negative norm states in Hbig come from applying instances of the raising operator a
(0)†
p . We prove

the desired result for the negative norm states |ψ⟩ = a
(0)†
p |χ⟩, where |χ⟩ is a positive norm state. (Note:

this is a sufficient, but not necessary condition for negative norm state, as a negative norm state can be
obtained from a linear combination of negative, null, and positive norm states. Taking these into account
is more difficult, and is more or less equivalent to doing the rest of the problem. We therefore defer this
to part (g)). We compute

∂µA(−)
µ |ψ⟩ = i

∫
d̄3k

√
ωk

2
(a

(0)
k + a

(3)
k )eik·xa

(0)†
p |χ⟩

= −i
√
ωp

2
eip·x|χ⟩+ i

∫
d̄3k

√
ωk

2
eik·xa

(0)†
p a

(3)
k |χ⟩

This cannot vanish, as the first term is non-zero, and the second term is orthogonal to the first.

(c) Show that

⟨ψ′|∂µAµ|ψ⟩ = 0, ∀|ψ⟩, |ψ′⟩ ∈ Hsmall

That is, ∂µA
µ has zero matrix element among states in Hsmall.

Note from the mode expansion in (b) that

∂µA
µ = i

∫
d̄3k

√
ωk

2

[
(a

(0)
k + a

(3)
k )eik·x − (a

(0)†
k + a

(3)†
k )e−ik·x

]
= ∂µA(−)

µ − ∂µA(−)†
µ

Therefore, for |ψ⟩, |ψ′⟩ ∈ Hsmall we have

⟨ψ′|∂µAµ|ψ⟩ = ⟨ψ′|∂µA(−)
µ ψ⟩ − ⟨∂µA(−)

µ ψ′|ψ⟩ = 0− 0 = 0

(d) Introduce

b
(±)
k =

1√
2
(a

(3)
k ± a

(0)
k ), b

(±)†
k =

1√
2
(a

(3)†
k ± a

(0)†
k )

Show that the physical state condition can be written as

b
(+)
k |ψ⟩ = 0

From the mode expansion in (b), the physical state condition is

∂µA(−)
µ |ψ⟩ = i

∫
d̄3k

√
ωk

2
eik·x(a

(0)
k + a

(3)
k )|ψ⟩ = i

∫
d̄3k

√
ωke

ik·xb
(+)
k |ψ⟩ = 0

Since the states b
(+)
k |ψ⟩, b(+)

k′ |ψ⟩ are orthogonal for k ̸= k′, for the above equation to hold we must have

b
(+)
k |ψ⟩ = 0 for all k.
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(e) We are not yet done, as Hsmall still contains zero-norm states. To see this, work out the commutators

[b
(+)
k , b

(+)†
k′ ], [b

(−)
k , b

(−)†
k′ ], [b

(+)
k , b

(−)†
k′ ], [b

(−)
k , b

(+)†
k′ ]

and show that Hsmall can also be described as

Hsmall = {all states obtained by acting a
(1)†
k , a

(2)†
k , b

(+)†
k on |0⟩}

In other words, a physical state can have no b
(−)†
k excitations.

The operators have the commutation relations

[b
(±)
k , b

(±)†
k′ ] =

1

2
([a

(3)
k , a

(3)†
k′ ] + [a

(0)
k , a

(0)†
k′ ]) = 0

[b
(±)
k , b

(∓)†
k′ ] =

1

2
([a

(3)
k , a

(3)†
k′ ]− [a

(0)
k , a

(0)†
k′ ]) = (2π)3δ3(k− k′)

From (d), the condition for |ψ⟩ ∈ Hsmall is

b
(+)
k |ψ⟩ = 0, ∀k

Suppose |ψ⟩ is generated by applying some number of a
(1)†
k , a

(2)†
k , b

(+)†
k to the vacuum. By the commutation

relations above, to compute b
(+)
k |ψ⟩ we may commute the instance of b

(+)
k to the very right, where it

annihilates the vacuum to give 0.

Now suppose there are any instances of b
(−)†
k′ in generating |ψ⟩ by applying creation operators to vacuum.

Due to the commutation relations these serve as obstructions to commuting b
(+)
k to the very right, and

doing so one picks up non-zero terms proportional to δ3(k− k′), which cannot cancel.

Combining these results, one finds the desired result that

Hsmall = {all states obtained by acting a
(1)†
k , a

(2)†
k , b

(+)†
k on |0⟩}

(f) Show that any state |ψ⟩ ∈ Hsmall with non-zero b
(+)†
k excitations has zero norm, and its overlap with

any state in Hsmall is zero. Such states are called null states, and cannot have any physical significance.

Any state in |ψ⟩ ∈ Hsmall can be produced by acting some combination of a
(1)†
k , a

(2)†
k , b

(+)†
k on |0⟩. Taking

the Hermitian conjugate, any state ⟨ψ′| ∈ Hsmall can be produced by acting some a
(1)
k , a

(2)
k , b

(+)
k on ⟨0|.

Suppose now we take ⟨ψ′|ψ⟩, where |ψ⟩ has at least one instance of b
(+)
k . Since there are no instances of

b
(−)†
k operators, the b

(+)
k commutes with all the raising/lowering operators in the product. One can thus

commute it all the way to the left, where it annihilates ⟨0|. Therefore, ⟨ψ′|ψ⟩ = 0. This includes the case

where |ψ′⟩ = |ψ⟩, so in particular a state with a b
(+)†
k excitation has zero norm.

The same proof holds if |ψ⟩ is a linear combination of states, each given by acting creation operators on

the vacuum, where at least one has a b
(+)†
k excitation.

(g) Show that any state in Hsmall with non-zero norm must have the form

|ψ⟩ = |ψT ⟩+ |χ⟩

where |ψT ⟩ contains only excitations of a
(1)†
k , a

(2)†
k (i.e. transverse components), and |χ⟩ a null state.

|ψ⟩ should be physically equivalent to |ψT ⟩, as they differ only by a null state. We can then forget
about the null states, and define

Hphys = {|ψT ⟩}
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Hphys contains only positive-norm states, and is identical to that obtained in the Coulomb gauge.

We showed in (f) that any state with non-zero b
(+)†
k excitations is a null state. Since we can expand an

arbitrary state as a sum of n-particle states using creation and annihilation operators, we can write any
state in |ψ⟩ ∈ Hsmall as

|ψ⟩ = |ψT ⟩+ |χ⟩

where we put all terms with non-zero b
(+)†
k excitations into |χ⟩, and all terms without b

(+)†
k excitations

into |ψT ⟩. By definition, |χ⟩ is a null state, and |ψT ⟩ contains only a(1)†k , a
(2)†
k excitations.

In particular, one finds ⟨ψ|ψ⟩ = ⟨ψT |ψT ⟩ > 0, which proves (b) in full generality.

(h) Let us call excitations of b
(+)†
k null photons. To understand their physical interpretation, consider the

‘wave-function’ χµ(x) if the single null photon state

χµ(x) = ⟨0|Aµ(x)|k,+⟩, |k,+⟩ =
√
2ωkb

(+)†
k |0⟩

Note that the above definition of wavefunction χµ(x) is the straightforward generalization to vector
fields of our previous discussion for scalar fields.
Show that χµ(x) can be written as

χµ(x) = ∂µλ(x)

where λ(x) is some function which satisfies the equation for a massless scalar

∂µ∂
µλ = 0

This shows that a null photon can be interpreted as a guage transformation from the vacuum. To see
this, recall that the Lorentz gauge ∂µAµ = 0 leaves residual gauge transformations

Aµ → Aµ + ∂µλ, ∂µ∂
µλ = 0

Thus, χµ(x) can be considered a residual gauge transformation from Aµ = 0.
Using the mode expansion for Aµ(x), we have

χµ(x) = ⟨0|Aµ(x)|k,+⟩ =
∫
d̄3p

√
ωk

ωp
eip·xϵ(α)µ ⟨0|a(α)p b

(+)†
k |0⟩

=
1√
2
eik·x(−ϵ(0)µ + ϵ(3)µ ) =

1√
2ωk

eik·xkµ = − i√
2ωk

∂µ(e
ik·x)

In the second line we used the explicit forms of ϵ
(α)
µ , and that kµ = (−ωk,k). Therefore, χµ(x) = ∂µλ(x)

with λ(x) = − i√
2ωk

eik·x. Since k2 = 0, we immediately have ∂2λ = 0.

(i) Show that the conclusion of part (h) holds for any wavepacket of a null photon,

|f⟩ =
∫

d3kf(k)|k,+⟩

More generally, for |f⟩ =
∫
d3kf(k)|k,+⟩, we compute

⟨0|Aµ(x)|k,+⟩ =
∫

d3k√
2ωk

eik·xf(k)kµ = ∂µf̃(x)

where f̃(x) := −i
∫

d3k√
2ωk

f(k)eik·x. We again have kµ = (−ωk,k) and k
2 = 0, so all the results from (h)

carry over.
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Question 2: Casimir Effect in 1 Dimension (30 points)
Until now, we have disregarded the vacuum’s zero-point energy as an unobservable (infinite) shift in the
energy scale. However, as Casimir demonstrated in 1948, differences in vacuum zero point energies are
observable. This phenomenon is known as the Casimir effect. A simplest example is a small attractive
force between 2 close parallel conducting plates, due to quantum vacuum fluctuations of the EM field. The
force is caused by a change in vacuum energy of the EM field which results from the boundary conditions
imposed by the plates.

In this problem, we will explore the Casimir effect. For technical simplicity, we consider a toy version. As
we have seen, after quantization the EM field has the same number of degrees of freedom as 2 massless
scalar fields. Thus, consider a free, massless, real scalar field ϕ in 1 spatial dimension,

S = −1

2

∫
dxdt∂µϕ∂

µϕ

The vacuum of the system has infinite zero point energy. Denote it by E0. Now imagine we put 2 ‘plates’
at x = 0 and x = a such that ϕ is required to vanish at the location of the plates,

ϕ(x = 0, t) = ϕ(x = a, t) = 0

Adding plates which impose additional boundary conditions on ϕ disturbs the vacuum, and results in a
different zero-point energy E(a).

Even though E0 and E(a) are both infinite, their different turns out to be finite, and physically meaningful.
In fact, the difference

U(a) = E(a)− E0

can be considered as the potential energy between the 2 plates. Changing a modifies the potential energy,
resulting in a force between the plates which can be measured experimentally.

In this problem we compute U(a). Taking the difference between infinities is a highly dangerous thing to
do, and in principle one can get any answer, so we will need to be careful.

Both E0 and E(a) have 2 sources of infinities, one from the infinite volume, the other from there being
infinite local degrees of freedom. It is convenient to separate them by putting the system in a box with
finite size L ≫ a. We will take L → ∞ at the end. More explicitly, we require ϕ to satisfy a periodic
boundary condition corresponding to a circle of size L,

ϕ(x, t) = ϕ(x+ L, t)

(a) In the vacuum (i.e. before putting plates), write down the mode expansion for ϕ and calculate its
zero-point energy E0. Your answer should have the form

E0 =
1

2

∑
n

ωn

where ωn is the energy for each mode. Specify both ωn and the range of summation.
We are interested in a real scalar field with periodicity L, i.e. ϕ(x+ L, t) = ϕ(x, t). We write ϕ in terms
of creation and annihilation operators, this time restricting to modes apropriate for the circle.

ϕ(x, t) =

∞∑
n=−∞

1√
2Lωn

(ane
−iωnt+iknx + a†ne

iωnt−iknx), kn =
2πn

L
, ωn =

2π|n|
L
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Substituting this expansion into the Hamiltonian, and using the commutator [am, a
†
n] = δm,n, one has

H =
∞∑

n=−∞
ωnNn +

1

2

∞∑
n=∞

ωn

We find that

E0 =
1

2

∑
n∈Z

2π|n|
L

=
1

2

∑
n≥1

4πn

L

(b) Adding the plates separates the system into 2 segments, one with size a, and one with size L− a. In
both segments one has Dirichlet boundary conditions at either end. Therefore it is enough to work
out one of them. Find the mode expansion for ϕ in the region [0, a] and zero point ε(a). Again your
answer should have the form

ε(a) =
1

2

∑
n

ω̃n

Specify both ω̃n and the range of summation. The total zero-point energy of the system in the presence
of the plates is thus

E(a) = ε(a) + ε(L− a)

We proceed as before, but now write ϕ in terms of modes appropriate for Dirichlet boundary conditions
on the interval [0, a]:

ϕ(x, t) =
∞∑
n=1

sin ω̃x√
aω̃n

(ane
−iω̃nt + a†ne

iω̃nt), ω̃n =
πn

a

Substituting this expansion into the Hamiltonian, and using the commutator [am, a
†
n] = δm,n, one has

H =
∞∑
n=1

ω̃nNn +
1

2

∞∑
n=∞

ω̃n

We find that

ε(a) =
1

2

∑
n≥1

πn

a

(c) Both sums in (a) and (b) are divergent. There is not much sense in taking their difference. To do
this, we will first make them finite by introducing a ‘UV-cutoff’ Λ, and change the sums to

E0 =
1

2

∑
n

ωne
−ωn/Λ, ϵ(a) =

1

2

∑
n

ω̃ne
−ω̃n/Λ

Evaluate these expressions with finite Λ.
Using the identity

∞∑
n=1

ne−an =
ea

(ea − 1)2
=

1

4 sinh2(a/2)
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We find

E0 =
1

2

∑
n≥1

4πn

L
e−

2πn
LΛ =

π

2L sinh2(π/LΛ)

ε(a) =
1

2

∑
n≥1

πn

a
e−

πn
aΛ =

π

8a sinh2(π/2aΛ)

(d) Expand the answers from part (c) in the limit Λ → ∞. You will find they become divergent. Keep
terms which are divergent and finite, but throw out all terms which go to zero in the limit.

We obtain

E0 =
π

2L sinh2(π/LΛ)
∼ LΛ2

2π
− π

6L
+O(Λ−2)

ε(a) =
π

8a sinh2(π/2aΛ)
∼ aΛ2

2π
=

π

24a
+O(Λ−2)

(e) From your answers in part (d), find

U(a) = E(a)− E0

You should find U(a) is finite in the limit Λ → ∞. Now take the limit L→ ∞ in U(a), and find the
force between the plates.

Combining the above terms, we have

U(a) = ε(a) + ε(L− a)− E0 =
π

6L
− π

24a
− π

24(L− a)

Taking L→ ∞ gives

U(a) = − π

24a
, F (a) = −∂aU(a) = − π

24a2
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