
8.323 Problem Set 12 Solutions

May 14, 2023

Question 1: Decay of a Scalar Particle (20 points)
Consider a theory with 2 scalar fields φ and χ,

L = −1

2
(∂µφ)

2 − 1

2
M2φ2 − 1

2
(∂µχ)

2 − 1

2
m2χ2 +

1

2
gφχ2

Assume M > 2m and the coupling g is smnall. Calculate the decay rate Γ of φ-particles to the lowest
order in g.
We can read off the Feynman rules from the Lagrangian. They are −i

p2+M2−iε
for a φ propagator, −i

p2+m2−iε
for a χ propagator, and ig for the 3-point vertex.

At leading order, the decay φ→ χχ is given by a single diagram. Using the Feynman rules, the amplitude
is simply M = ig.

φ

χ

χ

Now we substitute this into the formula for differential decay rate in the rest frame of φ:

dΓ =
1

2M
|M|2(2π)4δ4(k1 + k2 − kφ)

d̄3k1

2ωk1

d̄3k2

2ωk2

=
g2

2M

1

4ω2
k

d3k

(2π)2
δ(2ωk − k0φ) =

g2

2M

√
E2 −m2

32π2E
dEdΩ2δ(E −M/2)

Performing the integrals, and multiplying by 1/2 for identical final state particles, we have

Γ =
g2

32πM

√
1− 4m2

M2
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Question 2: Cross-Sections (20 points)
In this problem we consider a toy model of the process in which an electron-positron collision produces
a quark-antiquark final state through an intermediate photon: e+e− → γ → qq̄. The role of the electron
and positron is played by a massless scalar field ψ. The photon is represented by a massless scalar field
φ. Finally, quarks are represented by a massive scalar field χ. The relevant Lagrangian density is

LL = −1

2
(∂µψ)

2 − 1

2
(∂µφ)

2 − 1

2
(∂µχ)

2 − 1

2
m2χ2 +

1

2
g′φψ2 +

1

2
gφχ2

Assume that couplings g, g′ are small, and of comparable magnitude.
(a) Consider the process

ψψ → χχ

Compute the total cross-section to lowest order in couplings. Express your answer in terms of s, t, u.
The Mandelstam variables for 2 → 2 scattering are given by

s = −(p1 + p2)
2, t = −(p1 − p3)

2, u = −(p1 − p4)
2, s+ t+ u =

4∑
i=1

m2
i

The Feynman rules are −i
p2−iε

for a φ propagator, −i
p2−iε

for a ψ propagator, −i
p2+m2−iε

for a χ propagator,
ig for the φχ2 interaction, and ig′ for the φψ2 interaction.

At leading order, the process ψψ → χχ is given by a single s-channel diagram.

φ

ψ

ψ χ

χ

Using the Feynman rules, the amplitude is

M = (ig′)
−i

(p1 + p2)2 − iε
(ig) = igg′

1

s

To compute the cross-section, we first work out kinematics. We can take the momentum to be

k1 = (E, 0, 0, E), k2 = (E, 0, 0,−E)

k3 = (E, 0, k′ sin θ, k′ cos θ), k3 = (E, 0,−k′ sin θ,−k′ cos θ), k′2 := E2 −m2

In terms of the Mandelstam variables, this gives

s = 4E2, t = −E2 − k′2 + 2Ek′ cos θ, u = −E2 − k′2 − 2Ek′ cos θ

The differential scattering amplitude is

dσ =
1

64π2s

k′

E
|M|2dΩ2 =

g2g′2

64π2s

k′

E

1

s2
dΩ2

Multiplying by 1/2 for identical final state particles and performing the angular integration, the total
scattering amplitude is

σ =
1

2

∫
dσ =

(gg′)2

32πs3

√
1− 4m2

s

2



(b) Consider the process

ψψ → ψψ

Compute the differential cross-section to lowest order. Express your answer in terms of s, t, u.
At leading order, the process ψψ → ψψ is given by s,t,u-channel diagrams.

φ

ψ

ψ ψ

ψ

φ

ψψ

ψ ψ

φ

ψψ

ψ ψ

Using the Feynman rules, the amplitude is

M = (ig)

[
−i

(p1 + p2)2 − iε
+

−i
(p1 − p3)2 − iε

+
−i

(p1 − p4)2 − iε

]
(ig) = −ig2

(
1

s
+

1

t
+

1

u

)
Proceeding in the same way as (a) with the same kinematics, the differential cross section is

dσ =
g4

64π2s

(
1

s
+

1

t
+

1

u

)2

dΩ2 =
g4

64π2s

(
1− 4

sin2 θ

)2

dΩ2

Note: in principle, we would multiply by 1/2 for identical particles and perform the integral for the total
scattering cross section, but the θ-integral is divergent at θ = 0 and θ = π. These are known as collinear
singularities, associated with the final state particles moving along the same axis. It is related to subtleties
in defining asymptotic states for massless particles, such as how to distinguish between multiple collinear
massless particles with a single massless particle of the same total energy.
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Question 3: Rutherford Scattering (30+10 points) The cross-section for scattering of an electron
by the Coulombfield of a nucleus can be computed, to lowest order, without quantizing the electromagnetic
field. Instead, treat the field as a given, classical potential Aµ(x). The interaction Hamiltonian is

HI =

∫
d3xeψ̄γµψAµ

where ψ(x) is the usual quantized Dirac field.
(a) Show the T -matrix element for electron scattering off a localized classical potential, is to lowest order

〈p′|iT |p〉 = −ieū(p′)γµu(p)Ãµ(p
′ − p)

where Ãµ(q) is the usual 4D Fourier transform of Aµ(x).
We compute S-matrix elements:

out〈p′|p〉in = 〈p′|e−i
∫
d4xHI |p〉 = 〈p′|p〉 − ie

∫
d4xAµ(x)〈p′|ψ̄γµψ|p〉+O(e2)

= 〈p′|p〉 − ie

∫
d4xAµ(x)ū(p

′)γµu(p)ei(p−p′)·x +O(e2)

= 〈p′|p〉 − ieū(p′)γµu(p)Ãµ(p− p′) +O(e2)

where in the second line we used the mode expansion for ψ(x) and ψ̄(x).

Comparing this to the definition of the transfer matrix

out〈p′|p〉in = 〈p′|p〉+ 〈p′|iT |p〉

we find that to lowest order in e,

〈p′|iT |p〉 = −ieū(p′)γµu(p)Ãµ(p
′ − p)

(b) If Aµ(x) is time independent, its Fourier transform contains a delta function of energy. It is then
natural to define

〈p′|iT |p〉 := iM(2π)δ(Ef − Ei)

where Ei and Ef are the initial and final energies of the particle. We adopt a new Feynman rule for
computing M:

where Ãµ(q) is the 3D Fourier transform of Aµ(x). Given this definition of M, show that the cross-
section for scattering off a time-independent, localized potential is

dσ =
1

|vi|
1

2Ei

d̄3pf

2Ef
|M(pi → pf )|2(2π)δ(Ef − Ei)

where vi is the particle’s initial velocity. Integrate over |pf | to find a simple expression for dσ/dΩ.
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We compute the cross section by putting our system in a large box of dimensions T ×V . Spatial momenta
are discretized to multiples of 2π/L, therefore the density of states is V/(2π)3. There is 1 initial state
excitation and 1 final state excitation, so we compute:

dσ =
scattering probability dP

incident flux
=

1

T |vi|/V
|〈pf |S|pi〉|2

〈pf |pf 〉〈pi|pi〉
∏

final states
d3pf

V

(2π)3

=
V

T |vi|
(|M|2πδ(Ef − Ei))

2

2EiV

d3pf

2EfV

V

(2π)3
=

1

|vi|
d̄3pf

2Ei2Ef
|M|22πδ(Ef − Ei)

where in the 3rd line we used that (2πδ(Ef −Ei))
2 = 2πδ(Ef −Ei)2πδ(0) = T2πδ(Ef −Ei). All factors

of T and V have cancelled out, as expected.

Finally, we integrate over |pf | to obtain the differential cross section:

dσ

dΩ
=

∫
p2dp

(2π)3
1

|vi|
1

4EiEf
|M|22πδ(Ef − Ei) =

∫
p2dp

(2π)3
1

|vi|
1

4E2
i

|M|2 Ei

|pi|
2πδ(p− |pi|)

=
1

4(2π)2
|pi|
Ei|vi|

|M|2 = |M|2

16π2

(c) Specialize to the case of electron scattering from a Coulomb potential, A0 = Ze/4πr. Working in the
non-relativistic limit, derive the Rutherford formula,

dσ

dΩ
=

α2Z2

4m2v4 sin4(θ/2)

Refer to (d).

(d) Bonus. Repeat the calculation of (c) in the relativistic regime. After averaging over the spin of the
initial state and summing over the spin of the final state, show that the cross section is given by

dσ

dΩ
=

α2

4|p|2β2 sin2(θ/2)

(
1− β2 sin4

θ

2

)
where α = e2/4π the fine structure constant, p the electron momentum, and β its velocity.

Using the Feynman rules, the amplitude is

M = eū(p′)γµÃµ(p
′ − p)u(p)

Therefore, the spin-summed/averaged amplitude squared is

1

2

∑
spin

|M|2 = e2

2
Ãµ(p

′ − p)Ãν(p
′ − p)

∑
s,s′

ūs(p
′)γµus′(p)ūs′(p)γ

νus(p
′)

=
e2

2
Ãµ(p

′ − p)Ãν(p
′ − p)Tr[γµ(/p+m)γν(/p

′ +m)]

= 2e2[2(p · Ã(p′ − p))(p′ · Ã(p′ − p)) + (m2 + p · p′)Ã2(p′ − p)]

Now we specialize to a Coulomb potential, A0 = Ze
4πr , Ai = 0. The Fourier transform of A0(x) is divergent

owing to the 1/r behavior, but we can compute it by adding a ‘photon mass regulator’ e−mr, and take
m→ 0 in the end.

A0(k) = lim
m→0

∫
d3xe−ik·xe−mr Ze

4πr
=
Ze

2
lim
m→0

∫
drdθ r sin θe−mre−i|k|r cos θ

= lim
m→0

Ze

|k|2 +m2
=

Ze

|k|2
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Therefore, using that Ef = Ei for a time-independent potential, we have

1

2

∑
spin

|M|2 = 2e2(m2 + EE′ + p · p′)
Z2e2

|p′ − p|4
=
Z2e4(1− β2 sin2(θ/2))

4|p|2β2 sin4(θ/2)

Using the result from (b), the differential cross section is thus

dσ

dΩ
=

1

(4π)2
1

2

∑
spin

|M|2 = Z2α2

4|p|2β2 sin4(θ/2)

(
1− β2 sin2

θ

2

)

In the non-relativistic limit only the first term contributes, which is the result desired in (c).
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Question 4: Electron-Muon Scattering (20+20 points)
Consider the scattering process

e− + µ− → e− + µ−

The electron and muon have masses me and mµ, respectively.
(a) Calculate the scattering amplitude M.
At leading order, the process ψψ → χχ is given by a single t-channel diagram.

γ

e−e−

µ− µ−

Using the Feynman rules, the amplitude is

M = −ie2 1

t+ iε
[ūs′1(p

′
1)γ

µus1(p1)][ūs′2(p
′
2)γµus2(p2)]

(b) Calculate 1
4

∑
spin |M|2, averaging over the spins of the initial state, and summing over the spins of

the final state. Express your answer in terms of s,t,u.
Squaring the amplitude, summing over final spins, and averaging over initial spins, we have

1

4

∑
s1,s2,s′1,s

′
2

|M|2 = e4

4t2

∑
s1,s2,s′1,s

′
2

[ūs′1(p
′
1)γ

µus1(p1)ūs1(p1)γ
µus′1(p

′
1)][ūs′2(p

′
2)γµus2(p2)ūs2(p2)γµus′2(p

′
2)]

=
e4

t2
Tr[γµΛ+(p1)γ

νΛ+(p
′
1)]Tr[γµΛ+(p2)γνΛ+(p

′
2)]

=
4e4

t2
[(m2

e + p1 · p′1)ηµν − pµ1p
′ν
1 − pν1p

′µ
1 ][(m2

µ + p2 · p′2)ηµν − p2µp
′
2ν − p2νp

′
2µ]

=
8e4

t2
(p1 · p2p′1 · p′2 + p1 · p′2p′1 · p2 +m2

ep2 · p′2 +m2
µp1 · p′1 + 2m2

em
2
µ)

=
8e4

t2

(
s2

4
+
u2

4
− (m2

e +m2
µ)(s+ u) +

3

2
(m2

e +m2
µ)

2

)
In the second line we use the identity

∑
s us(p)ūs(p) = Λ+(p) = i(i/p +m). In the third line, we use the

gamma trace identities

Tr(γµ) = Tr(γµγνγρ) = 0, Tr(γµγν) = 4ηµν , Tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ)

in order to simplify

Tr[γµ(i/p+m)γν(i/q +m)] = ηµν(4m2 + p · q)− 4pµqν − 4pνqµ

In the last line, we use the Mandelstam identities

s = −(p1 + p2)
2 = m2

e +m2
µ − 2p1 · p2, u = −(p1 − p′2)

2 = m2
e +m2

µ + 2p1 · p′2
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(c) Bonus. Calculate the differential cross-section in the center of mass frame.
We first work out kinematics. In the center of mass frame, we can take the momenta to be

p1 = (E1, 0, 0, p), p2 = (E2, 0, 0,−p)
p′1 = (E1, 0, p sin θ, p cos θ), p′2 = (E2, 0,−p sin θ,−p cos θ), p′2 := E2 −m2

In terms of Mandelstam variables,

s = −(p1 + p2)
2 = E2

cm = (E1 + E2)
2

t = −(p1 − p′1)
2 = 2p2(cos θ − 1)

u = −(p1 − p′2)
2 = (E2 − E1)

2 − 2p2(cos θ + 1)

In the center of mass frame, the spin-summed/averaged differential cross-section is(
dσ

dΩ

)
cm

=
1

64π2s

|p′
1|

|p1|
1

4

∑
|M|2

=
e4

8π2st2

(
s2

4
+
u2

4
− (m2

e +m2
µ)(s+ u) +

3

2
(m2

e +m2
µ)

2

)2

(d) Bonus. Obtain the differential cross-section in the muon rest frame. Show that in the limit mµ → ∞,
one recovers the cross section of Rutherford scattering.
In the muon rest frame, the kinematics becomes

p1 = (E1, 0, 0, p), p2 = (mµ, 0, 0, 0)

p′1 = (E′
1, 0, p

′ sin θ, p′ cos θ), p′2 = (E1 − E′
1 +mµ, 0,−p′ sin θ, p− p′ cos θ)

The Lorentz-invariant differential cross section is given by

dσ =
1

4EAEB|vA − vB|
1

4

∑
spin

|M|2dΠLIPS

The spin-summed/averaged amplitude is given in (b). In the muon rest frame,

E1E2|v1 − v2| = |E1p
z
2 − E2p

z
1| = mµp

The final state phase space factor is

dΠLIPS = (2π)4δ4(p1 + p2 − p′1 − p′2)
d̄3p′

1

2E′
1

d̄3p′
2

2E′
2

=
1

(2π)2
1

4E′
1E

′
2

δ(E1 +mµ − E′
1 − E′

2)p
′2dp′dΩ2

for E′2
1 = m2

e + p′2, and E′2
2 = m2

µ + |p′
1 − p1|2 = m2

µ + p′2 + p2 − 2pp′ cos θ.

Now we take the limit as m2
µ → ∞. We have E′

2 ≈ mµ,therefore the delta function imposes E1 ≈ E′
1,

thus p ≈ p′. The final state phase factor simplifies to

dΠLIPS ≈ 1

16π2
p

mµ
dΩ2

The leading mµ dependence from the amplitude is

1

4

∑
spin

|M|2 = 8e4

t2
(p1 · p2p′1 · p′2 + p1 · p′2p′1 · p2 +m2

ep2 · p′2 +m2
µp1 · p′1 + 2m2

em
2
µ)

≈
e4m2

µ

2p4 sin4(θ/2)
(2E2

1 −m2
e − E2

1 + p2 cos θ + 2m2
e)

=
e4m2

µ

2p4 sin4(θ/2)
(2E2

1 − 2p2 sin2(θ/2)) =
e4m2

µ

βp2 sin4(θ/2)
(1− β2 sin2(θ/2)), β = p/E1
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Putting everything together, the differential cross section in the muon rest frame for m2
µ → ∞ is

dσ

dΩ
=

1

4mµp

1

16π2
p

mµ

1

4

∑
spin

|M|2 ≈ α2

4p2β2 sin4(θ/2)
(1− β2 sinh2(θ/2))

This matches the result from Problem 3.
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