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1 Quantization in Quantum Mechanics 

1.1 First, there was Hamilton 

Let us review classical mechanics, in the Hamiltonian formalism: 
• States: given by a point in phase space M = R2d with coordinates (qj , pj ) for 1 ≤ j ≤ d 
• Observables: functions on phase space, F (M) 

∂H = −∂H • Dynamics: states evolve according to Hamilton’s equations, q̇j = , ṗj∂pj ∂qj 

We can capture the dynamics by defning the Poisson bracket 

∂f1 ∂f2 ∂f1 ∂f2{·, ·} : F (M) × F (M) → F (M), (f1, f2) 7→ {f1, f2} = − 
∂qi ∂pi ∂pi ∂qi 

• Mathematically, it gives F (M) a group structure (more precisely, a Lie algebra structure, due to 
antisymmetry + Jacobi identity) 

• The Poisson bracket generates time translations: an observable evolves in time 

dA ∂A ∂A ∂A ∂A 
= q̇i + ṗi + = {A, H} + 

dt ∂qi ∂pi ∂t ∂t 

where the second term vanishes if A does not explicitly depend on time 
• Observe: this looks a lot like the equations of motion for operators in the Heisenberg picture 

dO ∂O 
= −i[O, H] + 

dt ∂t 

1.2 Quantization 

Quantization: the procedure of turning a classical theory into a valid quantum theory 
• Many quantization schemes in QM: Dirac quantization, path-integral quantization, deformation 
quantization, geometric quantization, etc. Can generalize each of these to QFT. 

Axiom: whenever a group G acts on a classical system, in the corresponding quantum theory, the Hilbert 
space H carries a unitary representation of G (have ‘operators’) 

Dirac quantization: promote each classical observable f to an self-adjoint operator Ôf acting on a Hilbert 
ˆ = − i ˆspace H such that O{f,g} ℏ [Ôf , Og] (replace P.B. with commutators) 

• If we view F (M) as a group with operation given by the Poisson bracket, quantization gives a 
unitary representation on H 

• For positions and momenta, we have: 

[q̂i, q̂j ] = [p̂i, p̂j ] = 0, [q̂i, p̂j ] = iℏ 
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We can try continue this prescription to more complicated functions of q and p, but this breaks down 
for polynomials of degree ≥ 3 (Groenewold’s theorem). In particular, operator ordering ambiguities 
generate corrections of higher-order in h. To second order in q and p said ordering ambiguities are 
not fatal, making quantities like the Hamiltonian well-defned. 

Usually, we only care about restricting quantization to linear (sometimes quadratic) polynomials in x, p 
• In classical mechanics, linear functions in q and p are closed under taking Poisson brackets, gener-
ating the Heisenberg group 

• In quantum mechanics, we want operators satisfying (taking ℏ = 1) 

[q̂i, q̂j ] = [p̂i, p̂j ] = 0, [q̂i, p̂j ] = i 

Existence and uniqueness: given by the Stone-von Neumann theorem 
The Stone-von Neumann theorem: 
1. There are no fnite dimensional representations of the Heisenberg group 
I.e. x̂ and p̂  cannot be fnite dimensional matrices (proof: take trace) 

2. All (irreducible) representations of x̂ and p̂  are unitarily equivalent, and act on the Hilbert space of 
square-integrable functions L2(R) 

This is the most important theorem in quantum mechanics. In particular (2) proves that the following 
are all equivalent. 

• Position-space representation: x̂ → x, p̂ = −i ∂ 
∂x 

• Momentum-space representation: x̂ → i∂x 
∂ , p̂ = p related by Fourier (unitary!) 

• We have a representation at every t. Time evolution, then, relates representations at diferent times, 
(x̂(t), p̂(t), H(t)). By Stone-von Neumann all representations of x̂ and p̂  are unitarily equivalent, so 
time-evolution must be unitary. There is an inherent ambiguity: we can either evolve the operators 
(active), the states (passive), or something in-between, but all these are fundamentally the same. 
This demonstrates the equivalence of the Heisenberg and Schrödinger pictures of QM. 

In practice, to quantize a Lagrangian system we do the following. 
1. Identify the generalized coordinates (degrees of freedom) qi of a classical system 
2. Derive the conjugate generalized momenta pi from the Lagrangian. 
3. Promote (qi, pi) into operators (q̂i, p̂i), which satisfy the canonical commutation relations 

[q̂i, p̂j ] = iℏ{qi, pj } = iℏδij 

1 2 − 1 ω2 2Example: the classical harmonic oscillator, L = ẋ x (e.o.m. ẍ − ω2x = 0)2 2 
1 2 1 2• Conjugate momentum: p = ẋ, Hamiltonian H = p + ω2x2 2 

√1 ∗ √1• We can introduce ‘normal coordinates’ a = (ωx + ip), a = (ωx − ip), H = ωaa∗ 
2ω 2ω 

• Quantization: can promote (x, p) to operators, or (a, a ∗) to operators. Suppose we do the latter. 
the commutator is given by the Poisson bracket � � 

∂a ∂a∗ ∂a ∂a∗ 

[â, â ∗ ] = iℏ{a, a ∗ } = iℏ − = iℏ(−i) = 1 
∂x ∂p ∂p ∂x 

†• The operators â, â naturally act on the Bargmann-Fock space of square-integrable holomorphic 
(complex diferentiable) functions. By Stone-von Neumann, there must be a unitary map between 
this and L2(R) in the position representation. Indeed there is, you should think of this map as just a 
change of basis. This map identifes Bargmann-Fock as the space of coherent states. Mathematically, 
it’s nice to work in the basis of coherent states, because unlike with delta-functions and plane waves, 
I never encounter any problems with infnities or normalizability. 
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2 Quantization in QFT 

2.1 Classical Field Theory 

We review some basic feld theory. We work in Minkowski space, with a scalar feld ϕ. Everything in this 
discussion can be extended to vector, tensor, and spinor felds with some efort (sometimes, with a lot of 
efort), which will be the subject of much of this course. 

The starting point is the action. This is the time-integral of the Lagrangian L, or the spacetime-integral 
of the Lagrangian density L. Z Z 

S[ϕ] = dtL[ϕ] = d4 xL(ϕ, ∂µϕ) 

What it means for ϕ to be a Lorentz scalar is that under a Lorentz transformation Λ, the feld transforms 
as ϕ → ϕ ′ , such that ϕ ′ (Λx) = ϕ(x). This is a confusing point, so I’ll elaborate. [draw picture] 

The principle of least action leads to the Euler-Lagrange equations of motion, which governs the time-
evolution of ϕ. � � 

∂L ∂L 
∂µ 

∂(∂µϕ) 
= 

∂ϕ 

Symmetries and Noether’s theorem. Ask class if they want to go over an example. Use 2-component 
scalar feld ϕa with SO(2) symmetry. Angular momentum. 

To prepare for quantization, let us pick a specifc model. Namely, we work with a free (zero potential) 
real scalar feld of mass m, with Lagrangian and equation of motion given by 

2ϕ2L = − 
1
(∂ϕ)2 − m , (∂2 − m 2)ϕ(x) = 0 
2 

˙The conjugate momentum to ϕ is π = ∂tϕ = ϕ. The Hamiltonian density is thus 

1 1 1 H = π2 + (∇ϕ)2 + m 2ϕ2 

2 2 2 

In order to determine the degrees of freedom of our system, let us examine the equations of motion, which 
˜we write in Fourier (momentum) space ϕ(t, k): 

(−∂2 + ωk 
2 )ϕ̃(t, k) = 0t 

2Here ω2 = k2 + m , and k a free parameter. The equation of motion for our feld has now been decoupledk 
into its momentum components. For each k ∈ R3 we have such an equation, which is precisely the equation 
of motion for a harmonic oscillator of frequency ωk. The moral is that now we can immediately read of 
our system’s degrees of freedom: for each (continuous) momentum value we get a harmonic oscillator. 
This is a generic feature of free QFTs. 

2.2 Canonical Quantization 

We are ready to quantize our theory, and in fact we can immediately quote our results from earlier for a 

single harmonic oscillator. The mode ϕ̃(t, k) becomes an operator ϕ̃ˆ(t, k) given by 

˜ 1 1 iωkt)ϕ
ˆ
(t, k) = √ (âk(t) + â † (t)) = √ (âke −iωkt + â † k ke 

2ωk 2ωk 
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To get back to position space we take a Fourier transform to yield a mode expansion: Z 
ˆ d3k 1 † iωkt−ik·x)ϕ(t, x) = √ (âke −iωkt+ik·x + â ek(2π)3 2ωk 

This is an important equation in QFT. We can also compute the canonical momentum: Z r 

π̂(t, x) = ∂tϕ̂(t, x) = −i d3k ωk 
(âke −iωkt+ik·x − â† ke iωkt−ik·x)

(2π)3 2 

Finally, quantization. There are two ways we can do this. 

1. Demanding the canonical commutation relations for a generalized coordinate and conjugate mo-
menta, in this case the pair ϕ and π: 

′ )] = iδ(3)(x − x[ϕ̂(t, x), ϕ̂(t, x ′ )] = [π̂(t, x), π̂(t, x ′ )] = 0, [ϕ̂(t, x), π̂(t, x ′ ) 

2. Using the above insight where we have a continuum of harmonic oscillators we want to quantize: 

† † † 
k ′ ] = (2π)3δ(3)(k − k ′ )[âk, âk ′ ] = [âk, âk ′ ] = 0, [âk, â 

The prefactor (2π)3 is not important, since it can always be removed by rescaling operators. How-
ever, it is necessary so that (1) and (2) are consistent, as one can check using the mode expansions 
for ϕ̂(xµ) and π̂(xµ). In fact, (1) and (2) are equivalent in that imposing each commutator implies 
the other, serving as a good consistency check of our theory. 

By imposing the necessary canonical commutation relations, we have thus quantized a classical feld 
theory, paving the way for quantum feld theory. 

It remains to discuss the Hilbert space of our theory, and again we draw from our knowledge of the 
quantum harmonic oscillator. H is generated by acting creation operators âk on some vacuum state |0⟩. 
There is an important diference: in QM creation operators create one unit of energy quanta. In QFT, a 
creation operator â† creates a bona fde particle of momentum k. The total Hilbert space is thus k M † †H = Hn, Hn = span{â · · · â |0⟩}k1 kn 

n≥0 

where Hn is the n-particle sector, and |0⟩ is the vacuum state (Note that H0 = {|0⟩}). When we do 
quantum mechanics without QFT, we are locked into working in a particular sector Hn. On the other 
hand, QFT provides a natural way to move between sectors: particle creation and annihilation are intrinsic 
to the theory. 

A last note. In quantum mechanics, we have position operators x̂, but no time operator t. In quantum 
mechanics time serves a privileged role as a parameter. Special relativity tells us that space and time are 
intimately related, and so in QFT we demote position to the same status as time, from an operator to 
just a parameter. Indeed, felds take values in both position and time. There is another way to approach 
particle physics. Namely, we could have also promoted time to an operator and retain position operators 
so they are again on equal footing. Doing so, one encounters several problems. For instance, owing to the 
−1 in the Minkowski metric, the Hilbert space no longer has a positive defnite inner product. This is 
very bad, but not fatal–the theory can be remedied by restricting to a ‘physical’ Hilbert space. One can 
proceed to get a consistent quantum theory, but this is hard, less intuitive, and not particularly insightful 
for us. However, the approach of promoting time to an operator is how string theory is formulated, at 
least perturbatively. 
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2.3 The Role of Time in Quantization 

I just told you that time and space should be treated equally, since they are part of the same entity we 
call spacetime. I will proceed to tell you why the opposite is true: even in QFT, time has a very privileged 
role to play. 
Let us return to our scalar equation of motion, 

(−∂2 + ωk 
2 )ϕ̃(t, k) = 0t 

˜ ±iωktThis is a second order ODE, so for a given ωk this has 2 solutions: ϕ(t, k) ∝ e . One has positive 
frequency, and the other negative frequencies: it is this which demarcates particles from antiparticles. 
To be more precise, it is this ∂t operator whose eigenvalues separates modes into positive and negative 
frequency. In the language of general relativity, this separation depends on the existence of a global 
timelike Killing vector, which is a coordinate transformation which preserves the metric. In special 
relativity we work in Minkowski space, where ∂t fulflls this role. 

More generally, we can quantize a feld theory in curved spacetimes that lack a timelike Killing vector. 
There is thus no natural decomposition of ϕ into positive and negative frequencies, into particles and 
antiparticles, into creation and annihilation operators. In fact, the notion of a particle in curved space 
does not have universal signifcance, and is observer-dependent. A state where one observer observes no 
particles, another observer might see them. Because the creation and annihilation operators are crucial 
to defning the vacuum of the theory, diferent observers will have diferent vacua. Generically, such vacua 
are no longer devoid of particles, even if an observer is free-falling. In Minkowski space we don’t have this 
problem because the vacuum state we defned earlier today is the agreed vacuum for all inertial observers, 
as both are invariant under the Poincaré group. 

Let me end of today with 2 experimental consequences of formulating QFT in curved space. 

1. Consider 2 observers in Minkowski space, with a scalar feld. The frst is inertial, and the second 
is uniformly accelerating at a. Suppose the feld is in the vacuum state for the inertial observer, 
which is just the |0⟩ state we wrote above. Then, the accelerating observer will see a thermal bath 
of particles, at temperature T ∝ a. This phenomenon is called Unruh radiation, with T the Unruh 
temperature. 

2. Consider a scalar feld in a universe that is asymptotically Minkowski at early and late times, but 
undergoes a period of infation from t1 to t2. Then, even if the feld ϕ is prepared in the vacuum 
state at time t = −∞, an inertial observer at late times will see particles: this is the phenomenon 
of particle creation is cosmological spacetimes. 
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