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1 Contour Integration 

1.1 The Residue Theorem 

It’s commonly said in math that the shortest path between 2 points in the real domain passes through 
the complex plane. One such path is contour integration, a powerful technique using the tools of complex 
analysis that can be applied to evaluate difcult real integrals. It has incredible importance in QFT for 
reasons I’ll discuss, so I’d like to start by reviewing it. 

Simple Poles 
First, consider a function f , holomorphic in some region D ⊂ C with C = ∂D. Draw fgure. Then 
Cauchy’s integral theorem tells us that I 

dzf(z) = 0 
C 

This is a corollary of Green’s theorem in the plane, combined with the Cauchy-Riemann equations. 

f(z)
We take something more interesting, take g(z) = , where f(z) is holomorphic. There are 2 cases. 

z − z0 
1. z0 ̸∈ D. Then g is holomorphic on D, so by Cauchy’s theorem above the integral vanishes 
2. z0 ∈ D. Draw fgure. By Cauchy the integral only picks up a contribution at the pole. Here 
the numerator is regular, and we can compute the integral of the denominator using the curve 
z(t) = z0 + ϵeit . We then have I 

f(z) 
= 2πif(z0) =: 2πiResg(z0) 

C z − z0 

The story is very similar if there are many poles in D: we can split up the domain of integration 
and evaluate each pole using the technique above. Draw fgure. For instance, 

f(z) 1 f(z) 1 1 
h(z) := = = Resh(z0) = Resh(zk)

(z − z0) · · · (z − zn) z − z0 (z − z1) · · · (z − zn) z − z0 z − zk 

I X 
dzh(z) = 2πi Resh(zk) 

C k 

The way to intuitively understand the residue of a function at some point zi is what you get when you 
block out the pole at zi, and evaluate the rest of the function there. 

Higher Order Poles 
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Technically this is only true for simple poles; for higher order poles (e.g. 1/(z − z0)2), the story is a bit 
more complicated. For an nth-order pole, one has the formula 

dn−11 
Res(f, z0) = lim ((z − z0)

nf(z))
(n − 1)! z→z0 dzn−1 

For simple poles n = 1 this gives what we expect, 

Res(f, z0) = lim (z − z0)f(z) 
z→z0 

What does this mean? One can expand a function f in terms of a Laurent series about a pole of order n. 
This is just a Taylor series with negative exponents, to account for the singular structure. X ak

f(z) = 
(z − z0)n 

k≥−n 

Then, the residue of f is the coefcient of the (z − z0)−1 term–again, it’s what happens when you block 
out the pole at zi. One can now make sense of this formula. Say f has a pole of order n–how do we 
isolate the −1 term of the Laurent series when there are terms more singular? There is a trick: multiply 
the series by (z − z0)n , so we have no more singularities. Then, diferentiate the regular series n − 1 
times so that terms corresponding to higher singular behavior vanish. The constant term is now just the 
coefcient of the −1 coefcient (with some combinatorial factor). Finally, one evaluates at z = z0 to kill 
of every other regular term, isolating a−1. 
Usually you will only have to work with simple poles, but this formula is good to know. 

Now, we can state the residue theorem in its full generality. Let h(z) be some function, analytic except 
at a discrete collection of poles. Pick some closed curve C bounding a region D. One has I X 

dzh(z) = 2πi Resh(zj ) 
C zj ∈D 

1.2 Applications 

Example 1 
Let’s do an example. Consider the following real integral. The trick is to write this as a complex integral. Z Zix ixe e 

I = = dx 
x2 + 1 (x + i)(x − i)R R 

This has poles at x = ±i, with residues ±e 1/2i. 

We want to use the residue theorem. However, right now we can’t because this requires a closed path of 
integration. There is a trick to get it of this form, known as closing the contour. 

• We consider the semicircle of radius R ≫ 1 in the upper half plane, going counterclockwise, C = 
LR ∪ CR. Draw fgure. By the residue theorem, I ize π 

dz = 2πiRes(i) = 
z2 + 1 eLR∪CR 

• We now take R →∞: I iz I Z 
e π 

lim dz = dzf(z) + lim dzf(z) = 
R→∞ z2 + 1 R→∞ eLR∪CR R CR 
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This is almost what we want, but the presence of this second term is annoying. Let’s study it. for 
ix/(xf(z) = e 2 + 1), the integrand is exponentially suppressed along this contour, and vanishes: Z −Re 

lim dzf(z) ∼ lim (πR) = 0 
R→∞ R→∞ R2 

CR 

This is why we closed the contour upwards: if we closed in the other direction, the integrand would 
have been exponentially amplifed, making our method useless. 

We have recovered I = π/e. R 
We can summarize this 3-step procedure for integrals R. First, identify the poles and residues. Next, 
identify if closing upwards or downwards will give a vanishing contribution. Lastly, close in this direction 
and use the residue theorem. 

Example 2 
Now let’s do an integral in QFT which is extremely important: Z ip·(x−y)e 

Π(x − y) = i d̄4 p 
p2 + m2 − iϵ 

Here ϵ > 0 is a generic, arbitrarily small number. In particular, we’ll see why this iϵ is so important in 
QFT. Let’s look for the poles of the integrand. We have 

2 0 0 p + m 2 − iϵ = −(p 0)2 + p 2 − iϵ = −(p 0)2 + ω2 − iϵ = (p + ωp − iϵ)(−p + ωp − iϵ) = 0p 

Where in the last step we don’t care about quadratic terms, and renamed 2ωp ϵ → ϵ. It is important when 
0doing this that ωp > 0: the positive sign of ϵ is sacred. Therefore, the poles are located at p = ±ω   iϵ. 

Draw fgure. Z 
e−ip

0(x0−y0) 
¯3 ip·(x·y)d 0Π(x − y) = −i d pe p̄ 

(p0 + ωp − iϵ)(−p0 + ωp − iϵ) 

1 1 0−y0) 1 1 0−y0)iωp(x −iωp(xThe dp0 integrand f has Resf (−ωp + iϵ) = e , and Resf (ωp − iϵ) = e 
2π 2ωp 2π 2ωp 

−ip0(x0−y0)Now we close the contour. We want exponential decay in e , so the half-plane we pick actually 
depends on sign(x0 − y0). 

0 01. x > y . We close down, picking up the pole at ωp − iϵ: 

1 1 i−iωp(x0−y0) −iωp(x0−y0)I(x 0 − y 0) = 2πi e = e 
2π 2ωp 2ωp 

0 02. x < y . We close up, picking up the pole at −ωp + iϵ. A similar calculation shows 

−iωp(y0−x0)I(x 0 − y 0) = 
i

e 
2ωp 

Finally, we can substitute this into Π(x − y) to get our result: Z  
2 
d̄  
ω 

3p 

p 
p =ωp 

0 − yip·(x−y)| 0 e 0 , x > 0 
Π(x − y) = Z 3̄d p ip·(y−x)| 0 e p0=ωp 

, x0 − y < 0 
2ωp 

We will shortly see how this is equivalent to the time-ordered 2-point function, ⟨0|Tϕ(x)ϕ(y)|0⟩. 
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2 Green’s Functions 

When learning QFT, it can be difcult to grasp the true value of Green’s functions. I’d like to make 
this very clear in the following statement, which we’ll spend some time trying to understand. Vacuum 
expectation values of products of free feld operators can be written in terms of Green’s functions of the 
wave equation (equation of motion). Today I’d like to give you some intuition playing around with these 
things, and relate them to the contour integrals we just talked about. 

There are a lot of Green’s-adjacent functions we can write down, and here are some of them. Note that 
′ these expressions depend on 4-vectors x and x , which can have diferent time components. 

• Wightman functions G+(x, x ′ ) = ⟨0|ϕ(x)ϕ(x ′ )|0⟩, G−(x, x ′ ) = ⟨0|ϕ(x ′ )ϕ(x)|0⟩ 

• Schwinger/Hadamard functions iG(x, x ′ ) = ⟨0|[ϕ(x), ϕ(x ′ )]|0⟩, G(1)(x, x ′ ) = ⟨0|{ϕ(x), ϕ(x ′ )}|0⟩ 

• Feynman (T -ordered) function iGF (x, x ′ ) = ⟨0|Tϕ(x)ϕ(x ′ )|0⟩ = θ(t − t ′ )G+ + θ(t ′ − t)G− 

• Retarded/advanced function GR(x, x ′ ) = −θ(t − t ′ )G(x, x ′ ), GA(x, x ′ ) = θ(t − t ′ )G(x, x ′ ) 

The fact that there are so many of basically the same thing, and that all of them have the names of some 
of the most important fgures in QFT, should tell you how important these are. 

Using the Klein-Gordon equation (∂2 + m2)ϕ(x) = 0, we can see that G± , and consequentially G, G(1) 

satisfy the homogenous equation 

(∂2 + m 2)G (x, x ′ ) = 0x 

We can also evaluate the Klein-Gordon operator on the Feynman Green’s function: 

′ (∂2 + m 2)GF (x, x ′ ) = (∂2 + m 2)(θ(t − t ′ )G+(x, x ′ ) + θ(t − t)G−(x, x ′ ))x x 

It is very instructive to do this calculation. On each term, the derivative can act in 3 ways by the product 
2rule. If both ∂x act on G+ or G− , the term added to the m term vanishes by the equation of motion. 

The other terms can be evaluated by ∂tθ(t − t ′ ) = δ(t − t ′ ) and the equal time commutation relations 
to fnd the Feynman Green’s function solves the inhomogenous Klein-Gordon equation with δ-function 
source. 

′ ) = −δ(4)(x − x(∂2 + m 2)GF (x, x ′ )x 

′ ) = δ(4)(x − x ′ )(∂2 + m 2)GR,A(x, x (similar computation) x 

In this way the Feynman, retarded, and advanced functions are ‘true’ Green’s functions, while the Wight-
man, Schwinder, and Hadamard functions are not, being solutions of the homogenous equation of motion. 
In the general way we can build general solutions to the inhomogenous equations of motion out of these 
Green’s functions. 

2.1 Boundary Conditions 

This begs the question: what is the diference between all of these Green’s functions? The answer lies in 
the boundary condition. 

Observe that due to the presence of the θ(t − t ′ ), the retarded function GR(x, x ′ ) = −θ(t − t ′ )(G+ − G−) 
vanishes unless t > t ′ . Looking at the equation of motion, the Green’s function measures the response to 
a δ-function which stimulates the feld at t = t ′ . We could have instead chosen time to run backwards: the 
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Klein-Gordon equation is agnostic, since it is invariant under t → −t. Doing so gives you the advanced 
Green’s function: instead of everything travelling forwards in time, the feld disturbances travel backwards. 

The Feynman function is an average of the retarded and advanced solution. In QFT this is the right 
thing to do because the positive and negative frequency solutions to the equations of motion are on equal 
footing. That is, we have particles AND antiparticles, which can be mathematically treated as particles 
travelling backwards in time. Causality must be imposed on both. If I disturb my particle feld at time 
t, the response at time t ′ will be zero until t ′ > t. For the antiparticle, the reverse is true. 

To summarize: the Feynman, retarded, and advanced functions describe the propagation of feld distur-
bances subject to certain boundary conditions. In QFT, causality, along with the existence of antiparticles, 
make the Feynman Green’s function the right one to use. 

2.2 Integral Representations 

Integral representations for Green’s functions can be obtained by substituting the mode decomposition 
of ϕ(x) and ϕ(x ′ ) into the defnitions, and using properties of creation and annihilation operators. Let’s 
do this for the Feynman Green’s function, frst for t > t ′ . Z 

1 ′ −iωkt+ik·x iωk ′ t 
′ ik ′ ·x †G+(x, x ′ )|t>t ′ = ⟨0|ϕ(x)ϕ(x ′ )|0⟩ = d̄3kd̄3k ′ e e ⟨0|akak ′ |0⟩ (2ωk2ωk ′ )1/2 Z 

d̄3k −ik·(x−x ′ )= e , k0 = ωk
2ωkZ 
d̄3k −ik·(x ′ −x) k0G+(x, x ′ )|t<t ′ = e , = ωk
2ωk 

But this should be familiar! In fact, this was the answer of something we computed earlier! We thus have Z ip·(x−y)e 
GF (x, x ′ ) = Π(x − y) = i d̄4 p 

p2 + m2 − iϵ 

To the Feynman Greens function we have associated a very specifc integration contour, specifed by the 
iϵ prescription. Note that because iϵ is so small, we can either deform the contour away from the real 
line and keep the poles real, or deform the poles away from the real line and integrate over R. 

We can do the exact same thing for the advanced and retarded Greens functions, and compare them toZ ip·(x−y)e 
¯4the value of i d p 

2 with diferent choices of integration contour. To summarize: we can obtain 
p2 + m 

each Greens function by performing some contour integral, with a specifc choice of integration contour 
specifying the boundary condition of our theory. They are given below. Draw fgure. 
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We may have done something quite peculiar to you today. We started with certain objects we like to 
study, these 2-point correlators, that are initially real-valued in position coordinates. But the choice of 
boundary conditions has imposed a specifc complex (or pole) structure in our theory, and so we add 
complex analysis to our QFT toolbox. By considering analytic continuations, these objects have a very 
profound analytic structure universal to all QFTs. This is an incredibly deep rabbit hole that has birthed 
entire felds, none of which we’ll have the time for. 

I will mention one mindblowing (to me) application. We’ve discussed that in QFT, the Feynman Green’s 
function is the right one to use. By the residue theorem, no integrals change if we deform our contour, 
so long as we don’t cross any poles. We can therefore deform the contour from the real plane to the 
imaginary plane, and therefore compute integrals like the ones we’ve seen by integrating over purely 
imaginary time. If time is imaginary, then our metric becomes (−i2 , +, +, +) = (+, +, +, +) which is now 
Euclidean. This is known as a Wick rotation. In this way, we can compute quantities in a Minkowski 
theory by converting to a theory in Euclidean space, which is essentially just a statistical feld theory 
at zero-temperature. That last part requires more explanation, which I’ll provide next week when you 
start talking about path-integrals. I emphasize this is only possible with the Feynman iϵ prescription: if 
we used a retarded or advanced contour, then the poles obstruct us from deforming our contour to the 
imaginary axis. 
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