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1 The Path-Integral in Quantum Mechanics 

1.1 Introduction and Interpretation 

Before talking about QFT, we’ll discuss the path-integral in QM, which is no more than a d = 0 + 1 
dimensional QFT. The path-integral formulation of quantum mechanics generalizes the principle of least 
action. It takes in an action S from a classical theory, and it gives you a quantum theory. This idea is 
known as path-integral quantization, and alongside canonical quantization it’s one of the ways we can 
bridge the classical and quantum worlds. By and far, I think the path-integral is the most intuitive. 

The path-integral can be broken down into 2 fundamental parts. 

1. The sole ingredient we feed the path-integral is an action. This is a functional, meaning for each 
iS[x(t)]/ℏfunction it returns a number, S : x(t) → R. Now consider the object e . This is another 

functional which maps each path to a (now complex) number. The path-integral formulation tells 
us this is actually a probability density, which associates to each path a weight. 

2. With this probability density, we can compute probabilities. Here one has the formula Z Z x(tb)=xb tb 

D[x(t)]AeiS/ℏ⟨xb, tb|A|xa, ta⟩ = , S = dτL(q, q̇) 
x(ta)=xa ta 

In particular we can take A = 1 to recover what we call the path-integral. Z x(tb)=xb 
iS/ℏZ := ⟨xb, tb|xa, ta⟩ = D[x(t)]e 

x(ta)=xa 

That is, to calculate the probability of starting with an initial state at ta and ending up in some fnal 
state at tb, we have to sum every single possible path from xa to xb, weighted by our density. One 
may say that the particle takes ‘every path’, and the weights of diferent paths difer by a phase. 
Note that ‘all possible paths’ includes paths which are not continuous, or those where the particle 
travels faster than light. This may be eyebrow raising, but is in principle fne–no observables violate 
causality. 

iS/ℏI’d like to emphasize that the crux of the physics lies in point 1, interpreting the object e as a 
probability weight. Once you have this, point 2 and everything else is just math, applying the tools of 
probability theory to do calculations. 

You’ve all seen this idea before, namely in statistical mechanics. In the canonical ensemble one has the 
Boltzmann weight e−βH , and the partition function is akin to the path integral. Again, we have is a prob-
ability density associating to each confguration of your system a weight. Both quantum mechanics/feld 
theory and statistical mechanics/feld theory are probabilistic approaches towards doing physics, and the 
very same tools are used in both. Nevertheless, there are 2 major diferences. 
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1. Statistical mechanics takes a deterministic (classical) theory, and uses probabilities to simplify the 
system so we can compute things. In quantum mechanics probabilities are inherently fundamental 
to the system. 

2. In statistical mechanics, the Boltzmann factor is well-damped for confgurations with large energies, 
and the partition function is convergent. In quantum mechanics the −1 is replaced by an i, which 
means instead of damping we have phases. The contribution of each path has the same magnitude, 
meaning the only way to enhance or suppress a confgurations are through superposition of phases: 
constructive and destructive interference. 
Having no exponential suppression is problematic due to convergence issues. However, we may fx 
this via analytic continuation, by adding a small negative real part to the exponential: Z 

Z = D[x(t)] exp ((1 + iϵ)iS/ℏ) 

This is akin to the Boltzmann weight in statistical physics. It is by no coincidence that I called this 
iϵ: it is the same as the iϵ in the Feynman Green’s function, and this is how it manifests in the 
path-integral formalism. 

1.2 The Classical Limit 

We know that quantum mechanics in the limit of ℏ → 0 gives us classical mechanics. Let us see how this 
happens in the path-integral formalism, where we expect to recover the principle of least action. This will 
give us intuition of what it means for a system to be ‘quantum’, as just how ‘quantum’ it can be. Our 
starting point is Z 

iS/ℏZ = D[x(t)]e 

As ℏ → 0, the argument of the exponential blows up. The integrand becomes highly oscillatory with 
respect to the choice of path (the integration variable), and one expects no contribution from most points 
of the region of integration, where destructive interference is generic. However, there are stationary points 
where we can have non-trivial contributions. 

To see this very explicitly, we consider a toy model that is much simpler. Here the ‘path-integral’ is a 
single integral, and we still have an ℏ factor we can toggle.Z 

z = dxeif(x)/ℏ 

R 

For instance, we can have f(x) = (x − 2)2 , and consider the integrand as ℏ → 0. [DRAW THIS] In a 
general small region x ∈ [a, a + δ], f will oscillate rapidly, and the integral over the region will vanish. 
The exception is if f doesn’t change much near a point, i.e. f ′ (x0) = 0. This is called a stationary 
point, and in this case all contributions of points near x0 will interfere constructively. Because f is almost 

if/ℏconstant at x0, there is enough space for e to contribute before the destructive interference washes it 
out. We can make this explicit by Taylor expanding near x0, using that the linear term vanishes: 

f(x) = f(x0) + 
1
(x − x0)

2f ′′ (x0) + · · · 
2Z � � 

z = dx exp 
i 
(f(x0) + 

1
(x − x0)

2 + · · · )
ℏ 2Z � �� � 

i i 1if (x0)/ℏ ′′ (x0)= e dx exp (x − x0)
2f 1 + (x − x0)

3f ′′′ (x0) + · · · 
2ℏ ℏ 3! s 

2πiℏif (x0)/ℏ = e (1 + higher order) ′′ (x0)f 
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This is non-zero, and scales inversely with the second derivative at x0, which measures how quickly f ′ (x) 
stops being zero and destructive interference kicks in. In the last step we have performed a Gaussian 
integral and neglected higher-order terms. This is precisely a saddle-point approximation you might have 
used in statistical mechanics. If there is more than 1 extremum of the action (can be a minima, maxima, 
or saddle), one must sum over all these contributions to obtain the path-integral. 

In the path-integral where we integrate over paths (infnitely many degrees of freedom), this works the 
same way. But instead of extremizing f , we are extremizing the action S. In the limit as ℏ → 0 we only 
pick up contributions from paths xc(t) where the functional derivative vanishes, 

δS 
= 0 

δx(t) xc 

Much more on functional derivatives later. This equation says that taking the classical limit, the only 
contributing paths are those which don’t vary the action at frst order. This statement is precisely the 
principle of least action. 

With this in mind, we can now interpret ℏ. When ℏ is small but non-zero, the dominant trajectories are 
still those extremizing S, but now we have non-negligible contributions from generic paths. Our perfectly 
deterministic principle of least action has now been smeared by quantum fuctuations, giving rise to a 
probabilistic picture. In the opposite limit where ℏ → ∞ the exponential is just 1 for every path: every 
path interferes constructively with every other, and quantum fuctuations wash out all classical order. 
A very general way to think about quantum efects are the fuctuations which smear the determinism 
of classical mechanics, made necessary by all paths contributing to the path-integral. The strength of 
these fuctuations is controlled by ℏ, a constant intrinsic to the theory. This is exactly like in statistical 
mechanics, where the analogous object to ℏ is kBT . At T = 0 your system is in a state which minimizes 
the energy with probability 1. Finite temperatures induce thermal fuctuations which smear out this 
order, and as T → ∞ each microstate has the same contribution to the partition funcition: thermal 
fuctuations wash out all order, and your system has maximal entropy. 

2 Gaussian Integrals 

In the above, we have used a saddle point approximation to explicitly compute a ‘path-integral’ with a 
single variable of integration. Of critical importance was the Gaussian integrand, which allowed us to 
perform the integral in the frst place. Generically in quantum mechanics and QFT, the path-integrals 
of all free theories can be reduced to computing an infnite number of Gaussian integrals. Even when we 
include interactions, we Taylor expand the theory around a free theory, which gives us again Gaussian 
integrals everywhere. Both here and in SFT the role of the Gaussian integral cannot be overemphasized 
(see: https://en.wikipedia.org/wiki/Common integrals in quantum field theory), so in prepara-
tion we build up the tools for computing them in fnite dimensions. In fact, you can think of fnite 
dimensional Gaussian integrals as free 0 + 0-dimensional QFTs. These are often called matrix models. 

2.1 Gaussian Integrals in 1 Dimension 

The Gaussian distribution in 1 dimension is given by the probability density r 
a −aϕ2/2 p(ϕ ∈ R) = e 
2π 

The nth moment is R Z r 
−aϕ2/2dϕϕne 2π ⟨ϕn⟩ = , Z(a) := dxe−aϕ

2/2 = 
Z(a) a 
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One can think of Z as a primitive partition function or path-integral, but all it does now is act as a 
normalization. In QFT, these moments will correspond to correlation functions. Odd moments vanish 
because the integral is odd. We can compute even moments by diferentiating the normalization integral 
with respect to a: Z 

1 ∂n (−2)n ∂n (2n − 1)!!⟨ϕ2n⟩ = I(a) = dϕe−aϕ
2/2 = 

I(a) ∂(−a )n I(a) ∂an an 
2 

Alternatively we can make use of the generating functional approach, which generalizes nicely to higher 
(and infnite) dimensions. We introduce the generating functional rZ 

2π 1J2/2aZ(J) = dϕe−aϕ
2/2+Jϕ = e , ⟨x n⟩ = 

∂n 

Z(J) 
a Z(0) ∂Jn

J=0 

We can explicitly compute J by completing the square (a very important tool when working with path-
integrals). In the other equation, each J-derivative brings a power of x down into the integrand: taking 
n derivatives and setting J = 0, we recover the n-th moment. 
Now we compute the 2nth moment using the expression for J . The frst J-derivative of Z brings down a 
power of J/a. Since we set J = 0 at the end of the computation, one of the remaining 2n − 1 derivatives 
must hit the factor of J . This gives the recursion relation 

2n − 1 (n − 1)!!⟨ϕ2(n−1)⟩⟨ϕ2n⟩ = ⇒ ⟨ϕn⟩ = 
a a 

2.2 Gaussian Integrals in n Dimensions 

The Gaussian distribution in n dimensions is given by the probability density � �n/2det A − 1 
2 ϕiAij ϕj A⊺ p(ϕi ∈ Rn) = e , = A 

2π � �n/2 − 1 a ϕiϕiFor instance, if A = a1 we have p(ϕ) = e 2 . To compute moments we defne the generating2π 
functional Z 

1 ∂ ∂ 
Z(J) = dnϕe− 1

2 ϕiAij ϕj +Jiϕi , ⟨ϕi1 · · · ϕik ⟩ = · · · Z(J)
Z(0) ∂Ji1 ∂Jik J=0 

We can compute the generating functional by completing the square for matrices: 

1 1 − ϕiAijϕj + Jiϕi = − (ϕiAij ϕj − 2Jiϕi) = (ϕ − A−1J)iAij (ϕ − A−1J)j − JiA
− 
ij 
1Jj

2 Z 2 � ���1 (2π)n 
1 JiA

−1 
ijZ(J) = dnϕ exp − ϕiAij ϕj − JiA

− 
ij 
1Jj = e 2 Jj 

2 det A 

This is a useful trick. Now we can proceed as the 1D case to calculate correlators. The frst derivative 
∂ brings down Aik j Jj , using that A is symmetric. One of the remaining derivatives must eliminate the∂Jik 

Jj term. Summing over all possibilities one has X X 
A−1 A−1⟨ϕi1 · · · ϕik ⟩ = ⟨ϕaϕb⟩ · · · ⟨ϕcϕd⟩ = · · · ab cd 

Wick Wick 

The sum is over Wick constractions of the indices {i1, . . . , ik}. This is the set of all pairs we can form out 
of the indices. A pair is often denoted by a connector, for instance: 

A−1 + A−1A−1 + A−1A−1⟨ϕ1ϕ2ϕ3ϕ4⟩ = ⟨ϕ1ϕ2ϕ3ϕ4⟩ + ⟨ϕ1ϕ2ϕ3ϕ4⟩ + ⟨ϕ1ϕ2ϕ3ϕ4⟩ = A−1 
12 34 13 24 14 23 

xixiFor instance, if our Gaussian has A = a1, i.e. p(x) ∝ e− 
2
1 

, then 

⟨ϕ1ϕ2ϕ3ϕ4⟩ = a(δ12δ34 + δ13δ24 + δ14δ23) 
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