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1 Combinatorics 

λ ϕ3We consider the 3-point interaction LI = , and compute to second order in λ the object: 3! R
iλ 

⟨0|Tϕ(x1)ϕ(x2)e 3! d4zϕ3(z)|0⟩ N 
G2 = ⟨Ω|Tϕ(x1)ϕ(x2)|Ω⟩ = iλ R = 

⟨0|Te 3! d4zϕ3(z)|0⟩ D 

We will compute this object using 3 diferent approaches to simplify the combinatorics, each simpler and 
more useful than the last. 

1.1 Wick Contractions 

We start with the denominator. 

2 ZR Xiλ (iλ/3!)s 

d4 d4⟨0|Te 3! d4zϕ3(z)|0⟩ = z1 · · · zs⟨0|ϕ3(z1) · · · ϕ3(zs)|0⟩ + O(λ3) 
s! 

s=0 Z Z 
λ2 

= 1 + iλ d4 z⟨0|ϕ3(z)|0⟩ − d4 z1d
4 z2⟨0|ϕ3(z1)ϕ

3(z2)|0⟩ 
2(3!)2 

The order λ1 term vanishes, since it is a correlator of an odd number of felds, so there are no ways to 
Wick-pair them. It remains to evaluate the object ⟨0|ϕ(z1)ϕ(z1)ϕ(z1)ϕ(z2)ϕ(z2)ϕ(z2)|0⟩. There are two 
distinct ways of Wick contracting, which we summarize in a table: 

Contraction Type Ways to Contract Value (per contraction) Diagram 

⟨ϕ(z1)ϕ(z1)ϕ(z1)ϕ(z2)ϕ(z2)ϕ(z2)⟩ 3 × 3 GF (z1, z1)GF (z1, z2)GF (z2, z2) ⃝−−⃝ 

3 × 2 × 1 GF (z1, z2)3 ∈∋ ⟨ϕ(z1)ϕ(z1)ϕ(z1)ϕ(z2)ϕ(z2)ϕ(z2)⟩ 

Putting everything together, we have Z � � 

D = 1 − λ2 d4 z1d
4 z2 

1 
GF (0, 0)

2GF (z1, z2) + 
1 
GF (z1, z2)

3 + O(λ3)
8 12Z � � 

1 1 1 
= 1 + λ2 d4 z1d

4 z2 GF (0, 0)
2GF (z1, z2) + GF (z1, z2)

3 + O(λ3)
D 8 12 
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Now the numerator. 

2 ZR Xiλ (iλ/3!)s 

⟨0|Tϕ(x1)ϕ(x2)e 3! d4zϕ3(z)|0⟩ = d4 z1 · · · d4 zs⟨0|ϕ(x1)ϕ(x2)ϕ3(z1) · · · ϕ3(zs)|0⟩ + O(λ3) 
s! 

s=0 Z 
d4 = ⟨0|ϕ(x1)ϕ(x2)|0⟩ + iλ z⟨0|ϕ(x1)ϕ(x2)ϕ3(z)|0⟩ Z 

λ2 

− d4 z1d
4 z2⟨0|ϕ(x1)ϕ(x2)ϕ3(z1)ϕ

3(z2)|0⟩ 
2(3!)2 

The frst term is the result from the free theory, in the absence of interactions. The linear term in λ is 
again odd in ϕ’s, so vanishes. We need to compute the quadratic term. There are several ways of Wick 
contracting, given below. 

Contraction Type # Ways Value (per contraction) Diagram Notes 

⟨ϕ ϕ ϕz1 ϕz1 ϕ ϕz2 ϕ ϕz2 ⟩ 3 × 2 × 3x1 x2 z1 z2 

⟨ϕ ϕ ϕ ϕz1 ϕ ϕz2 ϕz2 ϕz2 ⟩ 3 × 2 × 3x1 x2 z1 z1 

⟨ϕx1 
ϕx2 

ϕz1 ϕz1 
ϕz1 ϕz2 ϕz2 

ϕz2 ⟩ 3 × 3 

⟨ϕx1 
ϕx2 

ϕz1 ϕ ϕz1 ϕz2 ϕ ϕz2 ⟩ 3 × 3z1 z2 

⟨ϕ ϕ ϕz1 ϕ ϕ ϕz2 ϕz2 ϕz2 ⟩ 3 × 3 × 2x1 x2 z1 z1 

⟨ϕ ϕ ϕz1 ϕ ϕ ϕz2 ϕz2 ϕz2 ⟩ 3 × 3 × 2x1 x2 z1 z1 

⟨ϕx1 
ϕx2 ϕz1 

ϕz1 ϕz1 
ϕz2 ϕ ϕz2 ⟩ 3 × 3z2 

⟨ϕx1 
ϕx2 ϕz1 

ϕ ϕz1 
ϕz2 ϕz2 ⟩ 3 × 2z1 

ϕz2 

Putting everything together, we have 

GF GF GF GF 
x1,z1 x2,z1 z1,z2 z2,z2 

⊢⃝ 

GF GF GF GF 
x1,z2 x2,z2 z1,z1 z1,z2 

⊢⃝ above with z1 ↔ z2 

GF GF GF GF 
x1,z1 x2,z2 z1,z1 z2,z2 

−⃝ ⃝− 

GF GF GF GF 
x1,z2 x2,z1 z1,z1 z2,z2 

−⃝ ⃝− above with z1 ↔ z2 

GF GF GF GF 
x1,z1 x2,z2 z1,z2 z1,z2 

−⃝− 

GF GF GF GF 
x1,z2 x2,z1 z1,z2 z1,z2 

−⃝− above with z1 ↔ z2 

GF GF GF GF 
x1,x2 z1,z1 z1,z2 z2,z2 

−− ⃝−−⃝ vacuum 

GF GF GF GF 
x1,x2 z1,z2 z1,z2 z1,z2 

−− ∈∋ vacuum 

N GF (x1, x2)(1 + vac.) + Nno vac. 
= + O(λ3) = GF (x1, x2) + Nno vac. + O(λ3)

D 1 + vac.Z 
λ2 

= GF (x1, x2) − d4 z1d
4 z2[Gx1,z1 Gx2,z1 Gz1,z2 G0,0 +

1 
Gx1,z1 Gx2,z2 G

2
0,0+ 

2 2 

+ Gx1,z1 Gx2,z2 Gz1,z2 Gz1,z2 ] 
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1.2 Feynman Rules in Position Space 

The Feynman rules give a prescription to evaluate the Gell-Mann Low formula, which takes less thinking 
than Wick contractions, although the combinatorics (read: symmetry factors) can be more confusing. 
The idea is to write down a set of diagrams corresponding to the terms in the Taylor expansion of eiSI . 
We can compute each diagram using the Feynman rules, and adding a combinatorial factor. 

The procedure is as follows. 

1. Draw the external and internal vertices to desired order in perturbation theory. 

• An external vertex has 1 leg, and correspond to the position (or momenta) of felds in the 
correlator. For a given correlator, the number of external vertices is always the same. 

• An internal vertex corresponding to SI = λϕk/k! has k legs. Each external vertex correspondsR 
to a position (or momentum) z which is integrated over, coming from a power of SI = ddz(· · · ) 
when Taylor expanded. To compute up to λr in perturbation theory, one must consider all 
diagrams with ≤ r internal vertices. 

2. Connect the vertices using the legs in all (topologically distinct) ways to get all of the diagrams. 
Drop diagrams which have vacuum bubbles (i.e. a disconnected component with no external legs 
attached). These are cancelled out by the denominator in the Gell-Mann Low formula (see: your 
problem set.) 

3. Feynman rules. For each diagram, write its contribution using the following ‘Feynman rules’. 

−ix·p• Each external vertex contributes as 1. Sometimes you may see this written with a factor e : 
this is just a Fourier factor to convert to momentum space. 

• Each internal vertex corresponding to a term iλϕk/k! ⊂ iSI contributes as iλ. 

• Each edge between vertices corresponds to a Wick contraction between the felds at those 
points, hence contributes GF (x − y). 

4. Symmetry factors. This is the most confusing step. 
Note that the Feynman rules in (3) don’t include any k! or r! (perturbation order) combinatorial 
factors. This is because we have assumed näıve combinatorics, amounting to 2 statements: 

(a) There are k! ways to permute the legs of each vertex, each of which prescribe a way to ‘connect’ 
the vertex to the rest of the diagram via Wick contractions. If each permutation leads to a 
distinct contraction, we pick up a k! factor which cancels out with the 1/k! factor in associated 
to the vertex in SI . Hence, we can ignore both. 

(b) Working to order r in perturbation theory, there are r! ways to permute the diferent internal 
vertices. If each permutation leads to a distinct set of contractions, we pick up an r! factor 
which cancels out with the 1/r! in the Taylor expansion of the exponential. Hence, we can 
ignore both. 

Corrected combinatorics: there are certain situations where this näıve counting breaks down. In 
particular, some permutation of vertex legs or internal vertices lead to the same Wick contraction, 
so the näıve prescription is overcounting. To correct this we divide by a ‘symmetry factor’, which 
should be assigned (multiplicatively) in the following cases: 

1(a) Propagators starting and ending at the same point: ×2 
Since these are Wick contracted, permuting them leads to the same Wick contraction. 
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(b) j propagators connecting 2 internal vertices: 1× j! 

Näıvely we pick up a factor of j! from permuting these legs of each vertex, so j!2 in total. 
However, there are only j! ways to Wick contract, hence we overcount by j!. 

(c) j internal vertices which are interchangeable in how they connect to the diagram: 1× j! 
Permuting these vertices lead to identical Wick contractions, so we näıvely overcount by j! 

Let us use these to compute the example from above. We have the following diagrams and their contri-
butions. Note that GF (z, z) = GF (0, 0) by translation symmetry. 

Diagram 

−⃝− 

⊢⃝ 

−⃝ ⃝− 

−− (vac.) 

Symm. Factor Value 

1 
2 

R
1 (iλ)2 d4z1d

4z2GF (x1, z1)G2 (z1, z2)GF (x2, z2)2 F 

1 
2 

R
1 (iλ)2GF (0, 0) d4z1d

4z2GF (x1, z1)GF (x2, z1)GF (z1, z2)2 

1 1×2 2 

R R
1 (iλ)2G2 (0, 0) d4z1GF (x1, z1) d4z2GF (x2, z2)4 F 

− N/A 

Together with the 0th order piece, we have our result from before, using the shorthand Gx,y := GF (x, y). Z 
1 

G2 = Gx1,x2 − 
λ2 

d4 z1d
4 z2[Gx1,z1 Gx2,z1 Gz1,z2 G0,0 + Gx1,z1 Gx2,z2 G0

2 
,0 + Gx1,z1 Gx2,z2 Gz1,z2 Gz1,z2 ]2 2 

1.3 Feynman Rules in Momentum Space 

These are very similar to the Feynman rules in position space. However, the diagrams are simpler to 
evaluate because we can make use of momentum conservation and the explicit form of the propagator in 
momentum space to simplify our expression. 

The procedure is as follows. 

1. Draw the external and internal vertices to desired order in perturbation theory. (same) 

2. Draw down all topologically distinct diagrams without vacuum bubbles. (same) 

3. Feynman rules: these are now diferent. 

• Each external vertex contributes as 1. Sometimes you may see this written with a factor eix·p: 
this is just a Fourier factor to convert to position space.P P 

• Each internal vertex contributes iλδ(4)( pin − pout). 

– Note: we can see how this comes from taking the position space Feynman rules: we P 
−ix( iqi)have a Fourier phase for each felds at an internal vertex point x, totalling to e . 

Integrating over the internal vertex location x produces the desired δ-function. 

We account for the δ-function by imposing momentum conservation at each vertex. This fxes 
all internal momenta, aside from those running in a loop, which are still integrated over. ThisP P 
includes the total momentum conservation (2π)4δ(4)( pin − pout) 

−i
• Each edge (Wick contraction) contributes GF (p) = 

p2 + m2 − iϵ 

4. Symmetry factors: these are the same as in position space. (same) 
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Let us use these to compute the example from above. We have the following diagrams and their contri-
butions: 

Diagram 

−⃝− 

⊢⃝ 

−⃝ ⃝− 

−− (vac.) 

Symm. Value 

1 1 (iλ)2(2π)4δ(4)(p1 − p2) −i −i 
R d̄4k(−i)2 

2 2 ×2 2 p +m2−iϵ p +m2−iϵ (k2+m2−iϵ)((p−k)2+m2−iϵ)
1 2 R

1 1 (iλ)2(2π)4δ(4)(p1 − p2) −i −i −i d̄4k(−i)×2 2 k2+m2 2 p +m2−iϵ p +m2−iϵ (p1−p2)2+m2−iϵ 2−iϵ
1 2 �R �2 

1 1 1 (iλ)2(2π)4δ(4)(p1 − p2) −i −i d̄4k(−i)× 2 2 ×2 2 4 p +m2−iϵ p +m2−iϵ k2+m2−iϵ
1 2 

− N/A 

Summing the contributions, we get 

λ2 

(2π)4δ(4)(p1 − p2)
1 1 

G2(p1, p2) = − 2 22 p1 + m2 − iϵ p2 + m2 − iϵ� �R R �R �2 
d̄4k 1 d̄4k 1 d̄4k+ +

(k2+m2−iϵ)((p−k)2+m2−iϵ) (p1−p2)2+m2−iϵ k2+m2−iϵ 2 k2+m2−iϵ 
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