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1 Representations of the Lorentz Group 

The Lorentz Group 
The Lorentz algebra so(1, 3) is generated by the set of infnitesimal boosts and rotations. Equivalently, it 
can be defned by the commutation relations obeyed by the generators (J λρ)µν : 

[J αβ , J ρσ] = i(ηασJ βρ − ηαρJ βσ − ηβσJ αρ + ηβρJ ασ) 

To get an element of the Lorentz group, we can exponentiate some linear combination of these generators. � � 

Λ = exp − 
i
ωαβJ αβ 

2 

The Lorentz algebra is an example of what we call a Lie algebra, defned by some generators, their linear 
combinations, and a commutator or ‘Lie bracket’. The Lorentz group is the exponential of the algebra, 
or equivalently the algebra is the set of infnitesimal elements of the group. 

Representations 
A representation of the Lorentz algebra is a map from so(1, 3) into matrices in a way that preserves the 
central commutation relation above. It provides an explicit realization of the algebra into a set of matrices 
that we can manipulate. More formally, a representation is a map d : so(1, 3) → gl(V ) such that 

[d(J αβ ), d(J ρσ)] = d([J αβ , J ρσ]) 

Here gl(V ) is the space of linear transformations of a vector space V , itself equivalent to the space of 
matrices acting on V . To give a representation then, is to prescribe the vector space V along with the 
action of the generators (i.e. their matrix forms). Sometimes their matrix forms are clear from context, 
so we denote a representation by just V . 

Any representation of the algebra so(3, 1) induces a representation D : SO(1, 3) → GL(V ) of the Lorentz 
group by exponentiating: � � 

D(Λ) = exp − 
i
ωρσd(J ρσ) , D(Λ1)D(Λ2) = D(Λ1Λ2)
2 

Here GL(n) is the space of invertible matrices. The proof of the second equation amounts to the Baker-
Campbell-Hausdorf formula. 

Field Representations 
This holds for general representations. Now we can talk about the representations formed by the set of 
some felds {Φa(x)} = V . The action of the Lorentz group is given by 

D(Λ)abΨb(Λ−1 x) 
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Another way of saying this is that this is how our feld transforms under a Lorentz transformation. The 
transformation of the spacetime location is given by the inverse of the transformation, which should be 
familiar from working with scalar felds. We also transform the internal indices, which depend on the 
representation that the feld lives in: examples include scalars, vectors, and tensors, which are given by 

T µν → Λµϕ(x) → ϕ(Λ−1 x), Aµ(x) → Λµ
ν A

ν (Λ−1 x), αΛ
ν
β T αβ (Λ−1 x) 

The scalar has 1 component, the vector has 4 components, and the tensor has 16. For this reason, we often 
denote these representations by 1, 4, 16. Comparing this to the general equation, we have D1(Λ) = 1, 
D4(Λ) = Λµ

ν , D16(Λ) = Λµ
αΛ

ν
β . 

Irreducible Representations 
Not all representations are created equal: some are simpler than others, and serve as ‘building blocks’ 
from which we can construct all the representations we care about. To talk about these, we frst introduce 
the notion of an invariant subspace W , or ideal, of a representation V as one that is mapped to itself 
under all Lorentz transformations. That is, 

D(Λ)W = {D(Λ)w, w ∈ W } ⊆ W 

If W ⊆ V is invariant, it’s not hard to show that W ⊥ is also invariant, and thus one can decompose V 
into a direct sum: 

V = W ⊕ W ⊥ 

If each subspace is invariant, the action of the Lorentz group acts independently on each subspace, with 
no mixing. Viewing the D(Λ)’s as matrices acting on V , this means that we can block diagonalize all the 
matrices at once, as of-diagonal terms correspond to mixing between W and W ⊥ . Obviously V and ∅ 
are always invariant, these are the trivial invariant subspaces of V . 

A representation is irreducible (irrep.) if there are no non-trivial invariant subspaces. That is, we 
cannot block diagonalize all D(Λ)’s at once, meaning one cannot factor V into smaller building block 
representations. In this sense, you may think of irreps as prime numbers. Let us see whether our familiar 
scalar, vector, and 2-tensor feld representations are irreducible. 

1. Scalars. All Lorentz transformations act trivially as the identity on a dimension 1 object, the matrix 
is just (1). There are no non-trivial subspaces, so 1 is an irrep. 

2. Vectors. This is the representation 4. It is irreducible, as one cannot simultaneously block diago-
nalize the rotations and boosts. It is called the fundamental representation. 

3. Tensors. This is the representation 16. It has 3 invariant subspaces. 
1: The scalar subspace, given by span{ηµν }; this is left invariant under Lorentz by defnition. 

βη
αβ = ηµν(D16(Λ)η)

µν = Λµ
αΛ

ν 

= −Bνµ 6: The space of antisymmetric tensors of dimension 6, Bµν . One can check: 

β B
αβ 

β B
βα (D16(Λ)B)

µν := Λµ
αΛ

ν = −Λµ
αΛ

ν = −(D16(Λ)B)
νµ 

It turns out that the 6 decomposes into 2 invariant dimension 3 subspaces, 6 = 3 ⊕ 3̄ 

Here the 3 and 3̄ are self-dual and anti-self-dual tensors, i.e. Gµν = ±iϵµνρσGρσ . 
= Sνµ 9: The space of symmetric tensors of dimension 10, Sµν . 

In total, the decomposition of the tensor representation into irreps is thus 

16 = 1 ⊕ 3 ⊕ 3̄ ⊕ 9 

Our goal is to classify all the irreducible representations of the Lorentz group. once we do this, we can 
build any other representation we care about. 
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2 Interlude: SU(2) 

Before doing this for the Lorentz group, let us frst turn to a simpler example which you should all be 
familiar with, SU(2). This is the Lie group of 2 × 2 unitary matrices with unit determinant, 

SU(2) = {U ∈ M2×2(C), U †U = UU † = 1, det U = 1} 

The corresponding Lie algebra is su(2). It has 3 generators, {J1, J2, J3} satisfying the relation 

[Ji, Jj ] = iϵijkJk 

iθiJiExponentiating this algebra gives SU(2): any group element can be written as U = e . It’s often 
easier to look for representations of the algebra instead of the group, so we will look for all irreducible 
representations of su(2). Exponentiating these, we can recover all the irreducible representations of SU(2). 
That is, we look for a set of r × r matrices ds(Ji) satisfying the above commutation relation, that cannot 
be simultaneously block diagonalized. 

The classifcation is simple. There is a unique su(2) irrep for each dimension r ≥ 1. These correspond to 
1 3particles of diferent spins, which is made clear by defning l = (r − 1)/2 ∈ {0, 2 , 1, 2 , . . .}. In this context 

r = 2l + 1 is the number of orthogonal states a spin l particle can have, often labelled m = −l, . . . l. 

What are the r × r matrices that satisfy our commutation relation? For spin-0 the matrix is trivial, 
d0(J1, J2, J3) = (0): angular momentum acts trivially. For spin-1/2, r = 2, and the matrices are given by 
the familiar Paulis. The objects on which these act form a vector space, and are called Pauli spinors. �� ���� �� 

1 1 0 1 0 −i 1 0 
d1/2(J1, J2, J3) = (σ1, σ2, σ3) = , ,

2 2 1 0 i 0 0, −1 

In d ≥ 3, we have generalizations of the Pauli matrices. These are called Wigner D-matrices, and are 
given by  

0 1 0 −i 

dl(J1) ∝ 

 

1 0 1 

1 0 
. . . 

 
dl(J2) ∝ 

 

i 0 −i 

i 0 
. . . 

 
dl(J3) = diag(−l, −1 + 1, . . . , l − 1, l) 

. . . . . . . . . . . . 

To summarize: all irreducible representations of su(2) are classifed by an integer l ≥ 1 representing its 
dimension. Exponentiating them gives representations of SU(2). 

3 Classifcation of Irreducible Representations of the Lorentz Group 

3.1 The Classifcation 

Now we’ve built up enough foundations to perform our classifcation. This hinges on one fact which we 
will show–the Lorentz algebra looks like 2 copies of su(2). 

We often think of the Lorentz algebra so(1, 3) being generated by the rotations and boosts Ji and Ki. 
We will work in an alternative basis {J±}, given by the generatorsi 

J± := 
1
(Ji ± iKi)i 2 
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Using the commutation relations of rotations and boosts, we can compute the commutators in this basis: 

[Ji 
±, Jj 

±] = iϵijkJk 
± , [Ji 

±, Jj 
 ] = 0 

This form is particularly insightful, and should be familiar. Namely, we have 2 copies {J+} and {J−} ofi i 
the su(2) algebra, which are completely decoupled. We have thus shown the result 

so(1, 3) ∼= su(2) ⊕ su(2) 

How do we classify irreps of a direct product? Generally, we may have something like h = h1 ⊕ h2 where 
we know the irreps of h1,2 as {d1, Va} and {d2,Wb}. The irreps of the larger algebra is given by the tensora b 
product: {d1 ⊗ d2, Va ⊗ Wb}. Practically, this means that we take the tensor product of the vector spacesa b 
on which they act, and the tensor product of the matrices as well. The irreps of g are then labelled by 
the pair (a, b). 

Let us return to the Lorentz algebra. We know the irreps of su(2) are labelled by a non-negative half-
1integer. The irreps of so(1, 3) then, are labelled by a pair (j+, j−), for j+, j− ∈ {0, 2 , 1, . . .}. By the 

usual rules of the vector space tensor product, the dimension is given by the product of the j+ and j− 

dimensions: 

dim(dj+,j− ) = (2j+ + 1)(2j− + 1) 

1In this notation, we may now write the Lorentz scalar as 1 = (0, 0), the vector as 4 = (2
1 , ), and the2 

tensor as 16 = 1 + 3 + 3̄+ 9 = (0, 0) + (0, 1) + (1, 0) + (1, 1). 

If j+ + j− is an integer we call this a tensor representation, and if it a half-integer we call it a spinor 
representation. 

3.2 What is a Spinor? 
1The simplest spinor representations are dL = (2

1 , 0) and dR = (0, ). We call these the left and right-2 
handed Weyl spinor representations, the reason we call them left and right will be explained next lecture. 
One transforms as a Pauli spinor under J+ but as a scalar (trivially) under J− , while the other does thei i 
opposite. That is, 

1dL(J
+) = σ, dL(J

−) = 0, dL(Ji) = 
1 
σi, dL(K) = − 

i
σii 2 i 2 2 

Or, written in another way, the matrix representation of each generator is as follows.  
0 −iσ1 −iσ2 −iσ3 

dL(J µν ) = 
1 
2 

 
iσ1 0 σ3 −σ2 

iσ2 −σ3 0 σ1 

 

iσ3 σ2 −σ1 0 

Both dL and dR are 2-dimensional representations. One describes left-handed spin-1/2 particles, while 
the other describes right-handed spin-1/2 particles. If we want particles that are not chiral, and also have 
a mass term, we can take their direct sum, which is called the Dirac representation. 

1 s = dL ⊕ dR = (2
1 , 0) ⊕ (0, )2 

Note that it is not irreducible, and has dimension 2 + 2 = 4. That is, Dirac spinors are 4 component 
felds. Using the matrices above, it is straightforwards to show that for the Dirac representation, 

d(J µν ) = − 
i 
[σµ, σν ] = Σµν 

4 
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which you should be familiar with from lecture. This consistency check shows that the bispinor represen-
tation describes the Dirac particles discussed in class. To obtain the irreps of the Lorentz group, we just 
exponentiate the irreps of the Lorentz algebra. For instance, for the Dirac representation we have: 

− i ωµν d(J µν ) − i ωµν Σµν
S(Λ) = e 2 = e 2 

To conclude, we list out the low dimensional representations of the Lorentz group. 

Representation (j+, j−) Dimension Irrep? (Beyond) SM Fields 
Scalar (0, 0) 1 Y Higgs, (Dilaton), (Axion) 
Left Weyl (1 

2 , 0) 2 Y Left-handed Neutrinos 
1 
2) 2 Y (Right-handed Neutrinos)Right Weyl (0, 

Dirac/bispinor (1 
2 

1 
2) 4 N Electrons, Quarks , 0) ⊕ (0, 

11Vector ( ) 4 N Photon, Gluon, W, Z,2 2 
Antisymmetric Tensor (1, 0) ⊕ (0, 1) 6 N (Kalb-Ramond) 
Rarita-Schwinger (1, 1 

2), ( 
1 
2 , 1) 6 Y (Gravitino) 

Traceless Symmetric Tensor (1, 1) 9 Y (Graviton) 
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