Recitation 8

Wentao Cui
April 14, 2023

1 Vector and Axial Symmetries

1.1 Chiralty

We work in the Weyl representation:

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & -i \sigma^{i} \\
i \sigma^{i} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Here $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{4}$, and satisfies

$$
\left(\gamma_{5}\right)^{\dagger}=\gamma_{5}, \quad\left\{\gamma^{\mu}, \gamma_{5}\right\}=0
$$

This representation is useful for the purpose of chirality, because γ^{5} is diagonal. The +1 eigenspace corresponds to left-handed spinors ψ_{L}, spanned by Dirac spinors non-zero in the top 2 components. Similarly, the -1 eigenspace corresponds to right-handed spinors ψ_{R}, spanned by Dirac spinors non-zero in the bottom 2 components. Therefore, we a Dirac spinor can be written as

$$
\psi=\binom{\psi_{L}}{\psi_{R}}
$$

Note that this is consistent with last recitation, where we have written the Dirac representation as the direct sum of left and right-handed Weyl representations:

$$
\text { Dirac }=\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)=\mathrm{Weyl}_{L}+\mathrm{Weyl}_{R}
$$

An arbitrary Dirac spinor can be projected onto its left/right-handed subspaces via projection operators:

$$
P_{L}=\frac{1}{2}\left(1+\gamma_{5}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad P_{R}=\frac{1}{2}\left(1-\gamma_{5}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Because these are projectors, they satisfy:

$$
P_{L}^{2}=P_{L}, \quad P_{R}^{2}=P_{R}, \quad P_{L} P_{R}=P_{R} P_{L}=0, \quad P_{L}+P_{R}=1
$$

Slightly abusing notation by writing $\psi_{L / R}=P_{L / R} \psi$, some useful identities are:

$$
P_{L} \gamma^{\mu}=\gamma^{\mu} P_{R}, \quad P_{R} \gamma^{\mu}=\gamma^{\mu} P_{L}, \quad \bar{\psi}_{L}=\bar{\psi} P_{R}, \quad \bar{\psi}_{R}=\bar{\psi} P_{L}
$$

These are very important in the Standard Model because it is a chiral theory: the particles mediating forces couple differently to left and right-handed fermions.

1.2 Vector and Axial Transformations

Now consider the Lagrangian for a Dirac spinor,

$$
\mathcal{L}=-i \bar{\psi}(\not \partial-m) \psi
$$

This is invariant under the vector transformation $\psi(x) \rightarrow e^{i \alpha} \psi(x)$. The conserved quantity is the vector current, $j_{V}^{\mu}=\bar{\psi} \gamma^{\mu} \psi$. From the decomposition above, we see that this rotates left and right-handed spinors in the same way:

$$
\psi_{L} \rightarrow e^{i \alpha} \psi_{L}, \quad \psi_{R} \rightarrow e^{i \alpha} \psi_{R}
$$

We may also consider the axial transformation $\psi(x) \rightarrow e^{i \alpha \gamma_{5}} \psi(x)$. This rotates left and right-handed spinors in opposite ways:

$$
\psi_{L} \rightarrow e^{i \alpha} \psi_{L}, \quad \psi_{R} \rightarrow e^{-i \alpha} \psi_{R}
$$

Note that the a Dirac mass term $m \bar{\psi} \psi$ is not invariant under this transformation:

$$
m \bar{\psi} \psi \rightarrow m \psi^{\dagger} e^{-i \alpha \gamma_{5}} \gamma^{0} e^{i \alpha \gamma_{5}} \psi=m \psi^{\dagger} \gamma^{0} e^{2 i \alpha\left(\gamma_{5}\right)^{2}} \psi=e^{2 i \alpha} m \bar{\psi} \psi
$$

Meanwhile, the kinetic term is invariant:

$$
-i \bar{\psi} \not \partial \psi \rightarrow-i \psi^{\dagger} e^{-i \alpha \gamma_{5}} \gamma^{0} \not \partial e^{i \alpha \gamma_{5}} \psi=-i \bar{\psi} e^{i \alpha \gamma_{5}} \not \partial e^{i \alpha \gamma_{5}} \psi=-i \bar{\psi} \not \partial e^{-i \alpha \gamma_{5}} e^{i \alpha \gamma_{5}} \psi=-i \bar{\psi} \not \partial \psi
$$

Therefore, this is a symmetry of \mathcal{L} only for a massless Dirac spinor $m=0$. The conserved quantity is the vector current, $j_{A}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma_{5} \psi$.

To shed more light on this, it is instructive to write the \mathcal{L} in terms of ψ_{L} and ψ_{R} :

$$
\begin{aligned}
\bar{\psi} \not \partial \psi & =\bar{\psi} \not \partial\left(P_{L}+P_{R}\right) \psi=\bar{\psi} \not \partial P_{L} P_{L} \psi+\bar{\psi} \not \partial P_{R} P_{R} \psi=\bar{\psi} P_{R} \not \partial P_{L} \psi+\bar{\psi} P_{L} \not \partial P_{R} \psi=\bar{\psi}_{L} \not \partial \psi_{L}+\bar{\psi}_{R} \not \partial \psi_{R} \\
m \bar{\psi} \psi & =\bar{\psi}\left(P_{L}+P_{R}\right) \psi=\bar{\psi} P_{L} P_{L} \psi+\bar{\psi} P_{R} P_{R} \psi=\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}
\end{aligned}
$$

The kinetic term decomposes into a kinetic term for ψ_{L} and a kinetic term for ψ_{R}. The mass term couples the left and right-handed Weyl spinors. When $m=0$ the theory becomes decoupled, and the Dirac Lagrangian reduces to a free ψ_{L} and free ψ_{R}.

How now, do the vector and axial symmeties manifest? The massless Lagrangian $\mathcal{L}=-i\left(\bar{\psi}_{L} \not \partial \psi_{L}+\bar{\psi}_{R} \not \partial \psi_{R}\right)$ has the symmetries $\psi_{L} \rightarrow e^{i \alpha_{L}} \psi_{L}$, and $\psi_{R} \rightarrow e^{i \alpha_{L}} \psi_{R}$, where we rotate the left spinor by α_{L}, and the right by α_{R} independently. Equivalently, we may rotate left/right by the same $e^{i \alpha_{V}}$, or by opposites $e^{ \pm \alpha_{A}}$. These are the vector and axial symmetries. The coupling term $m\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right)$ is not invariant if we rotate $\psi_{L, R}$ differently.

1.3 The Chiral Anomaly

The moral of the previous section is that the Lagrangian for a massless Dirac fermion enjoys the vector and axial symmetries. Noethers theorem tells us that the corresponding currents are conserved:

$$
\partial_{\mu} j_{V}^{\mu}=\partial_{\mu} j_{A}^{\mu}=0
$$

However, this symmetry is broken when we quantize the theory: if we couple a massless Dirac fermion to an EM field, we find that the Noether current is not conserved:

$$
\partial_{\mu} j_{A}^{0}=\frac{\alpha}{4 \pi} e^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}=\frac{\alpha}{4 \pi} F \wedge F
$$

Here $F^{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the electromagnetic field strength, which may be familiar to you from your undergraduate EM class.

Generally, an anomaly is a symmetry of a classical theory, which is not a symmetry of the corresponding quantum theory. The one we have just seen is called the chiral or Adler-Bell-Jackiw anomaly. It is responsible for much physics, such as the very short lifetime of the neutral pion, by mediating the would-be-forbidden process $\pi^{0} \rightarrow \gamma \gamma$.

Where does Noether's theorem break down? The anomaly is easiest to see using the path-integral, which is the central object in a quantum theory. We can write

$$
Z=\int D \psi D \bar{\psi} e^{i S[\bar{\psi}, \psi]}=\int D \psi^{\prime} D \bar{\psi}^{\prime} e^{i S\left[\bar{\psi}^{\prime}, \psi^{\prime}\right]}
$$

Given a symmetry of the action $(\psi, \bar{\psi}) \rightarrow\left(\psi^{\prime}, \bar{\psi}^{\prime}\right)$, the Lagrangian density must change by only a total derivative (i.e. a surface term):

$$
i S\left[\psi^{\prime}, \bar{\psi}^{\prime}\right]=i S[\psi, \bar{\psi}]+\int d^{4} x \partial_{\mu} j_{A}^{\mu}(x)
$$

Noether's procedure shows how to construct j_{A}^{μ} such that $\partial_{\mu} j_{A}^{\mu}(x)=0$. However, this is predicated on the assumption that the path-integral measure is invariant under our symmetry, $D \psi^{\prime} D \bar{\psi}^{\prime}=D \psi D \bar{\psi}$. In general this is not true. Instead,

$$
D \psi^{\prime} D \bar{\psi}^{\prime}=D \psi D \bar{\psi} \operatorname{det} \Delta^{-1}=D \psi D \bar{\psi} e^{\ln \operatorname{det} \Delta^{-1}}=D \psi D \bar{\psi} e^{\operatorname{Tr} \ln \Delta^{-1}}=D \psi D \bar{\psi} e^{-\int d^{4} x \ln \Delta}
$$

Putting everything together, we have

$$
\begin{aligned}
\int D \psi D \bar{\psi} e^{i S[\bar{\psi}, \psi]} & =\int D \psi^{\prime} D \bar{\psi}^{\prime} e^{i S\left[\bar{\psi}^{\prime}, \psi^{\prime}\right]} \\
& =\int D \psi D \bar{\psi} e^{-\int d^{4} x \ln \Delta} e^{i S[\psi, \bar{\psi}]+\int d^{4} x \partial_{\mu} j_{A}^{\mu}(x)} \\
& =\int D \psi D \bar{\psi} e^{i S[\psi, \bar{\psi}]} e^{\int d^{4} x\left(\partial_{\mu} j_{A}^{\mu}(x)-\ln \Delta\right)}
\end{aligned}
$$

For these to be equal, we must have that

$$
\partial_{\mu} j_{A}^{\mu}=\ln \Delta
$$

That is, the current j_{A}^{μ} is no longer conserved.

2 Weyl, Dirac, Majorana

Moved to next time.

MIT OpenCourseWare
https://ocw.mit.edu

8.323 Relativistic Quantum Field Theory I

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

