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1 Vector and Axial Symmetries 

1.1 Chiralty 

We work in the Weyl representation: � � � � � � 
0 i 0 −iσi 1 0 

γ0 = , γi = , γ5 = 
i 0 iσi 0 0 −1 

Here γ5 = iγ0γ1γ2γ3γ4 , and satisfes 

(γ5)
† = γ5, {γµ, γ5} = 0 

This representation is useful for the purpose of chirality, because γ5 is diagonal. The +1 eigenspace 
corresponds to left-handed spinors ψL, spanned by Dirac spinors non-zero in the top 2 components. 
Similarly, the −1 eigenspace corresponds to right-handed spinors ψR, spanned by Dirac spinors non-zero 
in the bottom 2 components. Therefore, we a Dirac spinor can be written as � � 

ψLψ = 
ψR 

Note that this is consistent with last recitation, where we have written the Dirac representation as the 
direct sum of left and right-handed Weyl representations: 

1Dirac = (12 , 0) ⊕ (0, ) = WeylL + WeylR2 

An arbitrary Dirac spinor can be projected onto its left/right-handed subspaces via projection operators: � � � � 
1 1 0 1 0 0 

PL = (1 + γ5) = , PR = (1 − γ5) = 
2 0 0 2 0 1 

Because these are projectors, they satisfy: 

P 2 = PL, P 2 = PR, PLPR = PRPL = 0, PL + PR = 1L R 

Slightly abusing notation by writing ψL/R = PL/Rψ, some useful identities are: 

¯ ¯ ¯ ¯PLγ
µ = γµPR, PRγ

µ = γµPL, ψL = ψPR, ψR = ψPL 

These are very important in the Standard Model because it is a chiral theory: the particles mediating 
forces couple diferently to left and right-handed fermions. 
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1.2 Vector and Axial Transformations 

Now consider the Lagrangian for a Dirac spinor, 

L = −iψ̄(∂/ − m)ψ 

This is invariant under the vector transformation ψ(x) → eiαψ(x). The conserved quantity is the vector 
¯ current, jµ = ψγµψ. From the decomposition above, we see that this rotates left and right-handed spinors V 

in the same way: 

iαψL, 
iαψRψL → e ψR → e 

iαγ5 ψ(x).We may also consider the axial transformation ψ(x) → e This rotates left and right-handed 
spinors in opposite ways: 

iαψL, 
−iαψRψL → e ψR → e 

Note that the a Dirac mass term m ̄ψψ is not invariant under this transformation: 

¯ −iαγ5 γ0 iαγ5 ψ = mψ†γ0 2iα(γ5)
2 2iα mψψ → mψ† e e e ψ = e mψψ¯ 

Meanwhile, the kinetic term is invariant: 

−iαγ5 γ0∂e/ iαγ5 ψ = −iψe¯ iαγ5 ∂e/ iαγ5 ψ = −i ̄ ∂e−iαγ5 iαγ5 ψ = −i ̄−iψ̄ / e e ∂ψ ∂ψ → −iψ† ψ/ ψ/ 

Therefore, this is a symmetry of L only for a massless Dirac spinor m = 0. The conserved quantity is the 
¯ vector current, jµ = ψγµγ5ψ.A 

To shed more light on this, it is instructive to write the L in terms of ψL and ψR: 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ψ/ ψ/ ψ/ ψ/ ψPR / ψPL / ψL / ψR /∂ψ = ∂(PL + PR)ψ = ∂PLPLψ + ∂PRPRψ = ∂PLψ + ∂PRψ = ∂ψL + ∂ψR 

¯ ¯ ¯ ¯ ¯ ¯ mψψ = ψ(PL + PR)ψ = ψPLPLψ + ψPRPRψ = ψRψL + ψLψR 

The kinetic term decomposes into a kinetic term for ψL and a kinetic term for ψR. The mass term 
couples the left and right-handed Weyl spinors. When m = 0 the theory becomes decoupled, and the 
Dirac Lagrangian reduces to a free ψL and free ψR. 

How now, do the vector and axial symmeties manifest? The massless Lagrangian L = −i(ψ̄ 
L / ψR /∂ψL+ ¯ ∂ψR) 

has the symmetries ψL → eiαL ψL, and ψR → eiαL ψR, where we rotate the left spinor by αL, and the right 
iαV ±αAby αR independently. Equivalently, we may rotate left/right by the same e , or by opposites e . 
¯These are the vector and axial symmetries. The coupling term m(ψ̄ 

LψR + ψRψL) is not invariant if we 
rotate ψL,R diferently. 

1.3 The Chiral Anomaly 

The moral of the previous section is that the Lagrangian for a massless Dirac fermion enjoys the vector 
and axial symmetries. Noethers theorem tells us that the corresponding currents are conserved: 

∂µj
µ = ∂µj

µ = 0V A 

However, this symmetry is broken when we quantize the theory: if we couple a massless Dirac fermion to 
an EM feld, we fnd that the Noether current is not conserved: 

α αµνρσFµν Fρσ∂µj
0 = e = F ∧ FA 4π 4π 
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Here F µν = ∂µAν − ∂ν Aµ is the electromagnetic feld strength, which may be familiar to you from your 
undergraduate EM class. 

Generally, an anomaly is a symmetry of a classical theory, which is not a symmetry of the corresponding 
quantum theory. The one we have just seen is called the chiral or Adler-Bell-Jackiw anomaly. It is 
responsible for much physics, such as the very short lifetime of the neutral pion, by mediating the would-
be-forbidden process π0 → γγ. 

Where does Noether’s theorem break down? The anomaly is easiest to see using the path-integral, which 
is the central object in a quantum theory. We can write Z Z 

ψeiS[
¯ 

ψ ′ ψ ′ ,ψ ′ ]ψ,ψ] iS[ ¯ 
Z = DψD ¯ = Dψ ′ D ¯ e 

¯Given a symmetry of the action (ψ, ψ̄) → (ψ ′ , ψ ′ ), the Lagrangian density must change by only a total 
derivative (i.e. a surface term): Z 

iS[ψ ′ , ψ̄′ ] = iS[ψ, ψ̄] + d4x∂µj
µ (x)A 

Noether’s procedure shows how to construct jµ such that ∂µj
µ (x) = 0. However, this is predicated onA A 

the assumption that the path-integral measure is invariant under our symmetry, Dψ ′ Dψ̄′ = DψDψ̄. In 
general this is not true. Instead, R 

ψ ′ ψeln det ∆−1 
ψeTr ln ∆−1 d4x ln ∆ Dψ ′ D ¯ = DψDψ̄ det ∆−1 = DψD ¯ = DψD ¯ = DψDψe¯ − 

Putting everything together, we have Z Z 
ψ,ψ] iS[ψ̄′ ,ψ ′ ]DψDψe¯ iS[
¯ 

= Dψ ′ Dψ̄′ e Z R R 
d4x ln ∆ iS[ψ,ψ̄]+ d4x∂µj

µ (x)= DψDψe¯ − e A Z R 
ψeiS[ψ,ψ̄] d4x(∂µj

µ (x)−ln ∆) = DψD ¯ e A 

For these to be equal, we must have that 

∂µj
µ = ln∆ A 

That is, the current jµ is no longer conserved. A 

2 Weyl, Dirac, Majorana 

Moved to next time. 
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