Quantum Field Theory II (8.324) Fall 2010 Assignment 6

- Please remember to put your name at the top of your paper.

Readings

- Peskin \& Schroeder chapters 10, 12, 13.
- Weinberg vol 1 chapter 12 and Vol 2 chapter 18.

Problem Set 5

1. Furry's theorem (20 points)
(a) Using charge conjugation invariance to prove that the vacuum expectation value of the time-ordered product of any odd number of electromagnetic fields and/or currents vanish.
(b) Verify directly that the one-loop contribution to the photon one-point and three-point functions vanish.

2. A massive vector field theory (30 points)

Consider the Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\frac{1}{2} m^{2} A_{\mu} A^{\mu}-i \bar{\psi}\left(\gamma^{\mu} \partial_{\mu}-m\right) \psi-e A_{\mu} \bar{\psi} \gamma^{\mu} \psi \tag{1}
\end{equation*}
$$

(a) Find the momentum space propagator $D_{\mu \nu}(k)$ for the massive vector field A_{μ}.
(b) Show that in the large momentum limit, $D_{\mu \nu}(k)$ scales as $O(1)$ (i.e. independent of k). Convince yourself that in terms of momentum counting, this implies that A_{μ} has an effective dimension 2.
(c) By explicitly counting the power of momentum inside the integrand of the amplitude, derive an explicit expression for the superficial divergence D for a diagram with E_{e} external ψ-lines, E_{A} external A_{μ}-lines and V vertices.
(d) Show that the expression obtained in (c) is the same as that derived in lecture by using dimensional analysis with the effective dimension of A_{μ} now given by 2 .
(e) Is this theory renormalizable? Why?

3. Operator product expansions (20 points)

Consider a free scalar field theory in Euclidean signature with a Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \int d^{4} x\left((\partial \phi)^{2}+m^{2} \phi^{2}\right) \tag{2}
\end{equation*}
$$

(a) Express the operator $\phi^{4}(x)$ in terms of normal-ordered operators.
(b) Denote $\mathcal{O}(x)=: \phi^{4}(x)$: where :: stands for normal ordering. Consider the operator product expansion (as $|x| \rightarrow 0$)

$$
\begin{equation*}
\mathcal{O}(x) \mathcal{O}(0)=\sum_{n} C_{n}(x) \mathcal{O}_{n}(0) \tag{3}
\end{equation*}
$$

where \mathcal{O}_{n} denotes a complete set of normal-ordered local operators built from ϕ and its derivatives. Work out the coefficients $C_{n}(x)$ for those \mathcal{O}_{n} who canonical dimension $\Delta_{n} \leq 4$.

4. Renormalization group properties (30 points)

(a) Consider a coupling constant λ and a redefined coupling constant $\bar{\lambda}(\lambda)$. Find the general transformation law for the beta function, namely the relation between $\beta(\lambda)$ and $\bar{\beta}(\bar{\lambda})$. If we think of λ as a coordinate we see that β transforms as a tensor. What kind of tensor?
(b) Assume that

$$
\beta(\lambda)=b_{2} \lambda^{2}+b_{3} \lambda^{3}+b_{4} \lambda^{4}+\cdots
$$

and consider the perturbatively defined and invertible coupling constant redefinition:

$$
\bar{\lambda}(\lambda)=\lambda+a_{2} \lambda^{2}+a_{3} \lambda^{3}+\cdots .
$$

Calculate $\bar{\beta}(\bar{\lambda})$ writing it in the form

$$
\bar{\beta}(\bar{\lambda})=\bar{b}_{2} \bar{\lambda}^{2}+\bar{b}_{3} \bar{\lambda}^{3}+\bar{b}_{4} \bar{\lambda}^{4}+\cdots
$$

Verify that:
i. $\bar{b}_{2}=b_{2}$ and $\bar{b}_{3}=b_{3}$.
ii. It is possible to make \bar{b}_{4} anything you want by such a coupling redefinition.
iii. Let $\lambda=\lambda_{F}$ denote a fixed point. Show that $\bar{\lambda}=\bar{\lambda}_{F}$ is also a fixed point. How are the derivatives β^{\prime} and $\bar{\beta}^{\prime}$ related at the fixed point?
(c) Consider the differential equation for a massless coupling g

$$
\begin{equation*}
\mu \frac{d g}{d \mu}=-b g^{2}-c g^{3}-d g^{4}-\cdots \tag{4}
\end{equation*}
$$

with b, c, d numerical constants. Show that one can write a solution to the above equation in the form

$$
\begin{equation*}
\ln \frac{\mu}{\Lambda}=\frac{1}{b g(\mu)}+\frac{c}{b^{2}} \ln b g(\mu)+\mathcal{O}(g(\mu)) \tag{5}
\end{equation*}
$$

where Λ is an integration constant, which can be considered as a dynamically generated scale. Argue that Λ is renormalization group invariant.
(d) More generally, show that in a renormalizable theory with a dimensionless coupling constant $g(\mu)$ and no other dimensional parameter (like in a nonAbelian gauge theory), dimensional transmutation happens. That is, show that $g(\mu)$ can be written in a form

$$
\begin{equation*}
g(\mu)=f\left(\log \left(\frac{\mu}{\Lambda}\right)\right) \tag{6}
\end{equation*}
$$

with Λ a universal scale and f a function depending on the specific theory. (Inverting (5) gives a specific example of f.)

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

