8.324 Relativistic Quantum Field Theory II

MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2010

Figure 1: An element Λ of the manifold of the Lie group G, and the Lie algebra \mathfrak{g} as the tangent space of the identity element.

Some facts about Lie groups and Lie algebras:

- 1. Different Lie groups can have the same Lie algebra. The Lie algebra determines the Lie group up to discrete choices of global structure. For example, $SU(2) = S^3$, $SO(3) = S^3/\mathbb{Z}_2$.
- 2. An **invariant subalgebra** is a subset of a Lie algebra $\mathfrak{g}' \subset \mathfrak{g}$ which is closed under the action of \mathfrak{g} . That is, $[\mathfrak{g}, \mathfrak{g}'] \subset \mathfrak{g}'$. A **simple** Lie algebra is a Lie algebra which does not contain invariant subalgebras and which is not Abelian. The complex simple Lie algebras are completely classified: $\mathfrak{su}(n)$, $\mathfrak{so}(2n)$, $\mathfrak{so}(2n+1)$, $\mathfrak{sp}(n)$, $E_{6,7,8}$, F_4 and G_2 are the only possibilities.
- 3. For a compact Lie group, it is always possible to choose a basis of T_a so that $f_{abc} = f_{bc}^a$ is truly antisymmetric (there is no distinction between upper and lower indices). All internal symmetry groups are compact. For example, SU(n) (the set of $n \times n$ unitary matrices):

$$U = \exp\left[i\Lambda^a T_a\right], \ a = 1, \dots, n^2 - 1,\tag{1}$$

where

$$\operatorname{Tr}(T_a) = 0, \ (T_a)^{\dagger} = T_a, \tag{2}$$

that is, the generators are hermitian and traceless, and hence we can choose

$$[T_a, T_b] = i f_{abc} T_c, \tag{3}$$

where the f_{abc} are fully antisymmetric.

4. Physically, for example considering $\Psi = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix}$ with an SU(n) symmetry, we find a set of associated

Noether charges \hat{Q}_a , $a = 1, \dots, n^2 - 1$, satisfying the Lie algebra commutation relations, $\left[\hat{Q}_a, \hat{Q}_b\right] = if_{abc}\hat{Q}_c$. Then the transformations on Ψ are generated by the Noether charges:

$$\hat{U} = \exp\left[\Lambda^a \hat{Q}_a\right],\tag{4}$$

where $\left[\epsilon^{a}\hat{Q}_{a},\Psi\right]=\epsilon^{a}T_{a}\Psi.$ That is,

$$\hat{U}\Psi\hat{U}^{\dagger} = U\Psi, \tag{5}$$

where U is given in (1). This is checked explicitly for SU(2) in the problem set.

1.2: THE GAUGE PRINCIPLE (QUANTUM ELECTRODYNAMICS REVISITED)

Referring back to the U(1) invariant Lagrangian we studied in lecture 1:

$$\mathscr{L} = -i\overline{\psi}(\gamma^{\mu}\partial_{\mu} - m)\psi, \tag{6}$$

which is symmetric under $\psi(t, \vec{x}) \longrightarrow e^{i\alpha} \psi(t, \vec{x})$, we note that for the Lagrangian to be symmetric, it is necessary that α is not position-dependent. That is, all spacetime points transform in the same way. The transformation is no longer a symmetry for general $\alpha = \alpha(x)$, that is, if we allow different phase rotations at different spacetime points. The mass term is invariant under these more general transformations. The kinetic term, however, transforms as

$$\partial_{\mu}\Psi \to \partial_{\mu}(e^{i\alpha(x)}\Psi(x)) = e^{i\alpha(x)}\partial_{\mu}(\Psi(x)) + i\partial_{\mu}(\alpha(x))e^{i\alpha(x)}\Psi(x), \tag{7}$$

where we have kept the x-dependence explicit. The second term is the problem. We want to construct a theory (i.e. a Lagrangian) which is invariant for a general $\alpha(x)$, that is, a theory with a local U(1) symmetry. The answer involves the introduction of a new vector field, and leads to quantum electrodynamics, as studied in 8.323. This example, in fact, embodies a deep principle: the principle of gauge invariance. As we will discuss,

Local symmetries \Rightarrow Interactions, Local U(1)symmetry \Rightarrow Electromagnetic interaction, Local U(n)symmetries \Rightarrow non-Abelian gauge interactions.

To illustrate this principle, we will now "rederive" Quantum Electrodynamics from the requirement of local U(1) symmetry. We would like to construct a theory which is invariant under

$$\psi(t,\vec{x}) \longrightarrow e^{i\alpha(x)}\psi(t,\vec{x}),\tag{8}$$

for general $\alpha(x)$, also called a gauge transformation. An immediate consequence of (8) is that the ordinary derivative loses its physical meaning. Consider the derivative along some direction n^{μ} :

$$n^{\mu}\partial_{\mu}\psi = \lim_{\epsilon \to 0} \frac{\psi(x+\epsilon n) - \psi(x)}{\epsilon}.$$
(9)

If we can rotate $\psi(x + \epsilon n)$ and $\psi(x)$ independently, (9) does not have a definite meaning, as can be seen from the last term in (7). That is, it does not make sense to compare the value of $\psi(x)$ at different points. So, to write down a sensible theory including kinetic terms for ψ , we need to introduce a new derivative, D_{μ} , such that:

$$D_{\mu}\psi(x) \longrightarrow e^{i\alpha(x)}D_{\mu}\psi(x).$$
 (10)

To do this, assume we have an object U(y, x) that transforms under (8) as

$$U(y,x) = e^{i\alpha(y)}U(y,x)e^{-i\alpha(x)}.$$
(11)

U(y, x) "transports" the gauge transformation from $x \longrightarrow y$.

Figure 2: The parallel transport U(y, x) transports the gauge transformation from x to y.

That is,

$$U(y,x)\psi(x) \longrightarrow e^{i\alpha(y)}U(y,x)e^{-i\alpha(x)}e^{i\alpha(x)}\psi(x) = e^{i\alpha(y)}(U(y,x)\psi(x)),$$
(12)

transforming as $\psi(y)$. Since $\psi(y)$ and $U(y, x)\psi(x)$ have the same transformation properties, $\psi(y) - U(y, x)\psi(x)$ is well-defined.

Now take $y = x + \epsilon n$, and define

$$n^{\mu}D_{\mu}\psi = \lim_{\epsilon \to 0} \frac{\psi(x+\epsilon n) - U(x+\epsilon n, x)\psi(x)}{\epsilon}.$$
(13)

By construction,

$$D_{\mu}\psi \longrightarrow \lim_{\epsilon \to 0} e^{i\alpha(x+\epsilon n)} D_{\mu}\psi = e^{i\alpha(x)} D_{\mu}\psi$$
(14)

and

$$\mathscr{L} = -i\psi(\gamma^{\mu}D_{\mu} - m)\psi \tag{15}$$

is invariant under (8). We now want to construct U(y, x) explicitly. Since only local phase multiplication is a symmetry, U(y, x) should be a phase, as we don't want to change other properties of $\psi(x)$. We begin infinitesimally:

$$U(x+\epsilon n,x) = 1 + i\epsilon n^{\mu} e A_{\mu}(x) + \dots, \qquad (16)$$

where e is a constant and $A_{\mu}(x)$ is a real vector field. Under the transformation (8),

$$U(x + \epsilon n, x) \longrightarrow e^{i\alpha(x + \epsilon n)} U(x + \epsilon n, x) e^{-i\alpha(x)},$$
(17)

so that

$$1 + ie\epsilon n^{\mu}A_{\mu}(x) \longrightarrow e^{i\alpha(x)}(1 + i\epsilon n^{\mu}\partial_{\mu}\alpha(x))(1 + ie\epsilon n^{\mu}A_{\mu}(x))e^{-i\alpha(x)},$$
(18)

and hence

$$A_{\mu}(x) \longrightarrow A_{\mu}(x) + \frac{1}{e} \partial_{\mu} \alpha(x).$$
 (19)

Finally, we have for the covariant derivative D_{μ} :

$$D_{\mu}\psi = \partial_{\mu}\psi - ieA_{\mu}\psi = (\partial_{\mu} - ieA_{\mu})\psi.$$
⁽²⁰⁾

Inserting the transformation laws for $A_{\mu}(x)$ and $\psi(x)$: (19) and (8), respectively, we have that $D_{\mu}\psi(x)$ transforms as $\psi(x)$. We want $A_{\mu}(x)$ to be a dynamical field, and hence we require a kinetic term for this vector field, which should be invariant under (19). To construct this, we note that $D_{\mu}(D_{\nu}\psi)$ transforms as ψ , and so does $(D_{\mu}D_{\nu} - D_{\nu}D_{\mu})\psi$, so we define

$$[D_{\mu}, D_{\nu}] = [\partial_{\mu} - ieA_{\mu}, \partial_{\nu} - ieA_{\nu}] \equiv -ieF_{\mu\nu}, \qquad (21)$$

$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \qquad (22)$$

and we have that $F_{\mu\nu}\psi$ transforms as ψ , so that $F_{\mu\nu}$ is invariant.

8.324 Relativistic Quantum Field Theory II Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.