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NOTES ON LIE ALGEBRAS 

Lie Algebra G . A vector space G with a bilinear operation [ , ] :  G × G → G such that 

(i): [x, x] = 0, for all x ∈ G  (antisymmetry), 

(ii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z ∈ G  (Jacobi identity). 

Typically the vector space is over the real numbers (a real vector space) or over the complex 

numbers (a complex vector space). 

A Lie subalgebra of G is a vector subspace of G which is itself a Lie algebra under [ , ]. 

The generators Ta of G with a = 1, 2, . . .  , d  are a set of basis vectors in G. Here d is 

the dimension of G. The Lie algebra is defined if we give the Lie brackets [Ta, Tb] of all the 

generators. One writes 

[Ta, Tb] =  fab
c Tc , (1) 

where the structure constants fab
c are real if the Lie algebra is a real vector space, or 

complex if the Lie algebra is a complex vector space. 

An ideal I of G is an invariant subalgebra of G, namely, [G, I] ⊂ I  . An ideal is proper 

if it is not equal to {0} nor to G (both of which are trivial ideals of G). The quotient space 

G/I is readily checked to be a Lie algebra. 

The derived algebra G(1) of G is the set of all linear combinations of brackets of G. We  

write G(1) ≡ [G,G]. G(1) is an ideal of G. One defines G(i+1) = [G(i),G(i)] for i ≥ 1. In 

the derived series of ideals G(1),G(2), . . .  each term is an ideal of G (this is proven using 

induction and the Jacobi identity). G is solvable if its derived series ends up with {0}. 

If I and J are ideals of G then I + J is also an ideal of G. If, in addition both I and J are 

solvable, then I + J is also solvable (show by induction that (I + J )(n) ⊂ I(n) + J . Since 

I is solvable, at some stage the derived series of (I + J ) goes into the derived series of J , 

which also terminates). 

The radical Gr of a Lie algebra G is the maximal solvable ideal of G, i.e. one enclosed in no 

larger solvable ideal. It follows from the above additivity property that Gr is unique. 

The center Z of G is the set of all elements of G that have zero bracket with all of G. The 

center of G is clearly an ideal of G. 
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An abelian Lie algebra G is a Lie algebra whose derived algebra G{1} ≡ [G,G] vanishes (the 

Lie bracket of any two elements of G is always zero). For arbitrary G, the quotient G/G{1} is 

an abelian Lie algebra. There is a unique one-dimensional Lie algebra, the abelian algebra 

u1 with a single generator T and bracket [T, T ] = 0. Any d dimensional abelian Lie algebra 

is (isomorphic to) the d-fold direct sum of one-dimensional Lie algebras. 

The direct sum G1 ⊕G2 ⊕ · · ·  of Lie algebras with brackets [ , ]1, [  , ]2 is the sum of the · · ·  

vector spaces with a bracket [ , ] defined as: (i) [ x ,  y  ] = [  x ,  y  ]i when x, y ∈ Gi, and (ii) 

[Gi,Gj ] = 0, for i =� j. Each summand is an ideal of the direct sum. 

A Lie algebra G is simple if it has no proper ideals and is not abelian. Note the following 

obvious consequences: 

(i) the derived algebra of G (an ideal) must equal G ; G is not solvable, 

(ii) being not solvable and having no proper ideals, its radical Gr vanishes, 

(iii) the center of G must vanish, 

(iv) G cannot be broken into two sets of commuting generators. 

A Lie algebra G is semisimple if its radical Gr vanishes. Simple Lie algebras are semisimple. 

It can be shown that semisimple algebras are direct sums of simple Lie algebras. 

A reductive Lie algebra is the direct sum of an abelian algebra and a semisimple algebra, 

with both nonvanishing. This is the case of interest for non-abelian gauge theory. In these 

algebras the radical equals the center (the abelian algebra). 

Comments. The general Lie algebra G is either solvable or not solvable. The solvable algebras 

are not easy to classify. If the algebra G is not solvable then either the radical vanishes, in 

which case the algebra is semisimple, or the radical does not vanish, in which case the 

quotient (G/Gr) is semisimple (it can be shown that it has zero radical). Any Lie algebra G 

has a Levi decomposition G = P ⊕σ Λ, as the semidirect sum of a solvable algebra P and 

a semisimple algebra Λ. In the semidirect sum the bracket of elements within summands are 

the brackets of the respective algebras, and the bracket of mixed elements are defined using 

a representation σ of Λ on the vector space of P . 

Example: The Poincare algebra P . It has two familir subalgebras spanning together P as 

a vector space; the Lorentz algebra Λ (semisimple) and the translation algebra P (abelian). 

The Poincare algebra is not solvable since Λ is not, is not semisimple since its radical equals 

the non-vanishing algebra P , and is not reductive since it is cannot be written as a direct 

sum of a semisimple and an abelian part. One has P = P ⊕σ Λ. 
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THE CLASSICAL LIE ALGEBRAS 

Let V be a vector space over a field F (R or C). The general linear algebra gl(V ) is the 

algebra of endomorphisms (linear transformations, not necessarily invertible) of V . As a  

vector space over F , End(V ) has dimension (dim(V ))2. The Lie bracket is just the commu

tator of the linear transformations. More concretely, when V is a vector space of dimension 

n over F , one can think of gl(V ) as the algebra gl(n, F ) of  n × n matrices with entries in F . 

The classical algebras fall into four families A�, B�, C� and D�. These are all subalgebras of 

gl(V ). Any subalgebra of gl(V ) is called a linear Lie algebra. 

A� : Let dim V = � + 1, the algebra is called sl(� + 1, F ) (for special linear) and is that of 

endomorphisms of zero trace (a basis independent restriction). Its dimension is (� + 1)2 − 1. 

To describe the next three families of algebras we will use bilinear forms f(v, w) on an  

n-dimensional vector space V : 

f(v, w) =  v t s w  ,  (2) 

where, for a chosen basis, s is a fixed invertible n× n matrix and v, w ∈ V . We then consider 

V endomorphisms x such that for all v and w 

f(x(v), w) =  −f(v, x(w)) sx = −x t s .  (3)→ 

We claim that the set of endomorphisms that satisfy (3) form a Lie algebra under commu

tation. Indeed, if x1 and x2 satisfy f(xi(v), w) =  −f(v, xi(w)) so does [x1, x2]. Additionally, 

tracing the relation sxs−1 = −xt we deduce that x has zero trace. The Lie algebra in ques

tion is thus a subalgebra of sl(n, F ). The bilinear form f(v, w) is symmetric (antisymmetric) 

under the exchange of v and w if s is a symmetric (antisymmetric) matrix. 

C� : Let dim V = 2� and choose some specific basis in which 

0 I� s = . (4)−I� 0 

The Lie algebra of endomorphisms that satisfy (3) is called sp(2�, F ) (for symplectic). Also, 

sp(2�, F ) ⊂ sl(2�, F ). For a general matrix x ∈ sp(2�, F ) we find that the � × � blocks take 

the form � � 
m n  t t t x = 
p q  

→ n = n , p  = p , m  = −q .  (5) 

The dimension is readily found; we need two symmetric �×� matrices p and n giving �(�+1), 

and one arbitrary matrix m (that determines q) giving �2. Thus dim sp(2�, F ) =  �(2� + 1). 
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B� : Let dim V = 2� + 1. This time ⎛ ⎞ 
1 0 0  ⎜ ⎟ 

s = ⎝	0 0  I�⎠ . (6) 
0 I� 0 

The Lie algebra of V endomorphisms x that satisfy (3) is called o(2�+1, F ) (for orthogonal).


Note that o(2� + 1, F ) ⊂ sl(2� + 1, F ). Moreover, dim o(2� + 1, F ) =  �(2� + 1) (the same


dimension as that of sp(2�, F )).


D�(� ≥ 2) : Let dim V = 2�. This time


0 I� s = .	 (7)
I� 0 

The Lie algebra of V endomorphisms x that satisfy (3) is called o(2�, F ). Note that o(2�, F ) ⊂ 

sl(2�, F ) and that dim o(2�, F ) =  �(2� − 1). 

The above description given for the orthogonal algebras actually correspond to the maximal 

noncompact forms. The real orthogonal algebra o(�) is obtained with a real vector space V 

with dimV = � and s = I�. This is the algebra of real antisymmetric matrices x = −xt . 

COMPLEX AND REAL LIE ALGEBRAS 

The relevant issues are clarified with an example involving Lie algebras with three generators. 

Consider the Lie algebra sl(2, C) of complex traceless 2 × 2 matrices. The Lie bracket is 

commutator (preserves tracelessness). This is naturally a vector space over the complex 

numbers as traceless matrices remain traceless by multiplication by a complex number. The 

algebra is therefore a complex Lie algebra. We can choose a basis of generators 

0 1  0 0 1 0 
J+ = 

0 0  
, J− = 

1 0  
, J3 = 0 −1 

.	 (8) 

The brackets are given 

[J+ , J− ] =  J3, [ J3 , J± ] =  ±2J± . (9) 

It is possible to show this complex Lie algebra is the unique simple complex Lie algebra 

with three generators. Even though the algebra is complex we can easily get a real algebra 

since the brackets in (9) have only real numbers. We can declare the vector space to be real 

and say that the abstract basis vectors (J+, J , J3) have the brackets in (9). This is now a −
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real Lie algebra. More concretely we can define the real algebra as the algebra sl(2, R) of  

traceless 2 × 2 real matrices (naturally a real vector space). The generators in (8) are good 

ones for this algebra. 

There is a way to construct another real algebra from sl(2, C), this time take 

0 1  0 
2 S1 = −i(J+ + J−) =  − i 

1 0  
, 2 S2 = J− − J+ = −i

i 
−
0 
i

, 

� � (10) 
1 0 

2 S3 = −iJ3 = −i 
0 −1 

. 

We recognize Sk = −iσk/2, with σk the (hermitian and traceless) Pauli matrices. The 

brackets have real structure constants 

[ Si , Sj ] =  εijk Sk , (11) 

Declaring the Sk to be basis vectors of a real vector space we get the familiar simple real Lie


algebra su(2), described as the algebra of 2 × 2 traceless antihermitian matrices. Although


the matrices have complex entries, the vector space is naturally real – complex multiplication


ruins antihermiticity. The real algebras sl(2, R) and su(2) are not isomorphic over the reals,


they are the two real forms associated with sl(2, C).


The real forms of sl(�+1, C) are sl(� +1, R) and su(�+1), defined as the algebra of traceless


antihermitian (� + 1)  × (� + 1) matrices (a compact subalgebra of sl(� + 1, C)).


The real Lie algebra u(�) is defined as the algebra of � × � antihermitian (complex) matrices.


It has real dimension �2 (the associated Lie group is the unitary matrix group U(�)).


The real Lie algebra usp(2�) is the algebra of antihermitian matrices in sp(2�, C). Using (5)


the antihermiticity gives


−
m
n† −

n
mt with m† = −m, n t = n .  (12) 

The real dimension of usp(2�) is  �(2� + 1). The algebras usp(2�) and sp(2�, R) are two real 

forms of sp(2�, C). Actually usp(2�) is a compact real form while sp(2�, R) is a non-compact 

real form. 
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REPRESENTATIONS 

A representation of a Lie algebra G on a vector space V is a linear map ψ : G → gl(V ) 

which is a homomorphism of Lie-algebras (ψ([x1, x2]) = [ψ(x1), ψ(x2)], for all x1, x2 ∈ G). 

It is an irreducible representation if the image of G in gl(V ) acts on V without a proper 

invariant subspace. 

Schur’s lemma. Let ψ : G →  gl(V ) be an irreducible representation on a finite dimen

sional complex vector space V . Let α : V V be a linear mapping commuting with ψ(x)→
for all x ∈ G. Then α is proportional to the identity map: α = aI for some number a. Proof: 

α must have one eigenvector in V with some eigenvalue a since det(α−λI) = 0 must have at 

least one (complex) root λ = a). Then show that the set of vectors in V with α eigenvalue a 

form a nonvanishing invariant subspace. Conclude that the invariant subspace must be the 

whole V , so  α(v) =  av for any vector in V , which means α is a multiple of the identity.). 

The adjoint representation of the Lie algebra is a representation where the vector space in 

question is precisely the Lie algebra: V = G. We write ad : G → gl(G) and define ad x as 

the linear map 

ad x : y [x, y ]  or  ad  x(y) = [x, y ] . (13)→

To verify it is a representation we must check that the linear maps satisfy 

[ ad  x ,  ad y ] = ad [x, y ] . (14) 

This is verified acting on an element of the algebra and using the Jacobi identity. 

The adjoint representation of a simple Lie algebra is irreducible for otherwise, by (13), the 

invariant subspace would be an ideal. For semisimple algebras the adjoint representation is 

reducible. 

The kernel of ad is formed by the elements x of the algebra that generate the zero map, and 

therefore must have zero brackets with everything. So the kernel of ad coincides with the 

center Z of the Lie algebra. If G is simple its center vanishes and the map ad : G → gl(G) 

is one to one; any simple Lie algebra G is isomorphic to a subalgebra of gl(G). 

Looking at the generators we have 

ad Ta (Tb) = [Ta, Tb] =  Tc fab
c . (15) 
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To find the explicit matrix form of the adjoint action we view Tb as the column vector with 

all entries equal to zero except for a 1 in the b-th entry. Then ad Ta (Tb) =  Tc(ad Ta)cb and 

we thus conclude that 

(ad Ta)cb = fab
c . (16) 

An arbitrary representation r of G of dimension dr is defined by dr × dr matrices tra that 

represent the generators: 

[ tra , tb
r ] =  fab

c trc . (17) 

On the Lie algebra there is a well defined symmetric bilinear form κ ( , ) called the Killing· ·
metric and defined as (with denoting composition of linear maps) ◦

κ (x, y) =  −Tr ad x ad y . (18)◦

κ(x, y) is simply minus the trace of the operator [ x, [ y, ] ]. This metric is uniquely defined, ·
up to a multiplicative constant, by two properties: 

(i) invariance under automorphisms σ of the Lie algebra (σ : G → G is an automorphism if 

[x, y] =  z implies that [σ(x), σ(y)] = σ(z). σ defines an element in gl(G).) 

κ(σ(x), σ(y)) = κ(x, y) , (19) 

(ii) associativity, in the sense that 

κ( [x, y] , z  ) =  κ ( x, [y, z] )  . (20) 

One readily verifies that (18) satisfies (19) (note that ad σ(x) =  σ ad x σ−1) and (20). ◦ ◦

A fundamental result of Killing and Cartan is that a Lie algebra is semisimple if and only 

if its Killing form is nondegenerate. A bilinear form κ ( , ) is degenerate if there is a · ·
non-zero vector x such that κ ( x ,  ) = 0. A particular case is readily verified; algebras with ·
abelian ideals (thus not semisimple) have degenerate Killing forms. To see this split the 

algebra generators into two groups : those in the abelian ideal I and those outside I. With 

x ∈ I, κ(x, y) = 0 for all y or, equivalently, the trace of the operator [x, [y, ] ] vanishes. ·
This is clear because acting on elements of I this operator gives zero, and acting on elements 

outside I it gives elements inside I. Thus  κ is degenerate. 

A Lie algebra is said to be compact semisimple if the Killing form is positive definite, 

that is κ(x, x) > 0 for x = 0. The corresponding Lie group is a compact manifold. 
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While the product of elements x, y ∈ G  is not defined, having representations ψ(x), ψ(y) we  

can multiply them together and the Lie bracket becomes a commutator. This suggests the 

definition of the universal enveloping algebra U(G) associated with the Lie algebra G. It  is  

the associative algebra spanned by monomials in the generators of G, (say, x, y, x2, xy,  yx,  )· · ·
where monomials are identified upon use of the brackets as commutators (if [x, y] =  z, we  

can say that in the enveloping algebra xy = yx + z). 

A representation of a Lie group G on a vector space V is a map G GL(V ) which is → 

a homomorphism of Lie groups. Here the general linear group GL(V ) is the group of 

invertible linear maps V V . Concretely, a representation r of dimension dr a Lie group G→
is defined by an invertible dr × dr matrix Dr(g) for each g ∈ G such that 

Dr(g1)D
r(g2) =  Dr(g1g2), for all g1, g2 ∈ G . (21) 

Given a Lie group G with Lie algebra G the adjoint representation of the group is a map 

Ad: G Aut(G) that associates to each element g ∈ G an invertible linear transformation → 

Ad g which is an automorphism of the Lie algebra G: 

Ad g [ x ,  y  ] = [ Ad  g(x), Ad g (y) ]  . (22) 

It follows immediately from this and (19) that the Killing form is Ad-invariant: 

κ ( Ad  g(x), Ad g(y) ) =  κ (x, y ) . (23) 

As befits a representation, one must have 

Ad (g1g2) = Ad (g1)Ad (g2) . (24) 

The representation can be described concretely as (with repeated indices summed) 

¯Ad g : Ta Ad g (Ta) =  Tb Dba(g) , (25)→ 

¯where Dab(g) denotes dim(G)×dim(G) matrix representation of Ad g. One readily checks 

that the above two equations imply that, as expected, D̄ab(g1g2) =  D̄ac(g1)D̄cb(g2). 

Geometrically one understands the adjoint group action on the algebra as follows. Recall 

that the Lie algebra G associated with a Lie group G can be identified with the tangent space 

of G at the identity. For any fixed g ∈ G the transformation h → ghg−1 (conjugation by g) 
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is a map of G to itself leaving the identity element fixed and inducing a linear transformation 

from the tangent space at h to the tangent space at ghg−1 . Therefore, this map induces a 

linear transformation on the tangent space at the identity, a linear transformation on the 

Lie algebra1 . 

The adjoint action can be described using any G representation and a G representation of 

the same dimensionality. Let tra be matrices representing the generators Ta in a representation 

r of G and let Dr(g) be matrices of the same dimension in the representation r of G. The 

action of Ad g is via conjugation with Dr(g), and (25) gives 

Dr(g) ta
r Dr(g)−1 = tb

r D̄ba(g) . (26) 

If the representation r of G is the adjoint, Dr(g) =  D̄(g). Note that the D̄ba(g) on the above 

right-hand side are numbers, not matrices. 

For a matrix group G whose elements V ∈ G are k × k matrices, the generators Ta of 

the associated Lie algebra G are themselves k × k matrices (this is called the fundamental 

representation) and (25) and (26) read 

Ad V (Ta) =  V TaV −1 = T b D̄ba(V ) . (27) 

COMPACT SEMISIMPLE LIE ALGEBRAS 

Consider again the Killing metric 

κab ≡ κ (Ta, Tb) =  −Tr ( ad Ta ◦ ad Tb ) =  −Tr ( t̄a t̄b ) . (28) 

where t̄a denotes the matrix representation of the adjoint action (ad Ta). By (16) we have 
c(t̄a)cb = fab . The metric is real since the structure constants are real. We note that 

e−Tr ( [  t̄a , t̄b ] t̄c ) =  f κec . (29)ab 

Cyclicity of the trace implies that the fab
e κec is totally antisymmetric in a, b and c. 

1More precisely the Lie Algebra G associated with a group G is defined as the set of all left-invariant 
vector fields on the group manifold. The bracket is the Lie bracket of vector fields, viewed as differential 
operators. As a vector space, the set of left-invariant vector fields is isomorphic to the tangent space to the 
group at the identity (each tangent vector at the identity can be extended to a left-invariant vector field). 
By left-invariant one means invariant under diffeomorphisms of the group induced by left multiplication: 
g ag, ∀g ∈ G.→ 
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Since the matrix κab is symmetric, real, and positive definite (G is compact semisimple)2 

there is an real orthogonal O matrix that diagonalizes κ, namely OκOT = D, with D a 

diagonal matrix with positive entries. We can define new generators Ta
′ = OacTc , and then 

we verify that 

−Tr ( t̄′a t̄′b ) =  Dab . 

By a further (real) scaling all diagonal elements can be made equal to a constant denoted 

as C(G). In the resulting basis, which we call again Ta, we have  

−Tr ( t̄a t̄b ) =  C(G) δab = κab . (30) 

In this basis we write [Ta, Tb] =  fab
c Tc. Since fab

eκec is totally antisymmetric, (30) implies 

that fab
eδec = fab

c is totally antisymmetric. We thus define a totally antisymmetric symbol 

fabc ≡ fab
c , (31) 

and write 

[Ta, Tb] =  fabc Tc , (ad Ta)bc = −fabc . (32) 

We have shown that for compact semisimple real Lie algebras there is a basis in which 

equations (30) and (32) hold. 

We now verify that the adjoint representation of G acts on G via real orthogonal matrices. 
¯For this we begin with (30), insert D matrices, and use (26) applied to the adjoint: 

−C(G)δab = Tr(t̄a t̄b) 

= Tr  D̄(g) t̄a D̄
−1(g)D̄(g) t̄bD̄

−1(g) � � (33) 
= Tr  t̄e t̄f D̄ea(g)D̄fb(g) 

= −C(G)D̄ea(g)D̄eb(g) , 

showing that the matrix D̄(g) is indeed orthogonal ( D̄T D̄ = 1). 

For arbitrary representations of the Lie algebra we define the matrix κ (r) 

κab(r) ≡ −Tr ( ta
r tb

r ) . (34) 

2Positivity also follows if the matrices in the adjoint representation of G are antihermitian: any x ∈ G is 
represented in the adjoint by an X(= −X†) and κ(x, x) =  −Tr(XX) = Tr(X†X) ≥ 0. 
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Inserting group matrices Dr(g) as in (33) and using (26) we see that 

κab(r) =  κcd(r) D̄ca(g)D̄db(g) κ(r) =  D̄T (g) κ(r)D̄(g) .→ 

¯ ¯Since D(g) is orthogonal it follows that κ(r) commutes with all matrices D(g). For simple 

algebras the adjoint representation of the corresponding group acts irreducibly. By Schur’s 

lemma this means that κ(r) must be proportional to the identity. We thus define 

−Tr ( tr tr ) =  C(r) δ (35)a b ab . 

In the chosen basis, the element TaTa (a summed!) of the enveloping algebra is called 

a Casimir operator. It commutes with all Ta’s and therefore with all elements of the 

enveloping algebra. Indeed, with repeated indices summed, 

[ TaTa , Tc] =  Ta (facbTb) +  (facb Tb)Ta = (facb − fbca)TaTb = 0  . (36) 

More geometrically, for any semisimple algebra κabTaTb is a Casimir, where the inverse κab 

of the Killing metric κab exists because of semisimplicity. 

Since TaTa is a Casimir, in any irreducible representation r the Casimir matrix ta
r ta

r commutes 

with all the matrices ta
r representing generators. The Casimir matrix, by Schur’s lemma, must 

be a multiple of the identity in any irreducible representation: 

−ta
r ta

r = C2(r) Id(r) , (37) 

where d(r) denotes the dimension of the representation r. The constants C(r) and C2(r) are 

simply related; taking the trace of (37) and the contraction of (30) one finds 

C2(r) dim(r) =  C(r) dim(G) . (38) 

For the adjoint representation (37) gives 

1 
facd fbcd = C2(G)δab → C2(G) =  

dim (G) 
fabc fabc , (39) 

and (38) implies that C2(G) =  C(G). As defined, the constants C and C2 are basis dependent. 

11




MIT OpenCourseWare
http://ocw.mit.edu 

8.324 Relativistic Quantum Field Theory II

Fall 2010 


For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




