# 8.325 Homework 6 

Iain Stewart, April 20, 2007
Due: Thur. May 3.

## Problem 1) Peskin \& Schroeder, Problem 19.1, page 686-687

## Problem 2) Axial-Anomaly in Dimensional Regularization

Compute the axial anomaly for QED in four-dimensions from the triangle diagram using dimensional regularization (show all your steps ie. not just those displayed in Peskin). Demonstrate that your result is equivalent to a matrix element of the operator equation

$$
\begin{equation*}
\partial_{\mu} J^{\mu 5}=-\frac{e^{2}}{16 \pi^{2}} F^{\alpha \beta} \tilde{F}_{\alpha \beta} \tag{1}
\end{equation*}
$$

which we discussed in two different ways in lecture.

## Problem 3) Baryon and Lepton Number

Let $B^{\mu}$ be the current for baryon number, and $L^{\mu}$ be the current for lepton number. Show that $B^{\mu}$ has an anomaly, but that $B^{\mu}-L^{\mu}$ does not.

Problem 4) The decays $\pi^{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$
a) Compute the matrix element and the decay rate $\Gamma_{\pi^{0}}$ for $\pi^{0} \rightarrow \gamma \gamma$ through the anomaly. (You may use results from lecture.) Using the experimental values for $m_{\pi}$ and $f_{\pi}$ compare your result with the experimental value for the decay rate in the PDG (http://pdg.lbl.gov/).
b) Consider $\eta^{0}$, the $8^{\prime}$ th Goldstone boson of the spontaneous symmetry breaking $S U(3)_{L} \times$ $S U(3)_{R} \rightarrow S U(3)_{V}$ in QCD. Assume that the decay $\eta^{0} \rightarrow \gamma \gamma$ also preceedes through the axial anomaly and compute $\Gamma_{\eta^{0}} / \Gamma_{\pi^{0}}$.

