8.325 Homework 3

Iain Stewart, Mar. 10, 2007 Due: In lecture March 22.

Problem 1) Composite Operator Renormalization

In lecture we discussed the renormalization of parameters in a Lagrangian. Often one is interested in studying a local current built from a product of fields at the same space-time point. For example, consider $J_{\mu\nu} = \bar{\psi}(0)\sigma_{\mu\nu}\psi(0)$ in QED. External operators like $J^{\mu\nu}$ may require renormalization beyond that associated with the field $\psi(0)$ (you discussed an example of this type in section). In this problem I want you to compute the anomalous dimension for $J_{\mu\nu}$. To turn this into a problem you know how to solve, consider adding a term

$$\mathcal{L}_{\rm int} = C_0^{\mu\nu} \,\bar{\psi}_0 \sigma_{\mu\nu} \psi_0 \tag{1}$$

to the QED Lagrangian. By switching from bare to renormalized coefficients and fields as usual, compute the anomalous dimension for $C^{\mu\nu}$ in $\overline{\text{MS}}$ to order e^2 . [Hint: Remember you only need the $1/\epsilon$ poles. Compare eqs.18.10 and 18.11 in Peskin. You can use Z_{ψ} from Peskin without computation.] Now write $\mathcal{L}_{\text{int}} = C^{\mu\nu}(\mu)J_{\mu\nu}(\mu)$ to define the renormalized current, and use the anomalous dimension for $C^{\mu\nu}(\mu)$ to find the anomalous dimension of $J_{\mu\nu}(\mu)$.

Problem 2) The decay $\pi^- \rightarrow \mu^- \bar{\nu}_{\mu}$

At low energy, $p^2 \ll m_W^2 = (80 \text{ GeV})^2$ we can expand the W-boson propagator, $1/(p^2 - m_W^2) = -1/m_W^2 + \dots$ Keeping the first term gives the effective four-fermion interaction

$$\mathcal{L}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud} \left[\bar{d} \gamma^{\alpha} (1 - \gamma_5) u \right] \left[\bar{\nu}_{\mu} \gamma_{\alpha} (1 - \gamma_5) \mu \right] + \text{h.c.}$$
(2)

which allows $\bar{u}d \to \mu^- \bar{\nu}_{\mu}$ and hence $\pi^- \to \mu^- \bar{\nu}_{\mu}$. Define the decay constant for the pion as

$$\langle 0|\bar{u}\gamma^{\alpha}\gamma_5 d|\pi^-(p_{\pi})\rangle = -i f_{\pi} p_{\pi}^{\alpha}, \qquad (3)$$

and show that the rate for $\pi^- \to \mu^- \bar{\nu}_{\mu}$ is

$$\Gamma = \frac{G_F^2}{8\pi} |V_{ud}|^2 m_\mu^2 m_\pi f_\pi^2 \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2.$$
(4)

Comparing with data, and taking $V_{ud} \simeq 1$, determine a value for f_{π} . There are two common normalization conventions for f_{π} in the literature. The one in this problem agrees with the convention in the chiral Lagrangian in problem 3 below, $f_{\pi} = f$. The other convention is $\langle 0|J_5^{\alpha,a}|\pi^b(p_{\pi})\rangle = -i F_{\pi} p_{\pi}^{\alpha} \delta^{ab}$ where $J_5^{\alpha,a} = \bar{\psi}\gamma^{\alpha}\gamma_5(\tau^a/2)\psi$. Derive the relation between F_{π} and f_{π} .

Problem 3) The decays $\pi^- \to \pi^0 e^- \bar{\nu}_e$ and $K^- \to \pi^0 \pi^0 e^- \bar{\nu}_e$

In lecture we derived a Feynman rule for the π^- to W^- transition by starting from the gauged SU(2) chiral Lagrangian,

$$\mathcal{L}_{\chi} = \frac{f^2}{8} \operatorname{tr} \left[D^{\mu} \Sigma D_{\mu} \Sigma^{\dagger} \right], \tag{5}$$

where $D^{\mu}\Sigma = \partial^{\mu}\Sigma + i\ell^{\mu}\Sigma$ and $\ell^{\mu} = -g_2/\sqrt{2} W^{\mu}_{+}T^{+} + h.c.$ [for simplicity we'll assume $V_{ud} = 1$ in this problem].

- a) By carrying out this expansion to higher order in the pion fields derive the amplitude for $\pi^- \to \pi^0 e^- \bar{\nu}_e$.
- b) Now generalize to the SU(3) case. Draw the tree level Feynman diagrams that can contribute to $K^- \to \pi^0 \pi^0 e^- \bar{\nu}_e$. Derive the Feynman rules that you would need to compute this amplitude (in the charged Goldstone-boson basis). Recall that \mathcal{L}_{χ} has a four-boson interaction. Feel free to use a program like Mathematica to take the traces. You may also use results given in lecture.