8.325 Homework 2

Iain Stewart, Feb. 23, 2007

Due: In lecture March 8.

Problem 1) MS beta-function with multiple dimensionful couplings

Consider a field theory with a set of couplings $g_1, g_2, \ldots, g_\ell, \ldots$ which we'll call \vec{g} . Your goal is to derive an expression for the beta-functions in the MS-scheme that is valid at any order in perturbation theory. (It will also be valid for both renormalizable theories and "nonrenormalizabile" theories with irrelevant operators.) Let $\Delta_l(d) = \Delta_\ell + \epsilon \rho_\ell$ be the dimension of the bare coupling g_ℓ^{bare} in $d = 4 - 2\epsilon$ dimensions. We can define a dimensionless running coupling in the MS-scheme by

$$g_{\ell}^{\text{bare}} \mu^{-\Delta_{\ell}(d)} = g_{\ell}(\mu, d) Z_{q_{\ell}}(\vec{g}),$$

where $g_{\ell}(\mu, d)$ is analytic in d and $Z_{g_{\ell}}$ is a series in $1/\epsilon$. Prove that the beta-function for $g_{\ell} \equiv g_{\ell}(\mu, d)$ is

$$\beta(g_{\ell},d) = \mu \frac{d}{d\mu} g_{\ell} = -\epsilon \rho_{\ell} g_{\ell} - \Delta_{\ell} g_{\ell} + g_{\ell} \sum_{m} \frac{da_{1}^{\ell}(\vec{g})}{dg_{m}} \rho_{m} g_{m} , \qquad (1)$$

where a_1^{ℓ} is the coefficient of the $1/\epsilon$ pole term in $Z_{g_{\ell}}$. Find a recursion relation for the coefficients of the higher poles, $a_k(\vec{g})$. How are these results modified in the $\overline{\text{MS}}$ -scheme? [Side Remark: in this notation the standard beta-function is $\beta(g_{\ell}) = \beta(g_{\ell}, 4)$.]

Problem 2) Scheme and gauge dependence of beta-functions

Consider a renormalizable non-abelian gauge theory. Let $g(\mu_R)$ and $\beta(g)$ be the renormalized coupling and beta-function in a mass-independent renormalization scheme. This could be the MS-scheme or an offshell momentum subtraction scheme, etc.

- a) Prove that in any scheme the first term in the series expansion of $\beta(g)$ is gauge independent.
- b) Prove that the first two terms in the series expansion of $\beta(g)$ are scheme independent.
- c) Finally, prove that in the MS-scheme the renormalized coupling is gauge independent. Thus in this scheme all terms in $\beta(g)$ are gauge independent. Use this result to strengthen the statement in a).

Problem 3) QCD beta-function in background field gauge

Using background field gauge derive the lowest order beta-function for QCD in a massless scheme by carrying out the computation of the 3 diagrams discussed in lecture. Express your result in terms of the quadratic adjoint Casmir C_A and the number of quark flavors n_f . What is the beta-function for an SU(2) gauge theory with 6 flavors?

Problem 4) The QCD running coupling and thresholds

We originally motivated the discussion of mass-independent renormalization schemes by considering $\mu \gg m$. However, these schemes are well defined regardless of the relation between μ and m, and so we can consider using them for $\mu \simeq m$ and for that matter $\mu \leq m$. In this problem we'll explore how this works in QCD at one-loop order.

In lecture you saw that in a mass-dependent scheme for QED the electron "decouples" from the beta-function as we go below its mass scale, falling off quite rapidly, $\beta(\mu \ll m) \sim \mu^2/m^2$. However, if you consider the mass-independent QED beta-function with an e^- , μ^- , and τ^- then apriori you have the same beta-function for $m_e \ll \mu \ll m_{\mu}$, $\mu \gg m_{\tau}$, or any other value of μ . The issue with a mass-independent scheme is that $\alpha(\mu)$ is not smart enough to know that heavy particles in the field theory should decouple. This is an important piece of physics that we're going to build into the mass-independent schemes by hand. To do this consider evolving the coupling down from a $\mu \gg m_{\tau}$ with the beta-function with 3-leptons, $n_{\ell} = 3$. When we reach $\mu = m_{\tau}$ we'll decree that the tau is removed from our theory, so that below this scale we switch to using a beta function with $n_{\ell} = 2$. Lets call the coupling in the theory with n_{ℓ} leptons $\alpha^{(n_{\ell})}(\mu)$. To ensure that this process does not disturb our field theory too much, we'll demand that scattering amplitudes computed in the theory with $n_{\ell} = 3$ and $n_{\ell} = 2$ are the same at $\mu = m_{\tau}$. At lowest order in perturbation theory this just implies continuity of the coupling at the boundary, $\alpha^{(3)}(m_{\tau}) = \alpha^{(2)}(m_{\tau})$. At each mass-threshold we'll repeat the above procedure to build in the decoupling by hand.¹

Lets apply the same logic to QCD to give couplings $\alpha_s^{(n_f)}(\mu)$ which satisfy the massindependent beta-function equation for n_f -flavors. From $\alpha_s^{(n_f)}(\mu)$ we can define the integration constant $\Lambda_{\text{QCD}}^{(n_f)}$.

- a) Let $\alpha_s^{(5)}(m_Z) = 0.118$ with the physical Z-boson mass be your initial condition. Lets take the mass of the bottom and charm quarks to be $m_b = 5 \text{ GeV}$ and $m_c = 2 \text{ GeV}$ (slightly heavier than in nature). Using the decoupling procedure described above, compute $\alpha_s^{(3)}(\mu = 1.5 \text{ GeV})$. Compare it numerically to $\alpha_s^{(5)}(\mu = 1.5 \text{ GeV})$.
- b) Consider QCD with $m_u = m_d = m_s = 0$ and note that in this theory the proton-mass is dominated by non-perturbative dynamics of these three quarks. Hence we expect the proton mass $m_p \propto \Lambda_{\rm QCD}^{(3)}$. Derive a relation between $\Lambda_{\rm QCD}^{(6)}$ and $\Lambda_{\rm QCD}^{(3)}$ that only involves heavy-quark masses. Now imagine that the strong coupling is fixed at some very high scale (eg. at a unification scale ~ 10^{16} GeV), and predict how much the proton-mass changes if you double the b-quark mass.

¹In the context of effective field theory this procedure of removing particles is known as "integrating out" a massive degree of freedom, and ensuring the continuity of the S-matrix elements is known as "matching".