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PROFESSOR: Begin with a new topic, which is breakdown of classical statistical mechanics. So we

developed a formalism to probabilistically describe collections of large particles. And

once we have that, from that formalism calculate properties of matter that have to

do with heat, temperature, et cetera, and things coming to equilibrium. So question

is, is this formalism always successful?

And by the time you come to the end of the 19th Century, there were several things

that were hanging around that had to do with thermal properties of the matter where

this formalism was having difficulties. And the difficulties ultimately pointed out to

emergence of quantum mechanics. So essentially, understanding the relationship

between thermodynamics, statistical mechanics, and properties of matter was very

important to development of quantum mechanics.

And in particular, I will mention three difficulties. The most important one that really

originally set the first stone for quantum mechanics is the spectrum of black body

radiation. And it's basically the observation that you heat something. And when it

becomes hot, it starts to radiate. And typically, the color of the radiation that you get

is a function of temperature, but does not depend on the properties of the material

that you are heating. So that has to do with heat. And you should be able to explain

that using statistical mechanics.

Another thing that we have already mentioned has to do with the third law of

thermodynamics. And let's say the heat capacity of materials such as solids. We

mentioned this Nernst theorem that was the third law of thermodynamics based on

observation. Consequence of it was that heat capacity of most things that you can

measure go to 0 as you go to 0 temperature. We should be able to explain that

again, based on the phenomena of statistical-- the phenomenology of
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thermodynamics and the rules of statistical mechanics.

Now, a third thing that is less often mentioned but is also important has to do with

heat capacity of the atomic gases such as the air in this room, which is composed

of, say, oxygen and nitrogen that are diatomic gases. So probably, historically they

were answered and discussed and resolving the order that I have drawn for you.

But I will go backwards. so we will first talk about this one, then about number two--

heat capacity of solids-- and number three about black body radiation. OK.

Part of the reason is that throughout the course, we have been using our

understanding of the gas as the sort of measure of how well we understand thermal

properties of the matter. And so let's stick with the gas and ask, what do I know

about the heat capacity of the gas in this room? So let's think about heat capacity of

dilute diatomic gas.

It is a gas that is sufficiently dilute that it is practically having ideal gas law. So PV is

roughly proportional to temperature. But rather than thinking about its pressure, I

want to make sure I understand something about the heat capacity, another

quantity that I can measure. So what's going on here?

I have, let's say, a box. And within this box, we have a whole bunch of these

diatomic molecules. Let's stick to the canonical ensemble. So I tell you the volume

of this gas, the number of diatomic molecules, and the temperature. And in this

formalism, I would calculate the partition function. Out of that, I should be able to

calculate the energy, heat capacity, et cetera. So what do I have to do?

I have to integrate over all possible coordinates that occur in this system. To all

intents and purposes, the different molecules are identical. So I divide by the phase

space that is assigned to each one of them.

And I said it is dilute enough that for all intents and purposes, the pressure is

proportional to temperature. And that occur, I know, when I can ignore the

interactions between particles.

So if I can ignore the interactions between particles, then the partition function for
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the entire system would be the product of the partition functions that I would write

for the individual molecules, or one of them raised to the N power. So what's the Z1

that I have to calculate?

Z1 is obtained by integrating over the coordinates and momenta of a single diatomic

particle. So I have a factor of d cubed p. I have a factor of d cubed q. But I have two

particles, so I have d cubed p1, d cubed q1, d cubed p2, d cubed q 2, and I have six

pairs of coordinate momenta. So I divide it by h cubed.

I have e to the minus beta times the energy of this system, which is p1 squared over

2m p2 squared over 2m. And some potential of interaction that is responsible for

bringing and binding these things together. So there is some V that is function of q1

and q2 that binds the two particles together and does not allow them to become

separate. All right, so what do we do here?

We realize that immediately for one of these particle,s there is a center of mass that

can go all over the place. So we change coordinates to, let's say, Q, which is q1

plus q2 over 2. And corresponding to the center of mass position, there is also a

center of mass momentum, P, which is related to p1 minus p2. But when I make the

change of variables from these coordinates to these coordinates, what I will get is

that I will have a simple integral over the relative coordinates. So I have d cubed Q d

cubed big P h cubed.

And the only thing that I have over there is e to the minus beta p squared divided by

2 big M. Big M being the sum total of the two masses. If the two masses are

identical, it would be 2M. Otherwise, it would be M1 plus M2.

And then I have an integration over the relative coordinate. Let's call that q relative

momentum p h cubed e to the minus beta p squared over 2 times the reduced

mass here. And then, the potential which only is a function of the relative

coordinate.

Point is that what I have done is I have separated out this 6 degrees of freedom that

make up-- or actually, the 3 degrees of freedom and their conjugate momenta that
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make up a single molecule into some degrees of freedom that correspond to the

center of mass and some degrees of freedom that correspond to the relative

motion.

Furthermore, for the relative motion I expect that the form of this potential as a

function of the separation has a form that is a minimum. Basically, the particles at 0

temperature would be sitting where this minimum is. So essentially, the shape of

this diatomic molecule would be something like this if I find its minimum energy

configuration. But then, I can allow it to move with respect to, say, the minimum

energy. Let's say it occurs at some distance d. It can oscillate around this minimum

value.

If it oscillates around this minimum value, it basically will explore the bottom of this

potential. So I can basically think of this center of mass contribution to the partition

function. And this contribution has a part that comes from these oscillations around

the center of mass. Let's call that u. Then, there is the corresponding momentum. I

don't know, let's call it pi. I divide by h and I have e to the minus beta pi squared

over 2 mu. And then I have minus beta.

Well, to the lowest order, I have v of d, which is a constant. And then I have some

frequency, some curvature at the bottom of this potential that I choose to write as

mu omega squared over 2 multiplying by u squared. Essentially, what I want to do is

to say that really, there is a vibrational degree of freedom and there is a harmonic

oscillator that describes that. The frequency of that is related to the curvature that I

have at the bottom of this potential. So this degree of freedom corresponds to

vibrations.

But that's not the end of this story because here I had three q's. One of them

became the amplitude of this oscillation. So basically, the relative coordinate is a

vector. One degree of freedom corresponds to stretching, but there are two other

components of it. those two other components correspond to essentially keeping

the length of this fixed but moving in the other directions. What do they correspond

to?
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They correspond to rotations. So then there is essentially another partition function

that I want right here. That corresponds to the rotational degrees of freedom.

Now, the rotational degrees of freedom have a momentum contribution because

this p is also three components. One component went in to the vibrations. There are

two more components that really combine to tell you about the angular momentum

and the energy that is proportional to the square of the angular momentum. But

there is no restoring force for them. There is no corresponding term that is like this.

So maybe I will just write that as an integral over angles that I can rotate this thing.

An integral over the two components of the angular momentum divided by h

squared. There's actually two angles. And the contribution is e to the minus beta

angular momentum squared over 2I. So I wrote the entire thing.

So essentially, all I have done is I have taken the Hamiltonian that corresponds to

two particles that are bound together and broken it into three pieces corresponding

to the center of mass, to the vibrations, and to the rotations.

Now, the thing is that if I now ask, what is the energy that I would get for this one

particle-- I guess I'll call this Z1-- what is the contribution of the one particular to the

energy of the entire system?

I have minus the log Z1 with respect to beta. That's the usual formula to calculate

energies. So I go and look at this entire thing. And where do the beta dependencies

come from? Well, let's see.

So my Z1 has a part that comes from this center of mass. It gives me a V. We

expect that. And then from the integration over the momenta, I will get something

like 2 pi m over beta h squared to the 3/2 power.

From the vibrations-- OK, what do I have?

I have e to the minus beta V of d, which is the constant. We really don't care. But

there are these two components that give me root 2 pi mu divided by beta. There is

a corresponding thing that comes from the variance that goes with this object, which

is square root of 2 pi divided by beta mu omega squared. The entire thing has a
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factor of 1/h. So this is the vibrations. And for the rotations, what do I get?

I will get a 4 pi from integrating over all orientations. Divided by h squared. I have

essentially the two components of angular momentum. So I get essentially, the

square of 2 pi I divided by beta. So this is rotations. And this is center of mass.

We can see that if I take that formula, take its log divide by-- take a derivative with

respect to beta. First of all, I will get this constant that is the energy of the bond

state at 0 temperature. But the more interesting things are the things that I take

from the derivatives of the various factors of beta.

Essentially, for each factor of beta in the denominator, log Z will have a minus log of

beta. I take a derivative, I will get a factor of 1 over beta. So from here, I will get 3/2

1 over beta, which is 3/2 kT. So this is the center of mass.

From here, I have two factors of beta to the 1/2. So they combine to give me one

factor of kT. This is for vibrations. And similarly, I have two factors of beta to the 1/2,

which correspond to 1 kT for rotations.

So then I say that the heat capacity at constant volume is simply-- per particle is

related to d e1 by dT. And I see that that amounts to kb times 3/2 plus 1 plus 1, or I

should get 7/2 kb. Per particle, which says that if you go and calculate the heat

capacity of the gas in this room, divide by the number of molecules that we have--

doesn't matter whether they are oxygens or nitrogen. They would basically give the

same contribution because you can see that the masses and all the other properties

of the molecule do not appear in the heat capacity. That as a function of

temperature, I should get a value of 7/2.

So basically, C in units of kb. So I divide by kb. And my predictions is that I should

see 7/2. So you go and do a measurement and what do you get?

What you get is actually 5/2. So something is not quite right. We are not getting the

7/2 that we predicted. Except that I really mentioned that you are getting this

measurement when you do measurements at room temperature, you get this value.

So when we measure the heat capacity of the gas in this room, we will get 5/2.
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But if we heat it up, by the time we get to temperatures of a few thousand degrees

Kelvin. So if you heat the room by a factor of 5 to 10, you will actually get the value

of 7/2.

And if you cool it, by the time you get to the order of 10 degrees or fewer, then you

will find that the heat capacity actually goes even further. It goes all the way to 3/2.

And the 3/2 is the thing that you would have predicted for a gas that had monatomic

particles, no internal structure. Because then the only thing that you would have

gotten is the center of mass contribution.

So it seems like by going to low temperatures, you somehow freeze the degrees of

freedom that correspond to vibrations and rotations of the gas. And by going to

really high temperatures, you are able to liberate all of these degrees of freedom

and store energy in them. Heat capacity is the measure of the ability to store heat

and energy into these molecules. So what is happening?

Well, by 1905, Planck Had already proposed that there is some underlying

quantization for heat that you have in the black body case. And in 1905, Einstein

said, well, maybe we should think about the vibrational degrees of the molecule also

as being similarly quantized. So quantize vibrations.

It's totally a phenomenological statement. We have to justify it later. But the

statement is that for the case where classically we had a harmonic oscillator. And

let's say in this case we would have said that its energy depends on its momentum

and its position or displacement-- I guess I called it u-- through a formula such as

this. Certainly, you can pick lots of values of u and p that are compatible with any

value of the energy that you choose.

But to get the black body spectrum to work, Planck had proposed that really what

you should do is rather than thinking of this harmonic oscillator as being able to take

all possible values, that somehow the values of energy that it can take are

quantized. And furthermore, he had proposed that they are proportional to the

frequency involved. And how did he guess that?
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Ultimately, it was related to what I said about black body radiation. That as you heat

up the body, you will find that there's a light that comes out and the frequency of

that light is somehow related to temperature and nothing else. And based on that,

he had proposed that frequencies should come up in certain packages that are

proportional to-- the energies of the particular frequencies should come in packages

that are proportional to that frequency. So there is an integer here n that tells you

about the number of these packets.

And not that it really matters for what we are doing now, but just to be consistent

with what we currently know with quantum mechanics, let me add the 0 point energy

of the harmonic oscillator here. So then, to calculate the contribution of a system in

which energy is in quantized packages, you would say, OK, I will calculate a Z1 for

these vibrational levels, assuming this quantization of energy. And so that says that

the possible states of my harmonic oscillator have energies that are in these units h

bar omega n plus 1/2.

And if I still continue to believe statistical mechanics, I would say that at a

temperature t, the probability that I will be in a state that is characterized by integer

n is e to the minus beta times the energy that corresponds to that integer n. And

then I can go and sum over all possible energies and that would be the

normalization of the probability that I'm in one of these states. So this is e to the

minus beta h bar omega over 2 from the ground state contribution. The rest of it is

simply a geometric series.

Geometric series, we can sum very easily to get 1 minus e to the minus beta h bar

omega. And the interesting thing-- or a few interesting things about this expression

is that if I evaluate this in the limit of low temperatures.

Well, actually, let's go first to the high temperature where beta goes to 0. So t goes

to become large, beta goes to 0. Numerator goes to 1, denominator I can expand

the exponential. And to lowest order, I will get 1 over beta h bar omega.

Now, compare this result with the classical result that we have over here for the
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vibration. Contribution of a harmonic oscillator to the partition function.

You can see that the mu's cancel out. I will get 1 over beta. I will get h divided by 2

pi. So if I call h divided by 2 pi to be h bar, then I will get exactly this limit. So

somehow this constant that we had introduced that had dimensions of action made

to make our calculations of partition function to be dimensionless will be related to

this h bar that quantizes the energy levels through the usual formula of h being h

bar-- h bar being h over 2 pi. So basically, this quantization of energy clearly does

not affect the high temperature limit. This oscillator at high temperature behaves

exactly like what we had calculated classically. Yes?

AUDIENCE: Is it h equals h bar over 2 pi? Or is it the other way, based on your definitions

above?

PROFESSOR: Thank you. Good. All right?

So this is, I guess, the corresponding formula. Now, when you go to low

temperature, what do you get?

You essentially get the first few terms in the series. Because at the lowest

temperature you get the term that corresponds to n equals to 0, and then you will

get corrections from subsequent terms.

Now, what this does is that it affects the heat capacity profoundly. So let's see how

that happens. So the contribution of 1 degrees of freedom to the energy in this

quantized fashion d log Z by d beta. So if I just take the log of this expression, log of

this expression will get this factor of minus beta h bar omega over 2 from the

numerator. The derivative of that will give you this ground state energy, which is

always there. And then you'll have to take the derivative of the log of what is coming

out here.

Taking a derivative with respect to beta, we'll always pick out a factor of h bar

omega. Indeed, it will pick out a factor of h bar omega e to the minus beta h bar

omega. And then in the denominator, because I took the log, I will get this

expression back.
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So again, in this expression, if I take the limit where beta goes to 0, what do I get?

I will get this h bar omega over 2. It's always there. Expanding these results here, I

will have a beta h bar omega. It will cancel this and it will give me a 1 over beta. I will

get this kT that I had before.

Indeed, if I am correct to the right order, I will just simply get 1 over beta. Whereas,

if I go to large beta, what I get is this h bar omega over 2 plus a correction from

here, which is h bar omega e to the minus beta h bar. And that will be reflected in

the heat capacity, which is dE by dT.

This h bar omega over 2 does not continue to heat capacity, not surprisingly. From

here, I have to take derivatives with temperatures. They appear in the combination

h bar omega over kT. So what happens is I will get something that is of the order of

h bar omega. And then from here, I will get another h bar omega divided by kb T

squared. I will write it in this fashion and put the kb out here.

And then the rest of these objects will give me a contribution that is minus h bar

omega over kT divided by 1 minus e to the minus h bar omega over kT squared.

The important thing is the following--

If I plot the heat capacity that I get from one of these oscillators-- and the natural

units of all heat capacities are kb, essentially. Energy divided by temperature, as kb

has that units. At high temperatures, what I can see is that the energy is

proportional to kT. So heat capacity of the vibrational degree of freedom will be in

these units going to 1.

At low temperatures, however, it becomes this exponentially hard problem to create

excitations. Because of that, you will get a contribution that as T goes to 0 will

exponentially go to 0. So the shape of the heat capacity that you would get will be

something like this.

The natural way to draw this figure is actually what I made the vertical axis to be

dimensionless. So it goes between 0 and 1. I can make the horizontal axis to be
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dimensionless by introducing a theta of vibrations, so that all of the exponential

terms are of the form e to the minus T over this theta of vibrations, which means

that this theta of vibration is h bar omega over kb. That is, you tell me what the

frequency of your oscillator is. I can calculate the corresponding temperature, theta.

And then the heat capacity of a harmonic oscillator is this universal function there,

presumably at some value that is of the order of 1. It switches from being of the

order of 1 to going exponentially to 0. So basically, the dependence down here to

leading order is e to the minus T over theta vibration. OK.

So you say, OK, Planck has given us some estimate of what this h bar is based on

looking at the spectrum of black body radiation. We can, more or, less estimate the

typical energies of interactions of molecules. And from that, we can estimate what

this frequency of vibration is. So we should be able to get an order of magnitude

estimate of what this theta y is.

And what you find is that theta y is of the order of 10 to the 3 degrees Kelvin. It

depends, of course, on what gas you are looking at, et cetera. But as an order of

magnitude, it is something like that. So we can now transport this curve that we

have over here and more or less get this first part of the curve that we have over

here.

So essentially, in this picture what we have is that there is no vibrations. The

vibrations have been frozen out. And here you have vibrations.

Of course, in all of the cases, you have the kinetic energy of the center of mass.

And presumably since we are getting the right answer at very high temperatures

now, we also have the rotations. And it makes sense that essentially what happened

as we go to very low temperatures is that the rotations are also frozen out.

Now, that's part of the story-- actually, you would think that among all of the

examples that I gave you, this last one should be the simplest thing because it's

really a two-body problem. Whereas, solids you have many things. Radiation, you

have to think about the electromagnetic waves, et cetera. That somehow,

historically, this would be the one that is resolved first.
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And indeed, as I said in 1905, Einstein figured out something about this. But this

part dealing with the rotational degrees of freedom and quantizing them

appropriately had to really wait until you had developed quantum mechanics beyond

the statement that harmonic oscillators are quantized in energy. You had to know

something more.

So since in retrospect we do know something more, let's finish and give that answer

before going on to something else. OK?

So the next part of the story of the diatomic gas is quantizing rotations. So currently

what I have is that there is an energy classically for rotations that is simply the

kinetic energy of rotational degrees of freedom. So there is an angular momentum

L, and then there's L squared over 2I. It looks pretty much like P squared over 2M,

except that the degrees of freedom for translation and motion are positions. They

can be all over the place. Whereas, the degrees of freedom that you have to think in

terms of rotations are angles that go between 0, 2 pi, or on the surface of a sphere,

et cetera.

So once we figure out how to do quantum mechanics, we find that the allowed

values of this are of the form h bar squared over 2I l, l plus 1, where l now is the

number that gives you the discrete values that are possible for the square of the

angular momentum.

So you say OK, let's calculate a Z for the rotational degrees of freedom assuming

this kind of quantization. So what I have to do, like I did for the harmonic oscillator,

is I sum over all possible values of l that are allowed. The energy e to the minus

beta h bar squared over 2I l, l plus 1.

Except that there is one other thing, which is that these different values of l have

degeneracy that is 2l plus 1. And so you have to multiply by the corresponding

degeneracy. So what am I doing over here?

I have to do a sum over different values of l, contributions that are really the

probability that I am in these different values of the index l-- 0, 1, 2, 3, 4, 5, 6. And I
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have to add all of these contributions.

Now, the first thing that I will do is I ask whether the limit of high temperatures that I

had calculated before is correctly reproduced or not. So I have to go to the limit

where temperature is high or beta goes to 0. If beta goes to 0, you can see that

going from one l to another l, it is multiply this exponent by a small number. So what

does that mean?

It means that the values from one point to another point of what am I summing over

is not really that different. And I can think of a continuous curve that goes through all

of these points.

So if I do that, then I can essentially replace the sum with an integral. In fact, you

can systematically calculate corrections to replacing the sum with an integral

mathematically and you have a problem set that shows you how to do that. But now

what I can do is I can call this combination l, l plus 1 x. And then dx will simply be 2l

plus 1 dl.

So essentially, the degeneracy works out precisely so that when I go to the

continuum limit, whatever quantization I had for these angular momenta

corresponds to the weight or measure that I would have in stepping around the l-

directions.

And then, this is something that I can easily do. It's just an integral dx e to the minus

alpha x. The answer is going to be 1 over alpha, or the answer to this is simply 2I

beta h bar squared. So this is the classical limit of the expression that we had over

here. Let's go and see what we had when we did things classically.

So when we did things classically, I had two factors of h and 2 pi and 4 pi. So I can

write the whole thing as h bar squared and 2. I have I, and then I have beta. And

you can see that this is exactly what we have over there.

So once more, properly accounting for phase space, measure, productive p q's

being dimension-- made dimensionless by this quantity h is equivalent to the high

temperature limit that you would get in quantum mechanics where things are
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discretized. Yes.

AUDIENCE: When you're talking about the quantum interpretations, then h bar is the precise

value of Planck's constant, which can be an experimental measure.

PROFESSOR: Right.

AUDIENCE: But when you're talking about the classical derivations, h is just some factor that we

mention of curve dimension.

PROFESSOR: That's correct.

AUDIENCE: So if you're comparing the limits of large temperatures, how can you be sure to

establish the h bar in two places means the same thing?

PROFESSOR: So far, I haven't told you anything to justify that. So when we were doing things

classically, we said that just to make things dimensionless, let's introduce this

quantity that we call h.

Now, I have shown you two examples where if you do things quantum mechanically

properly and take the limit of going to high temperatures, you will see that the h that

you would get-- because the quantum mechanical partition functions are

dimensionless quantities, right?

So these are dimensionless quantities. They have to be made dimensionless by

something. They're made dimensionless by Boltzmann's constant. By a Planck's

constant, h bar. And we can see that as long as we are consistent with this measure

of phase space, the same constant shows up both for the case of the vibrations, for

the case of the rotations. And very soon, we will see that it will also arise in the case

of the center of mass.

And so there is certainly something in the transcriptions that we ultimately will make

between quantum mechanics and classical mechanics that must account for this.

And somehow in the limit where quantum mechanics is dealing with large energies,

it is indistinguishable from classical mechanics. And quantum partition functions are-
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- all of the countings that we do in quantum mechanics are kind of unambiguous

because we are dealing with discrete levels.

So if you remember the original part of the difficulty was that we could define things

like entropy only properly when we had discrete levels. If we had a continuum

probability distribution and if we made a change of variable, then the entropy was

changed. But in quantum mechanics, we don't have that problem. We have

discretized values for the different states. Probabilities will be-- once we deal with

them appropriately be discretized. And all of the things here are dimensionless.

And somehow they reproduce the correct classical dynamics. Quantum mechanics

goes to classical mechanics in the appropriate high-energy limit. And what we find is

that what happens is that this shows up.

If you like, another way of achieving-- why is there this correspondence?

In classical statistical mechanics, I emphasize that I should really write h in units of p

and q. And it was only when I calculated partition functions in coordinates p and q

that were canonically conjugate that I was getting results that were meaningful.

One way of constructing quantum mechanics is that you take the Hamiltonian and

you change these into operators. And you have to impose these kinds of

commutation relations. So you can see that somehow the same prescription in

terms of phase space appears both in statistical mechanics, in calculating measures

of partition function, in quantum mechanics. And not surprisingly, you have

introduced in quantum mechanics some unit for phase space p, q. It shows up in

classical mechanics as the quantity [INAUDIBLE].

But there is, indeed, a little bit more work than I have shown you here that one can

do. Once we have developed the appropriate formalism for quantum statistical

mechanics, which is this [INAUDIBLE] performed and appropriate quantities defined

for partition functions, et cetera, in quantum statistical mechanics that we will do in a

couple of lectures. Then if you take the limit h bar goes to 0, you should get the

classical integration over phase space with this factor of h showing up. But right
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now, we are just giving you some heuristic response.

If I go, however, in the other limit, where beta is much larger than 1, what do I get?

Basically, then all of the weight is going to be in the lowest energy level, 0, 1. And

then the rest of them will be exponentially small. I cannot replace the sum with an

integral, so basically I will get a contribution that starts with 1 for l equals to 0. And

then I will get 3e to the minus beta h bar squared divided by 2I. l being 1, this will

give me 1 times 2. So I will have a 2 here. And then, higher-order terms.

So once you have the partition function, you go through the same procedure as we

described before. You calculate the energy, which is d log Z by d beta. What do you

get?

Again, in the high temperature limit you will get the same answer as before. So you

will get beta goes to 0. You will get kT.

If you go to the low temperature limit-- well, let's be more precise. What do I mean

by low temperatures? Beta larger than what?

Clearly, the unit that is appearing everywhere is this beta h bar squared over 2I,

which has units of 1 over temperature from beta. So I can introduce a theta for

rotations to make this demonstrate that this is dimensionless. So the theta that goes

with rotations is h bar squared over 2I kb.

And so what I mean by going to the low temperatures is that I go for temperatures

that are much less than the theta of these rotations. And then what happens is that

essentially this state will occur with exponentially small probability and will contribute

to the energy and amount that is of the order of h bar squared 2I times 2. That's the

energy of the l equals to 1 state. There are three of them, and they occur with

probability e to the minus theta rotation divided by T times a factor of 2.

All of those factors is not particularly important. Really, the only thing that is

important is that if I look now at the rotational heat capacity, which again should

properly have units of kb, as a function of temperature. Well, temperatures I have to

make dimensionless by dividing by this rotational heat capacity.

16



I say that at high, temperature I get the classical result back. So basically, I will get

to 1 at high temperatures. At low temperatures, again I have this situation that there

is a gap in the allowed energies. So there is the lowest energy, which is 0. The next

one, the first type of rotational mode that is allowed has a finite energy that is larger

than that by an amount that is of the order of h bar squared over I.

And if I am at these temperatures that are less than this theta of rotation, I simply

don't have enough energy from thermal fluctuations to get to that level. So the

occupation of that level will be exponentially small. And so I will have a curve that

will, in fact, look something like this.

So again, you basically go over at a temperature of the order of 1 from heat

capacity that is order of 1 to heat capacity that is exponentially small when you get

to temperatures that are lower than this rotational temperature.

AUDIENCE: Is that over-shooting, or is that--

PROFESSOR: Yes. So you have a problem set where you calculate the next correction. So there is

the summation replacing the sum with an integral. This gives you this to the first

order, and then there's a correction. And you will show that the correction is such

that there is actually the approach to one for the case of the rotational heat capacity

is from above. Whereas, for the vibrational heat capacity, it is from below. So there

is, indeed, a small bump. OK?

So you can ask, well, I know the typical size of one of these oxygen molecules. I

know the mass. I can figure out what the moment of inertia I is. I put it over here

and I figure out what the theta of rotation is. And you find that, again, as a matter of

order of magnitudes, theta of rotations is of the order of 10 degrees K. So this kind

of accounts for why when you go to sufficiently low temperatures for the heat

capacity of the gas in this room, we see that essentially the rotational degrees of

freedom are also frozen out. OK.

So now let's go to the second item that we have, which is the heat capacity of the

solid. So what do I mean?
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So this is item 2, heat capacity of solid. And you measure heat capacities for some

solid as a function of temperature. And what you find is that the heat capacity has a

behavior such as this. So it seems to vanish as you to go to lower and lower

temperatures. So what's going on here?

Again, Einstein looked at this and said, well, it's another case of the story of

vibrations and some things that we have looked at here. And in fact, I really don't

have to do any calculation. I'll do the following.

Let's imagine that this is what we have for the solid. It's some regular arrangement

of atoms or molecules. And presumably, this is the situation that I have at 0

temperature. Everybody is sitting nicely where they should be to minimize the

energy.

If I go to finite temperature, then these atoms and molecules start to vibrate. And he

said, well, basically, I can estimate the frequencies of vibrations. And what I will do is

I will say that each atom is in a cage by its neighbors. That is, this particular atom

here, if it wants to move, it find that its distance to the neighbors has been changed.

And if I imagine that there are kind of springs that are connecting this atom only to

its neighbors, moving around there will be some kind of a restoring force. So it's like

it is sitting in some kind of a harmonic potential. And if it tries to move, it will

experience this restoring force. And so it will have some kind of a frequency. So

each atom vibrates at some frequency. Let's call it omega E.

Now, in principle, in this picture if this cage is not exactly symmetric, you may

imagine that oscillations in the three different directions could give you different

frequencies. But let's ignore that and let's imagine that the frequencies is the same

in all of these. So what have we done?

We have reduced the problem of the excitation energy that you can put in the atoms

of the solid to be the same now as 3N harmonic oscillators of frequency omega.

Why 3N?
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Because each atom essentially sees restoring force in three directions. And

forgetting about boundary effects, it's basically three per particle. So you would

have said that the heat capacity that I would calculate per particle in units of kb

should essentially be exactly what we have over here, except that I multiply by 3

because each particular has 3 possible degrees of freedom. So all I need to do is to

take that green curve and multiply it by a factor of 3. And indeed, the limiting value

that you get over here is 3.

Except that if I just take that green curve and superpose it on this, what I will get is

something like this. So this is 3 times harmonic oscillator. What do I mean by that, is

I try to sort of do my best to match the temperature at which you go from one to the

other. But then what I find is that as we had established before, the green curve

goes to 0 exponentially. So there is going to be some theta associated with this

frequency. Let's call it theta Einstein divided by T.

And so the prediction of this model is that the heat capacities should vanish very

rapidly as this form of exponential. Whereas, what is actually observed in the

experiment is that it is going to 0 proportional to T cubed, which is a much slower

type of decay. OK?

AUDIENCE: That's negative [INAUDIBLE]?

PROFESSOR: As T goes to 0, the heat capacity goes to 0. T to the third power. So it's the limit--

did I make a mistake somewhere else? All right. So what's happening here?

OK, so what's happening is the following. In some average sense, it is correct that if

you try to oscillate some atom in the crystal, it's going to have some characteristic

restoring force. The characteristic restoring force will give you some corresponding

typical scale for the frequencies of the vibrations. Yes?

AUDIENCE: Is this the historical progression?

PROFESSOR: Yes.

AUDIENCE: I mean, it seems interesting that they would know that-- like this cage hypothesis is
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very good, considering where a quantum [INAUDIBLE] exists. I don't understand

how that's the logic based-- if what we know is the top board over there, the logical

progression is that you would have-- I don't know.

PROFESSOR: No. At that time, the proposal was that essentially if you have oscillator of frequency

omega, its energy is quantized in multiples of omega. So that's really the only

aspect of quantum mechanics. So I actually jumped the historical development

where I gave you the rotational degrees of freedom.

So as I said, historically this was resolved last in this part because they didn't know

what to do with rotations. But now I'm saying that you know about rotations, you

know that the heat capacity goes to 0. You say, well, solid is composed. The way

that you put heat into the system, enhance its heat capacity, is because there is

kinetic energy that you put in the atoms of the solid. And as you try to put kinetic

energy, there is this cage model and there's restoring force.

The thing that is wrong about this model is that, basically, if you ask how easy it is to

give energy to the system, if rather than having one frequency you have multiple

frequencies, then at low temperatures you would put energy in the lower frequency.

Because the typical scale we saw for connecting temperature and frequency, they

are kind of proportional to each other. So if you want to go to low temperature, you

are bound to excite things that have lower frequency.

So the thing is that it is true that there is a typical frequency. But the typical

frequency becomes less and less important as you go to low temperature. The

issue is, what are the lowest frequencies of excitation?

And basically, the correct picture of excitations of the solid is that you bang on

something and you generate these sound waves. So what you have is that

oscillations or vibrations of solid are characterized by wavelength and wave number

k, 2 pi over lambda.

So if I really take a better model of the solid in which I have springs that connect all

of these things together and ask, what are the normal modes of vibration?
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I find that the normal modes can be characterized by some wave number k. As I

said, it's the inverse of the wavelength. And frequency depends on wave number. In

a manner that when you go to 0k, frequency goes to 0. And why is that?

Essentially, what I'm saying is that if you look at particles that are along a line and

may be connected by springs. So a kind of one-dimensional version of a solid.

Then, the normal modes are characterized by distortions that have some particular

wavelength. And in the limit where the wavelength goes to 0, essentially--

Sorry, in the limit where the wavelength goes to infinity or k goes to 0, it looks like I

am taking all of the particles and translating them together. And if I take the entire

solid here and translate it, there is no restoring force. So omega has to go to 0 as

your k goes to 0, or wavelength goes to infinity. And there is a symmetry between k

and minus k, in fact, that forces the restoring force to be proportional to k squared.

And when you take the square root of that, you get the frequency. You always get a

linear behavior as k goes to 0.

So essentially, that's the observation that whatever you do with your solid, no matter

how complicated, you have sound modes. And sound modes are things that happen

in the limit where you have long wavelengths and there is a relationship between

omega and k through some kind of velocity of sound.

Now, to be precise there are really three types of sound waves. If I choose the

direction k along which I want to create an oscillation, the distortions can be either

along that direction or perpendicular to that. They can either be longitudinal or

transfers. So there could be one or two other branches. So there could, in principle,

be different straight lines as k goes to 0.

And the other thing is that there is a shortest wavelength that you can think about.

So if these particles are a distance a apart, there is no sense in going to wave

numbers that are larger than pi over a. So you have some limit to these curves. And

indeed, when you approach the boundary, this linear dependence can shift and

change in all kinds of possible ways.
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And calculating the frequency inside one of these units that is called a Brillouin zone

is a nice thing to do for the case of using methods of solid state. And you've

probably seen that. And there is a whole spectrum of frequencies as a function of

wave number that correctly characterize a solid.

So it may be that somewhere in the middle of this spectrum is a typical frequency

omega E. But the point is that as you go to lower and lower temperatures, because

of these factors of e to the minus beta h bar omega, you can see that as you go to

lower and lower temperature, the only things that get excited are omegas that are

also going to 0 proportionately to kT.

So I can draw a line here that corresponds to frequencies that are of the order of kT

over h bar. All of the harmonic oscillators that have these larger frequencies that

occur at short wavelengths are unimportant. They're kind of frozen, just like the

vibrations of the oxygen molecules in this room are frozen. You cannot put energy

in them. They don't contribute to heat capacity.

But all of these long wavelength modes down here have frequencies that go to 0.

Their excitation possibility is large. And it, indeed, these long wavelength modes that

are easy to excite and continue to heat capacity. I'll do maybe the precise

calculation next time, but even within this picture we can figure out why the answer

should be proportional to T cubed.

So what I need to do, rather than counting all harmonic oscillators-- the factor of 3n-

- I have to count how many oscillators have frequencies that are less than this kT

over h bar. So I claim that number of modes with frequency less than kT over h bar

goes like kT over h bar cubed V.

Essentially, what I have to do is to do a summation over all k that is less than some

k max. This k max is set by this condition that Vk max is of the order of kT over h

bar. So this k max is of the order of kT over h bar V.

So actually, to be more precise I have to put a V here. So I have to count all of the

modes.
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Now, this separation between these modes-- if you have a box of size l is 2 pi over l.

So maybe we will discuss that later on. But the summations over k you will always

replace with integrations over k times the density of state, which is V divided by 2 pi

cubed. So this has to go between 0 and k max. And so this is proportional to V k

max cubed, which is what I wrote over there.

So as I go to lower and lower temperature, there are fewer and fewer oscillators.

The number of those oscillators grows like T cubed. Each one of those oscillators is

fully excited as energy kT contributes 1 unit to heat capacity. Since the number of

oscillators goes to 0 as T cubed, the heat capacity that they contribute also goes to

0 as T cubed.

So you don't really need to know-- this is actually an interesting thing to ponder. So

rather than doing the calculations, maybe just think about this. That somehow the

solid could be arbitrarily complicated. So it could be composed of molecules that

have some particular shape. They are forming some strange lattice of some form,

et cetera.

And given the complicated nature of the molecules, the spectrum that you have for

potential frequencies that a solid can take, because of all of the different vibrations,

et cetera, could be arbitrary complicated. You can have kinds of oscillations such as

the ones that I have indicated.

However, if you go to low temperature, you are only interested in vibrations that are

very low in frequency. Vibrations that are very low in frequencies must correspond

to the formations that are very long wavelength.

And when you are looking at things that are long wavelength, this is, again, another

thing that has statistical in character. That is, rather you are here looking at things

that span thousands of atoms or molecules. However, as you go to lower and lower

temperature, more and more atoms and molecules. And so again, some kind of

averaging is taking place. All of the details, et cetera, wash out. You really see some

global characteristic.
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The global characteristic that you see is set by this symmetry. Just the fact that

when I go to exactly k equals to 0, I am translating. I have 0 frequency. So when I'm

doing something that is long wavelength, the frequency should somehow be

proportional to that wavelength. So that's just a statement of continuity if you like.

Once I have made that statement, then it's just a calculation of how many modes

are possible. The number of modes will be proportional to T cubed. And I will get

this T cubed law irrespective of how complicated the solid is. All of the solids will

have the same T cubed behavior.

The place where they come from the classical behavior to this quantum behavior

will depend on the details of the solid, et cetera. But the low temperature law, this T

cubed law, is something that is universal.

OK, so next time around, we will do this calculation in more detail, and then see also

its connection to the blackbody radius.
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