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PROFESSOR: Let's start. Are there any questions? We would like to have a perspective for this

really common observation that if you have a gas that is initially in one half of a box,

and the other half is empty, and some kind of a partition is removed so that the gas

can expand, and it can flow, and eventually we will reach another equilibrium state

where the gas occupies more chambers. How do we describe this observation?

We can certainly characterize it thermodynamically from the perspectives of atoms

and molecules. We said that if I want to describe the configuration of the gas before

it starts, and also throughout the expansion, I would basically have to look at all sets

of coordinates and momenta that make up this particle. There would be some point

in this [? six ?], and I mention our phase space, that would correspond to where this

particle was originally. We can certainly follow the dynamics of this point, but is that

useful?

Normally, I could start with billions of different types of boxes, or the same box in a

different instance of time, and I would have totally different initial conditions. The

initial conditions presumably can be characterized to a density in this phase space.

You can look at some volume and see how it changes, and how many points you

have there, and define this phase space density row of all of the Q's and P's, and it

works as a function of time.

One way of looking at how it works as a function of time is to look at this box and

where this box will be in some other instance of time. Essentially then, we are

following a kind of evolution that goes along this streamline. Basically, the derivative

that we are going to look at involves changes both explicitly in the time variable, and

also increasingly to the changes of all of the coordinates and momenta, according

to the Hamiltonian that governs the system.
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I have to do, essentially, a sum over all coordinates. I would have the change in

coordinate i, Qi dot, dot, d row by dQi. Then I would have Pi, dot-- I guess these are

all vectors-- d row by dPi. There are six end coordinates that implicitly depend on

time. In principle, if I am following along the streamline, I have to look at all of these

things.

The characteristic of evolution, according to some Hamiltonian, was that this volume

of phase space does not change. Secondly, we could characterize, once we wrote

Qi dot, as dH by dP, and the i dot as the H by dQ. This combination of derivatives

essentially could be captured, and be written as 0 by dt is the Poisson bracket of H

and [? P. ?]

One of the things, however, that we emphasize is that as far as evolution according

to a Hamiltonian and this set of dynamics is concerned, the situation is completely

reversible in time so that some intermediate process, if I were to reverse all of the

momenta, then the gas would basically come back to the initial position. That's true.

There is nothing to do about it.

That kind of seems to go against the intuition that we have from thermodynamics.

We said, well, in practical situations, I really don't care about all the six end pieces of

information that are embedded currently in this full phase space density. If I'm really

trying to physically describe this gas expanding, typically the things that I'm

interested in are that at some intermediate time, whether the particles have reached

this point or that point, and what is this streamline velocity that I'm seeing before the

thing relaxes, presumably, eventually into zero velocity?

There's a lot of things that I would need to characterize this relaxation process, but

that is still much, much, much less than all of the information that is currently

encoded in all of these six end coordinates and momenta. We said that for things

that I'm really interested in, what I could, for example, look at, is a density that

involves only one particle. What I can do is to then integrate over all of the positions

and coordinates of particles that I'm not interested in.

2



I'm sort of repeating this to introduce some notation so as to not to repeat all of

these integration variables, so I will call dVi the phase place contribution of particle i.

What I may be interested in is that this is something that, if I integrate over P1 and

Q1, it is clearly normalized to unity because my row, by definition, was normalized to

unity. Typically we may be interested in something else that I call F1, P1 Q1 P,

which is simply n times this-- n times the integral product out i2 to n, dVi, the full

row.

Why we do that is because typically you are interested or used to calculating things

in [? terms ?] of a number density, like how many particles are within some small

volume here, defining the density so that when I integrate over the entire volume of

f1, I would get the total number of particles, for example. That's the kind of

normalization that people have used for f. More generally, we also introduced fs,

which depended on coordinates representing s sets of points, or s particles, if you

like, that was normalized to be--

We said, OK, what I'm really interested in, in order to calculate the properties of the

gases it expands in terms of things that I'm able to measure, is f1. Let's write down

the time evolution of f1. Actually, we said, let's write down the time evolution of fs,

along with it. So there's the time evolution of fs. If I were to go along this stream, it

would be the fs by dt, and then I would have contributions that would correspond to

a the changes in coordinates of these particles.

In order to progress along this direction, we said, let's define the total Hamiltonian.

We will have a simple form, and certainly for the gas, it would be a good

representation. I have the kinetic energies of all of the particles. I have the box that

confines the particles, or some other one particle potential, if you like, but I will write

in this much. Then you have the interactions between all pairs of particles. Let's

write it as sum over i, less than j, V of Qi minus Qj. This depends on n set of

particles, coordinates, and momenta.

Then we said that for purposes of manipulations that you have to deal with, since

there are s coordinates that are appearing here whose time derivatives I have to
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look at, I'm going to simply rewrite this as the contribution that comes from those s

particles, the contribution that comes from the remaining n minus s particles, and

some kind of [? term ?] that covers the two sets of particles. This, actually, I didn't

quite need here until the next stage because what I write here could, presumably,

be sufficiently general, like we have here some n running from 1 to s. Let me be

consistent with my S's. Then I have Qn, dot, dFs by dQn, plus Pn, dot, dFs by dPn.

If I just look at the coordinates that appear here, and say, following this as they

move in time, there is the explicit time dependence on all of the implicit time

dependence, this would be the total derivative moving along the streamline. Qn dot I

know is simply the momentum. It is the H by dPn. The H by dPn I have from this

formula over here. It is simply Pn divided by m. It's the velocity-- momentum divided

by mass. This is the velocity of the particle. Pn dot, the rate of change of momentum

is the force that is acting on the particle.

What I need to do is to take the derivatives of various terms here. So I have minus

dU by dPn. What is this? This is essentially the force that the particle feels from the

external potential. If you are in the box in this room, It is zero until you hit the edge

of the box. I will call this Fn to represent external potential that is acting on the

system.

What else is there? I have the force that will come from the interaction with all other

[? guys. ?] I will write here a sum over m, dV of Qm minus Qn, by dQn-- dU by dQm.

I'm sorry.

What is this? This Is basically the sum of the forces that is exerted by the n particle

on the m particle. Define it in this fashion.

If this was the entire story, what I would have had here is a group of s particles that

are dominated by their own dynamics. If there is no other particle involved, they

basically have to satisfy the Liouville equation that I have written, now appropriate to

s particles. Of course, we know that that's not the entire story because there are all

these other terms involving the interactions with particles that I have not included.

4



That's the whole essence of the story. Let's say I want to think about one or two

particles. There is the interaction between the two particles, and they would be

evolving according to some trajectories. But there are all of these other particles in

the gas in this room that will collide with them.

So those conditions are not something that we had in the Liouville equation, with

everything considered. Here, I have to include the effect of all of those other

particles. We saw that the way that it appears is that I have to imagine that there's

another particle whose coordinates and momenta are captured through some

volume for the s plus 1 particle.

This s plus 1 particle can interact with any of the particles that are in the set that I

have on the other side. There is an index that runs from 1 to s. What I would have

here is the force that will come from this s plus 1 particle, acting on particle n the

same way that this force was deriving the change of the momentum, this force will

derive the change of the momentum of-- I guess I put an m here--

The thing that I have to put here is now a density that also keeps track of the

probability to find the s plus 1 particle in the location in phase place that I need to

integrate with both. I have to integrate over all positions. One particle is moving

along a straight line by itself, let's say. Then there are all of the other particles in the

system. I have to ask, what is the possibility that there is a second particle with

some particular momentum and coordinate that I will be interacting with.

This is the general set up of these D-B-G-K-Y hierarchy of equations. At this stage,

we really have just rewritten what we had for the Liouville equation. We said, I'm

really, really interested only one particle [? thing, ?] row one and F1. Let's focus on

that. Let's write those equations in more detail

In the first equation, I have that the explicit time dependence, plus the time

dependence of the position coordinate, plus the time dependence of the momentum

coordinate, which is driven by the external force, acting on this one particle density,

which is dependent on p1, q1 at time t. On the right hand side of the equation. I

need to worry about a second particle with momenta P2 at position Q2 that will,
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therefore, be able to exert a force. Once I know the position, I can calculate the

force that particle exerts. What was my notation? The order was 2 and 1, dotted by

d by dP1. I need now f2, p1, q2 at time t.

We say, well, this is unfortunate. I have to worry about dependence on F2, but

maybe I can get away with things by estimating order of magnitudes of the various

terms. What is the left hand side set of operations? The left hand side set of

operations describes essentially one particle moving by itself.

If that particle has to cross a distance of this order of L, and I tell you that the typical

velocity of these particles is off the order of V, then that time scale is going to be of

the order of L over V. The operations here will give me a V over L, which is what we

call the inverse of Tau u. This is a reasonably long macroscopic time.

OK, that's fine. How big is the right hand side? We said that the right hand side has

something to do with collisions.

I have a particle in my system. Let's say that particle has some characteristic

dimension that we call d. This particle is moving with velocity V. Alternatively, you

can think of this particle as being stationary, and all the other particles are coming at

it with some velocity V.

If I say that the density of these particles is n, then the typical time for which, as I

shoot these particles, they will hit this target is related to V squared and V, the

volume of particles. Over time t, I have to consider this times V tau x. V tau xn V

squared should be of the order of one. This gave us a formula for tau x. The inverse

of tau x that controls what's happening on this side is n V squared V.

Is the term on the right hand side more important, or the term on the left hand side?

The term on the right hand side has to do with the two body term. There's a particle

that is moving, and then there's another particle with a slightly different velocity that

it is behind it. In the absence of collisions, these particles would just go along a

straight line. They would bounce off the walls, but the magnitude of their energy,

and hence, velocity, would not change from these elastic collisions.
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But if the particles can catch up and interact, which is governed by V2, V on the

other side, then what happens is that the particles, when they interact, would collide

and go different ways. Quickly, their velocities, and momenta, and everything would

get mixed up. How rapidly that happens depends on this collision distance, which is

much less than the size of the system, and, therefore, the term that you have on the

right hand side in magnitude is much larger than what is happening on the left hand

side.

There is no way in order to describe the relaxation of the gas that I can neglect

collisions between gas particles. If I neglect collisions between gas particles, there is

no reason why the kinetic energies of individual particles should change. They

would stay the same forever.

I have to keep this. Let's go and look at the second equation in the hierarchy. What

do you have? You have d by dT, P1 over m d by d Q1, P2 over m, P d by d Q2.

Then we have F1 d by d Q1, plus F2, d by d Q2 coming from the external potential.

Then we have the force that the involves the collision between particles one and

two.

When I write down the Hamiltonian for two particles, there is going to be already for

two particles and interactions between them. That's where the F1 2 comes from. F1

2 changes d by the momentum of particle one. I should write, it's 2 1 that changes

momentum of particle two. But as 2 1 is simply minus F1 2, I can put the two of

them together in this fashion. This acting on F2 is then equal to something like

integral over V3, F3 1, d by dP1, plus F3 2, d by dP2. [INAUDIBLE] on F3 P1 and

Q3 [INAUDIBLE].

Are we going to do this forever? Well, we said, let's take another look at the

magnitude of the various terms. This term on the right hand side still involves a

collision that involves a third particle. I have to find that third particle, so I need to

have, essentially, a third particle within some characteristic volume, so I have

something that is of that order.

Whereas on the left hand side now, I have a term that from all perspectives, looks
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like the kinds of terms that I had before except that it involves the collision between

two particles. What it describes is the duration that collision. We said this is of the

order of 1 over tau c, which replaces the n over there with some characteristic

dimension. Suddenly, this term is very big. We should be able to use that.

There was a question.

AUDIENCE: On the left hand side of both of your equations, for F1 and F2, shouldn't all the

derivatives that are multiplied by your forces be derivatives of the effects of

momentum? [INAUDIBLE] the coordinates? [INAUDIBLE] reasons?

PROFESSOR: Let's go back here. I have a function that depends on P, Q, and t. Then there's the

explicit time derivative, d by dt. Then there is the Q dot here, which will go by d by

dQ. Then there's the P dot term that will go by d by dP. All of things have to be

there.

I should have derivatives in respect to momenta, and derivatives with respect to

coordinate. Dimensions are, of course, important. Somewhat, what I write for this

and for this should make up for that. As I have written it now, it's obvious, of course.

This has dimensions of Q over T. The Q's cancel. I would have one over T. D over

Dps cancel. I have 1 over P. Here, dimensionality is correct. I have to just make

sure I haven't made a mistake. Q dot is a velocity. Velocity is momentum divided by

mass. So that should dimensionally work out. P dot is a force. Everything here is

force. In a reasonable coordinate--

AUDIENCE: [INAUDIBLE]

PROFESSOR: What did I do here? I made mistakes?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Why didn't you say that in a way that-- If I don't understand the question, please

correct me before I spend another five minutes. Hopefully, this is now free of these

deficiencies.
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This there is very big. Now, compared to the right hand side in fact, we said that the

right hand side is smaller by a factor that measures how many particles are within

an interaction volume. And for a typical gas, this would be a number that's of the

order of 10 to the minus 4. Using 10 to the minus 4 being this small, we are going to

set the right hand side to zero. Now, I don't have to write the equation for F2.

I'll answer a question here that may arise, which is ultimately, we will do sufficient

manipulations so that we end up with a particular equation, known as the Boltzmann

Equation, that we will show does not obey the time reversibility that we wrote over

here. Clearly, that is built in to the various approximations I make.

The first question is, the approximation that I've made here, did I destroy this time

reversibility? The answer is no. You can look at this set of equations, and do the

manipulations necessary to see what happens if P goes to minus P. You will find

that you will be able to reverse your trajectory without any problem. Yes?

AUDIENCE: Given that it is only an interaction from our left side that's very big, that's the reason

why we can ignore the stuff on the right. Why is it that we are then keeping all of the

other terms that were even smaller before?

PROFESSOR: I will ignore them. Sure.

AUDIENCE: [LAUGHTER]

PROFESSOR: There was the question of time reversibility. This term here has to do with three

particles coming together, and how that would modify what we have for just two-

body collisions. In principle, there is some probability to have three particles coming

together and some combined interactions. You can imagine some fictitious model,

which in addition to these two-body interactions, you cook up some body interaction

so that it precisely cancels what would have happened when three particles come

together.

We can write a computer program in which we have two body conditions. But if

three bodies come close enough to each other, they essentially become ghosts and
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pass through each other. That computer program would be fully reversible. That's

why sort of dropping this there is not causing any problems at this point.

What is it that you have included so far? What we have is a situation where the

change in F1 is governed by a process in which I have a particle that I describe on

the left hand side with momentum one, and it collides with some particle that I'm

integrating over, but in some particular instance of integration, has momentum P2.

Presumably they come close enough to each other so that afterwards, the momenta

have changed over so that I have some P1 prime, and I have some P2 prime.

We want to make sure that we characterize these correctly. There was a question

about while this term is big, these kinds of terms are small. Why should I basically

bother to keep them? It is reasonable.

What we are following here are particles in my picture that were ejected by the first

box, and they collide into each other, or they were colliding in the first box. As long

as you are away from the [? vols ?] of the container, you really don't care about

these terms. They don't really moved very rapidly.

This is the process of collision of two particles, and it's also the same process that is

described over here. Somehow, I should be able to simplify the collision process

that is going on here with the knowledge that the evolution of two particles is now

completely deterministic. This equation by itself says, take two particles as if they

are the only thing in the universe, and they would follow some completely

deterministic trajectory, that if you put lots of them together, is captured through this

density.

Let's see whether we can massage this equation to look like this equation. Well, the

force term, we have, except that here we have dP by P1 here. We have d by dP 1

minus d by dP2. So let's do this. Minus d by dP2, acting on F2.

Did I do something wrong? The answer is no, because I added the complete

derivative over something that I'm integrating over. This is perfectly legitimate

mathematics.
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This part now looks like this. I have to find what is the most important term that

matches this. Again, let's think about this procedure. What I have to make sure of is

what is the extent of the collision, and how important is the collision?

If I have one particle moving here, and another particle off there, they will pass each

other. Nothing interesting could happen. The important thing is how close they

come together. It Is kind of important that I keep track of the relative coordinate, Q,

which is Q2 minus Q1, as opposed to the center of mass coordinate, which is just

Q1 plus Q2 over 2.

That kind of also indicates maybe it's a good thing for me to look at this entire

process in the center of mass frame. So this is the lab frame. If I were to look at this

same picture in the center of mass frame, what would I have?

In the center of mass frame, I would have the initial particle coming with P1 prime,

P1 minus P center of mass. The other particle that you are interacting with comes

with P2 minus P center of mass. I actually drew these vectors that are hopefully

equal and opposite, because you know that in the center of mass, one of them, in

fact, would be P1 minus P2 over 2. The other would be P2 minus P1 over 2. They

would, indeed, in the center of mass be equal and opposite momenta.

Along the direction of these objects, I can look at how close they come together. I

can look at some coordinate that I will call A, which measures the separation

between them at some instant of time. Then there's another pair of coordinates that

I could put into a vector that tells me how head to head they are. If I think about

they're being on the center of mass, two things that are approaching each other,

they can either approach head on-- that would correspond to be equal to 0-- or they

could be slightly off a head-on collision. There is a so-called impact parameter B,

which is a measure of this addition fact.

Why is that going to be relevant to us? Again, we said that there are parts of this

expression that all of the order of this term, they're kind of not that important. If I

think about the collision, and what the collision does, I will have forces that are

significant when I am within this range of interactions, D. I really have to look at what

11



happens when the two things come close to each other.

It Is only when this relative parameter A has approached D that these particles will

start to deviate from their straight line trajectory, and presumably go, to say in this

case, P2 prime minus P center of mass. This one occurs [? and ?] will go, and

eventually P1 prime minus P center of mass. These deviations will occur over a

distance that is of the order of this collision and D.

The important changes that occur in various densities, in various potentials, et

cetera, are all taking place when this relative coordinate is small. Things become big

when the relative coordinate is small. They are big as a function of the relative

coordinate.

In order to get big things, what I need to do is to replace these d by dQ's with the

corresponding derivatives with respect to the center of mass. One of them would

come be the minus sign. The other would come be the plus sign. It doesn't matter

which is which. It depends on the definition, whether I make Q2 minus Q1, or Q1

minus Q2.

We see that the big terms are the force that changes the momenta and the

variations that you have over these relative coordinates. What I can do now is to

replace this by equating the two big terms that I have over here. The two big terms

are P2 minus P1 over m, dotted by d by dQ of F2.

There is some other approximation that I did. As was told to me before, this is the

biggest term, and there is the part of this that is big and compensates for that. But

there are all these other bunches of terms. There's also this d by dt.

What I have done over here is to look at this slightly coarser perspective on time.

Increasing all the equations that I have over there tells me everything about

particles approaching each other and going away. I can follow through the

mechanics precisely everything that is happening, even in the vicinity of this

collision.

If I have two squishy balls, and I run my hand through them properly, I can see how
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the things get squished then released. There's a lot of information, but again, a lot

of information that I don't really care to know as far as the properties of this gas

expansion process is concerned. What you have done is to forget about the detailed

variations in time and space that are taking place here. We're going to shortly make

that even more explicit by noting the following.

This integration over here is an integration over phase space of the second particle.

I had written before d cubed, P2, d cubed, Q2, but I can change coordinates and

look at the relative coordinate, Q, over here. What I'm asking is, I have one particle

moving through the gas. What is the chance that the second particle comes with

momentum P2, and the appropriate relative distance Q, and I integrate over both

the P and the relative distance Q? This is the quantity that I have to integrate.

Let's do one more calculation, and then we will try to give a physical perspective. In

this picture of the center of mass, what did I do? I do replaced the coordinate, Q,

with a part that was the impact parameter, which had two components, and a part

that was the relative distance.

What was this relative distance? The relative distance was measured along this line

that was giving me the closest approach. What is the direction of this line? The

direction of this line is P1 minus P2. This is P1 minus P2 over 2. It doesn't matter.

The direction is P1 minus P2.

What I'm doing here is I am taking the derivative precisely along this line of constant

approach. I'm taking a derivative, and I'm integrating along that. If I were to rewrite

the whole thing, what do I have? I have d by dt, plus P1 over m, d by dQ1, plus F1,

d by dP1-- don't make a mistake-- acting on F1, P1, Q1, t.

What do I have to write on the right hand side? I have an integral over the

momentum of this particle with which I'm going to make a collision. I have an

integral over the impact parameter that tells me the distance of closest approach. I

have to do the magnitude of P2 minus P1 over n, which is really the magnitude of

the relative velocity of the two particles. I can write it as P2 minus P1, or P1 minus

P2.
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P2.

These are, of course, vectors. and I look at the modulus. I have the integral of the

derivative. Very simply, I will write the answer as F2 that is evaluated at some large

distance, plus infinity minus F2 evaluated at minus infinity. I have infinity.

In principle, I have to integrate over F2 from minus infinity to plus infinity. But once I

am beyond the range of where the interaction changes, then the two particles just

move away forever. They will never see each other.

Really, what I should write here is F2 of-- after the collision, I have P1 prime, P2

prime, at some Q plus, minus F2, P1, P2, at some position minus. What I need to do

is to do the integration when I'm far away from the collision, or wait until I am far

after the collision. Really, I have to just integrate slightly below, after, and before the

collision occurs. In principle, if I just go a few d's in one direction or the other

direction, this should be enough.

Let's see physically what this describes. There is a connection between this and this

thing that I had over here, in fact. This equation on the left hand side, if it was zero,

it would describe one particle that is just moving by itself until it hits the wall, at

which point it basically reverses its trajectory, and otherwise goes forward.

But what you have on the right hand side says that suddenly there could be another

particle with which I interact. Then I change my direction. I need to know the

probability, given that I'm moving with velocity P1, that there is a second particle

with P2 that comes close enough.

There is this additional factor. From what does this additional factor come? It's the

same factor that we have over here. It is, if you have a target of size d squared, and

we have a set of bullets with a density of n, the number of collisions that I get

depends both on density and how fast these things go. The time between collisions,

if you like, is proportional to n, and it is also related to V. That's what this is.

I need some kind of a time between the collisions that I make. I have already

specified that I'm only interested in the set of particles that have momentum P2 for
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this particular [? point in ?] integration, and that they have this kind of area or cross

section. So I replace this V squared and V with the relative coordinates.

This is the corresponding thing to V squared, and this is really a two particle density.

This is a subtraction. The addition is because it is true that I'm going with velocity

P1, and practically, any collisions that are significant will move me off kilter. So there

has to be a subtraction for the channel that was described by P1 because of this

collision.

This then, is the addition, because it says that it could be that there is no particle

going in the horizontal direction. I was actually coming along the vertical direction.

Because of the collision, I suddenly was shifted to move along this direction. The

addition comes from having particles that would correspond to momenta that

somehow, if I were in some sense to reverse this, and then put a minus sign, a

reverse collision would create something that was along the direction of P1.

Here I also made several approximations. I said, what is chief among them is that

basically I ignored the details of the process that is taking place at scale the order of

d, so I have thrown away some amount of detail and information. It is, again,

legitimate to say, is this the stage at which you made an approximation so that the

time reversibility was lost? The answer is still no. If you are careful enough with

making precise definitions of what these Q's are before and after the collision, and

follow what happens if you were to reverse everything, you'll find that the equations

is fully reversible.

Even at this stage, I have not made any transition. I have made approximations, but

I haven't made something to be time irreversible. That comes at the next stage

where we make the so-called assumption of molecular chaos.

The assumption is that what's the chance that I have a particle here and a particle

there? You would say, it's a chance that I have one here and one there. You say

that if two of any P1, P2, Q1, Q2, t is the same thing as the product of F1, P1, Q1, t,

F1, P2, Q2, t.

15



Of course, this assumption is generally varied. If I were to look at the probability that

I have two particles as a function of, let's say, the relative separation, I certainly

expect that if they are far away, the density should be the product of the one particle

densities. But you would say that if the two particles come to distances that are

closer than their separation d, then the probability and the range of interaction d--

and let's say the interaction is highly repulsive like hardcore-- then the probability

should go to 0. Clearly, you can make this assumption, but up to some degree.

Part of the reason we went through this process was to indeed make sure that we

are integrating things at the locations where the particles are far away from each

other. I said that the range of that integration over A would be someplace where

they are far apart after the collision, and far apart before the collision. You have an

assumption like that, which is, in principle, something that I can insert into that.

Having to make a distinction between the arguments that are appearing in this

equation is kind of not so pleasant. What you are going to do is to make another

assumption. Make sure that everything is evaluated at the same point.

What we will eventually now have is the equation that d by dt, plus P1 over n, d by

dQ1, plus F1, dot, d by dP1, acting on F1, on the left hand side, is, on the right hand

side, equal to all collisions in the particle of momentum P2, approaching at all

possible cross sections, calculating the flux of the incoming particle that

corresponds to that channel, which is proportional to V2 minus V1. Then here, we

subtract the collision of the two particles. We write that as F1 of P1 at this location,

Q1, t, F1 of t2 at the same location Q1, t. Then add F1 prime, P1 prime, Q1 t, F1

prime, P2 prime, Q2, t.

In order to make the equation eventually manageable, what you did is to evaluate

all off the coordinates that we have on the right hand side at the same location,

which is the same Q1 that you specify on the left hand side. That immediately

means that what you have done is you have changed the resolution with which you

are looking at space. You have kind of washed out the difference between here and

here. Your resolution has to put this whole area that is of the order of d squared or
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d cubed in three dimensions into one pixel. You have changed the resolution that

you have. You are not looking at things at this [? fine ?] [? state. ?]

You are losing additional information here through this change of the resolution in

space. You have also lost some information in making the assumption that the two

[? point ?] densities are completely within always as the product one particle

densities. Both of those things correspond to taking something that is very precise

and deterministic, and making it kind of vague and a little undefined.

It's not surprising then, that if you have in some sense changed the precision of

your computer-- let's say, that is running the particles forward-- at some point,

you've changed the resolution. Then you can't really run backward. In fact, to sort of

precisely be able to run the equations forward and backward, you would need to

keep resolution at all levels. Here, we have sort of removed some amount of

resolution. We have a very good guess that the equation that you have over here

no longer respects time reversal inversions that you had originally posed.

Our next task is to prove that you need this equation. It goes in one particular

direction in time, and cannot be drawn backward, as opposed to all of the

predecessors that I had written up to this point. Are there any questions?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes, Q prime and Q1, not Q1 prime. There is no dash.

AUDIENCE: Oh, I see. It is Q1.

PROFESSOR: Yes, it is. Look at this equation. On the left hand side, what are the arguments? The

arguments are P1 and Q1. What is it that I have on the other side? I still have P1

and Q1. I have introduced P1 and b, which is simply an impact parameter. What I

will do is I will evaluate all of these things, always at the same location, Q1. Then I

have P1 and P2. That's part of my story of the change in resolution. When I write

here Q1, and you say Q1 prime, but what is Q1 prime? Is it Q1 plus b? Is it Q1

minus b? Something like this I'm going to ignore.
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It's also legitimate, and you should ask, what is P1 prime and Q2 prime? What are

they? What I have to do, is I have to run on the computer or otherwise, the

equations for what happens if I have P1 and P2 come together at an impact

parameter that is set by me. I then integrate the equations, and I find that

deterministically, that collision will lead to some P1 prime and P2 prime.

P1 prime and P2 prime are some complicated functions of P1, P2, and b. Given that

you know two particles are approaching each other at distance d with momenta P1

P2, in principle, you can integrate Newton's equations, and figure out with what

momenta they end up. This equation, in fact, hides a very, very complicated

function here, which describes P1 prime and P2 prime as a function of P1 and P2.

If you really needed all of the details of that function, you would surely be in trouble.

Fortunately, we don't. As we shall see shortly, you can kind of get a lot of mileage

without knowing that. Yes, what is your question?

AUDIENCE: There was an assumption that all the interactions between different molecules are

central potentials [INAUDIBLE]. Does the force of the direction between two

particles lie along the [INAUDIBLE]?

PROFESSOR: For the things that I have written, yes it does. I should have been more precise. I

should have put absolute value here.

AUDIENCE: You have particles moving along one line towards each other, and b is some

arbitrary vector. You have two directions, so you define a plane. Opposite direction

particles stay at the same plane. Have you reduced--

PROFESSOR: Particles stay in the same plane?

AUDIENCE: If the two particles were moving towards each other, and also you have in the

integral your input parameter, which one is [INAUDIBLE]. There's two directions. All

particles align, and all b's align. They form a plane. [? Opposite ?] direction particles

[? stand ?] in the--

PROFESSOR: Yes, they stand in the same plane.
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AUDIENCE: My question is, what is [INAUDIBLE] use the integral on the right from a two-

dimensional integral [? in v ?] into employing central symmetry?

PROFESSOR: Yes, you could. You could, in principle, write this as b db, if you like, if that's what

you want.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes, you could do that if you have simple enough potential.

Let's show that this equation leads to irreversibility. That you are going to do here.

This, by the way, is called the Boltzmann equation.

There's an associated Boltzmann H-Theorem, which restates the following-- If F of

P1, Q1, and t satisfies the above Boltzmann equation, then there is a quantity H that

always decreases in time, where H is the integral over P and Q of F1, log of F1. The

composition of irreversibility, as we saw in thermal dynamics, was that there was a

quantity entropy that was always increasing. If you have calculated for this system,

entropy before for the half box, and entropy afterwards for the space both boxes

occupy, the second one would certainly be larger.

This H is a quantity like that, except that when it is defined this way, it always

decreases as a function of time. But it certainly is very much related to entropy. You

may have asked, why did Boltzmann come across such a function, which is F log F,

except that actually right now, you should know why you write this.

When we were dealing with probabilities, we introduced the entropy of the

probability distribution, which was related to something like sum over iPi, log of Pi,

with a minus sign. Up to this factor of normalization N, this F1 really is a one-particle

probability. After this normalization N, you have a one-particle probability, the

probability that you have occupation of one-particle free space. This occupation of

one-particle phase space is changing as a function of time. What this statement

says is that if the one-particle density evolves in time according to this equation, the

corresponding minus entropy decreases as a function of time.
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Let's see if that's the case. To prove that, let's do this. We have the formula for H,

so let's calculate the H by dt.

I have an integral over the phase space of particle one, the particle that I just called

one. I could have labeled it anything. After integration, H is only a function of time.

I have to take the time derivative. The time derivative can act on F1. Then I will get

the F1 by dt, times log F1. Or I will have F1 times the derivative of log F1. The

derivative of log F1 would be dF1 by dt, and then 1 over F1. Then I multiply by F1.

This term is simply 1.

AUDIENCE: Don't you want to write the full derivative, F1 with respect [INAUDIBLE]?

PROFESSOR: I thought we did that with this before. If you have something that I am summing over

lots of [? points, ?] and these [? points ?] can be positioned, then I have S at

location one, S at location two, S at location three, discretized versions of x. If I take

the time derivative, I take the time derivative of this, plus this, plus this, which are

partial derivatives.

If I actually take the time derivative here, I get the integral d cubed P1, d cubed Q1,

the time derivative. This would be that partial dF1 by dt is the time derivative of n,

which is 0. The number of particles does not change. Indeed, I realize that 1

integrated against dF1 by dt is the same thing that's here. This term gives you 0.

All I need to worry about is integrating log F against the Fydt. I have an integral over

P1 and Q1 of log F against the Fydt. We have said that F1 satisfies the Boltzmann

equation.

So the F1 by dt, if I were to rearrange it, I have the F1 by dt. I take this part to the

other side of the equation. This part is also the Poisson bracket of a one-particle H

with F1. If I take it to the other side, it will be the Poisson bracket of H with F1.

Then there is this whole thing that involves the collision of two particles. So I define

whatever is on the right hand side to be some collision operator that acts on two [?

powers ?] of F1. This is plus a collision operator, F1, F1. What I do is I replace this
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dF1 by dt with the Poisson bracket of H, or H1, if you like, with F1. The collision

operator I will shortly write explicitly. But for the time being, let me just write it as C

of F1.

There is a first term in this sum-- let's call it number one-- which I claim to be 0.

Typically, when you get these integrations with Poisson brackets, you would get 0.

Let's explicitly show that. I have an integral over P1 and Q1 of log of F1, and this

Poisson bracket of H1 and F1, which is essentially these terms. Alternatively, I could

write it as dH1 by dQ1, dF1 by dt1, minus the H1 by dt1, dF1, by dQ1.

I've explicitly written this form for the one-particle in terms of the Hamiltonian. The

advantage of that is that now I can start doing integrations by parts. I'm taking

derivatives with respect to P, but I have integrations with respect to P here.

I could take the F1 out. I will have a minus. I have an integral, P1, Q1. I took F1 out.

Then this d by dP1 acts on everything that came before it.

It can act on the H1. I would get d2 H1 with respect to dP1, dQ1. Or it could act on

the log of F1, in which case I will get set dH1 by dQ1. Then I would have d by dP

acting on log of F, which would give me dF1 by dP1, then the derivative of the log,

which is 1 over F1.

This is only the first term. I also have this term, with which I will do the same thing.

AUDIENCE: [INAUDIBLE] The second derivative [INAUDIBLE] should be multiplied by log of F.

PROFESSOR: Yes, it should be. It is Log F1. Thank you.

For the next term, I have F1. I have d2 H1, and the other order of derivatives, dQ1,

dP1. Now I'll make sure I write down the log of F1. Then I have dH1 with respect to

dQ1. Then I have a dot product with the derivative of log F, which is the derivative of

F1 with respect to Q1 and 1 over F1.

Here are the terms that are proportional to the second derivative. The order of the

derivatives does not matter. One often is positive. One often is negative, so they

cancel out.
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Then I have these additional terms. For the additional terms, you'll note that the F1

and the 1 over F1 cancels. These are just a product of two first derivatives.

I will apply the five parts process one more time to get rid of the derivative that is

acting on F1. The answer becomes plus d cubed P1, d cubed Q1. Then I have F1,

d2 H1, dP1, dQ1, minus d2 H1, dQ1, dP1. These two cancel each other out, and

the answer is 0.

So that first term vanishes. Now for the second term, number two, what I have is the

first term vanished. So I have the H by dt. It is the integral over P1 and Q1. I have

log of F1. F1 is a function of P1, and Q1, and t. I will focus, and make sure I write

the argument of momentum, for reasons that will become shortly apparent.

I have to multiply with the collision term. The collision term involves integrations over

a second particle, over an impact parameter, a relative velocity, once I have defined

what P2 and P1 are. I have a subtraction of F evaluated at P1, F evaluated at P2,

plus addition, F evaluated at P1 prime, F evaluated at P2 prime.

Eventually, this whole thing is only a function of time. There are a whole bunch of

arguments appearing here, but all of those arguments are being integrated over. In

particular, I have arguments that are indexed by P1 and P2. These are dummy

variables of integration. If I have a function of x and y that I'm integrating over x and

y, I can call x "z." I can call y "t." I would integrate over z and t, and I would have the

same answer.

I would have exactly the same answer if I were to call all of the dummy integration

variable that is indexed 1, "2." Any dummy variable that is indexed 2, if I rename it

and call it 1, the integral would not change. If I do that, what do I have? I have

integral over Q-- actually, let's get of the integration number on Q. It really doesn't

matter.

I have the integrals over P1 and P1. I have to integrate over both sets of momenta. I

have to integrate over the cross section, which is relative between 1 and 2. I have
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V2 minus V1, rather than V1 minus V2, rather than V2 minus V1. The absolute

value doesn't matter. If I were to replace these indices with an absolute value, [? or

do a ?] V2 minus V1 goes to minus V1 minus V2. The absolute value does not

change.

Here, what do I have? I have minus F of P1. It becomes F of P2, F of P1, plus F of

P2 prime, f of P1 prime. They are a product. It doesn't really matter in which order I

write them. The only thing that really matters is that the argument was previously

called F1 of P1 for the log, and now it will be called F1 of P2. Just its name

changed.

If I take this, and the first way of writing things, which are really two ways of writing

the same integral, and just average them, I will get 1/2 an integral d cubed Q, d

cubed P1, d cubed P2, d2 b, and V2 minus V1. I will have F1 of P1, F1 of P2, plus

F1 of P1 prime, F1 of P2 prime. Then in one term, I had log of F1 of P1, and I

averaged it with the other way of writing things, which was log of F-- let's put the two

logs together, multiplied by F1. So the sum of the two logs I wrote, that's a log of the

product. I just rewrote that equation. If you like, I symmetrized It with respect to

index 1 and 2. So the log of 1, that previously had one argument through this

symmetrization, became one half of the sum of it.

The next thing one has to think about, what I want to do, is to replace primed and

unprimed coordinates. What I would eventually write down is d cubed P1 prime, d

cubed P2 prime, d2 b, V2 prime minus V1 prime, minus F1 of P1 prime, F1 of P2

prime, plus F1 of P1, F1 of P2. Then log of F1 of P1 prime, F1 of P2 prime.

I've symmetrized originally the indices 1 and 2 that were not quite symmetric, and I

end up with an expression that has variables P1, P2, and functions P1 prime and P2

prime, which are not quite symmetric again, because I have F's evaluated for P's,

but not for P primes. What does this mean? This mathematical expression that I

have written down here actually is not correct, because what this amounts to, is to

change variables of integration.

In the expression that I have up here, P1 and P2 are variables of integration. P1
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prime and P2 prime are some complicated functions of P1 and P2. P1 prime is

some complicated function that I don't know. P1, P2, and V, for which I need to

solve in principle, is Newton's equation. This is similarly for P2 prime.

What I have done is I have changed from my original variables to these functions.

When I write things over here, now P1 prime and P2 prime are the integration

variables. P1 and P2 are supposed to be regarded as functions of P1 prime and P2

prime.

You say, well, what does that mean? You can't simply take an integral dx, let's say F

of some function of x, and replace this function. You can't call it a new variable, and

do integral dx prime. You have to multiply with the Jacobian of the transformation

that takes you from the P variables to the new variables.

My claim is that this Jacobian of the integration is, in fact, the unit. The reason is as

follows. These equations that have to be integrated to give me the correlation are

time reversible.

If I give you two momenta, and I know what the outcomes are, I can write the

equations backward, and I will have the opposite momenta go back to minus the

original momenta. Up to a factor of minus, you can see that this equation has this

character, that P1, P2 go to P1 prime, P2 prime, then minus P1 prime, minus P2

prime, go to P1, and P2. If you sort of follow that, and say that you do the

transformation twice, you have to get back up to where a sign actually disappears to

where you want. You have to multiply by two Jacobians, and you get the same unit.

You can convince yourself that this Jacobian has to be unit.

Next time, I guess we'll take it from there. I will explain this stuff a little bit more, and

show that this implies what we had said about the Boltzmann equation.
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