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PROFESSOR: OK, let's start. So last time, having dealt with the ideal gas as much as possible, we

started with interacting systems. Let's say interacting gas. And the first topic that we

did was what I called an approach towards interaction through the Cumulant

expansion.

The idea is that we certainly solved the problem where we had particles in a box

and it was just a trivial system. Basically, the particles were independent of each

other in the canonical ensemble. And things become interesting if you put

interactions among all of the particles. Very soon, we will have a specific form of this

interaction. But for the beginning, let's maintain it as general as possible.

And the idea was that we are trying to calculate the partition function for a system

that has a given temperature. The box has some volume V and there are N

particles in it. And to do so, we have to integrate over the entirety of the phase

space of N particles. So we have to integrate over all of the momenta and

coordinates of e to the minus beta h.

But we said that we are going to first of all, note that for identical particles, we can't

tell apart the phase space if you were to make these in [? factorial ?] permutations.

And we also made it dimensionless by dividing by h to the 3n.

And then we have e to the minus beta h, which has a part that is e to the minus sum

over i pi squared over 2m, that depends on the momenta. And a part that depends

on the interaction U.

The integrals over the momenta, we can easily perform. They give us the result of
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Gaussians that we can express as lambda to the power of 3n where we introduced

this lambda to be h over root 2 pi m k t.

And actually, sort of keeping in mind the result that we had for the case of the ideal

gas, let's rewrite this as V over lambda cubed to the power of N. So I essentially

divided and multiplied by V to the N so that this part becomes the partition function

than I would have had if U was absent. And so then the remainder is the integral

over all of the q's, but I divided by V. So basically, with each integration, I'm

uniformly sampling all of the points inside the box with probability density 1/V e to

the minus beta U.

And we said that this quantity we can regard as sampling e to the minus beta U

through 0 to all other probability distribution in which the particles ideal-like are

uniformly distributed. And we call this e to the minus beta U. And the index 0 again

to indicate that we are dealing with a uniform 0 to order distribution with respect to

which this average is taken.

And then, this quantity we can write as Z0. And this exponential we can formally

express as a sum over all, let's say, l running from 0 to infinity minus beta to the l

divided by l factorial. Then, expanding this, a quantity that depends on the

coordinates is U. So I could have U raised to the l power, this kind of average taken

with respect to that.

And immediately, my writing something like this suggests that what I'm after

eventually is some kind of a perturbation theory. Because I know how to solve the

problem where U is absent. That's the ideal gas problem. Maybe we can start to

move away from the ideal gas and calculate things perturbatively in some quantity.

And exactly what that quantity is will become apparent shortly. At this time, it looks

like it's an expansion in beta U having to be a small quantity.

Now, of course, for calculating thermodynamic functions and behaviors, we don't

really rely usually on Z, but log Z, which can be related to the free energy, for

example. So taking the log of that expression, I have a term that is log of Z0. And a

term that is the log of that sum. But we recognize that that sum, in some sense, is a
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generator of moments of this quantity U.

And we have experienced that when we take the logarithm of a generator of

moments, what we will get is a generator of Cumulants, now starting with l equals to

1 minus beta to the power of l divided by l factorial U to the l0 with a subscript c. Of

course, this subscript c sort of captures all of the various subtractions that you have

to make in order to go from a moment to a Cumulant. But that's quite general and

something that we know essentially is relating log of the expansion to the expansion

itself. But that's well-known.

So presumably, I can perturbatively calculate these. And I will have, therefore,

progressively better approximations to log Z in the presence of this interaction.

Now at this point, we have to start thinking about a particular expression for U. So

let's imagine that our U is a sum over pairwise interactions. So if I think about the

particles, there are molecules that are in the gas in this room. Basically, the most

important thing is when the two of them approach each other and I have to put a

pairwise interaction between them of this form. In principle, I could add three-point

and higher-order interactions. But for all intents and purposes, this should be

enough.

And then again, what I have here to evaluate, the first term would be minus beta,

the average of the first power, and the next one will be beta squared over 2. For the

first Cumulant, it is the same thing as the first moment. The second Cumulant is the

thing that is the variance. So this would have been U squared 0 minus average of U

squared, and then there will be higher orders.

So let's calculate these first two moments explicitly for this potential. So the first term

U in this 0 to order average, what is it?

Well, that's my U. So I have to do a sum over i and j of V of qi minus qj. What does

the averaging mean?

It means I have to integrate this over all qi divided by V. Let's call this qk divided V

and this is [INAUDIBLE]. OK, so let's say we look at the first term in this series which
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involves V of q1 minus q2. Let's say we pick that pair, q1 and q2. And explicitly,

what I have here is integrals over q1, q2, qn, each one of them coming with a factor

of V.

Now, of course, it doesn't matter which pair I pick. Everything is symmetric. The

weight that I start with uniformly is symmetric. So clearly, my choice of this pair was

arbitrary and the answer when I do the sum is the answer for 1 times the number of

pairs, which is N N minus 1 over 2.

Now, over here I have integrals over q3 or qn, et cetera, that don't appear in the

function that I'm integrating. So all of those integrals will give me factors of 1. And

really, the only thing that I am going to be left with is these two integrals over q1 and

q2. But even then, the function that I'm integrating is only a function of the relative

coordinate that I can call q. And then I can, if I want, integrate over q1 and q. The

integral over q1 would also give me 1 when I divide by the volume. So the answer is

going to be N N minus 1 over 2, which is the number of pairs. The integral over the

relative coordinate times the potential-- there is a factor of 1 over V that I can put

out here. So you tell me what the first pair potential is and I tell you that this is the

first correction that you will get once you multiply by minus beta to log Z from which

you can calculate the partition functions. Yes.

AUDIENCE: How did you turn the product of two differentials d q1 times d q2 into just one

differential?

PROFESSOR: OK, I have the integral dq q1 dq q2, some function of q1 minus q2. I change

variables keeping q1 as one of my variables and q [INAUDIBLE] replace q2 with q

minus q2. So then I have the integration over q1. I have the integration over q2. Not

q2, but q f of q. And then everything's fine.

All right, so that's the first term. Let's calculate the next term.

Next term becomes somewhat interesting. I have to calculate this quantity as a

Cumulant. It's the variance. V itself is a sum over pairs. So to get V squared to U

squared, I have to essentially square this expression. So rather than having sum
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over one pair ij, I have the sum over two pairs ij and kl. And then what I need to

calculate is an average that if I were to square this, I will get v of qi minus qj, v of qk

minus ql 0. This will be the average of U squared.

But when I calculate the variance, I have to subtract from it the average of U

squared. So I have to subtract V of qi minus qj V of qk minus ql. Fine.

So this is just rewriting of that expression in terms of the sum. Now, each one of

these is N N minus 1 over two terms. And so this, when I sum over all possibility, is

the square of N N minus 1 over two possible terms that will occur here in the series

that I've written.

Now, let's group those terms that can occur in this as follows. One class of terms will

be when the pair ij that I pick for the first sum is distinct from the pair kl. So huge

number of terms as I go through the pairs will have this possibility. OK, then what

happens?

Then when I calculate the average of qi minus qj qk minus ql, which is this part,

what I need to do is to do all of these integral of this form over all q's. And then I

have this V of qi minus qj V of qk minus ql.

Now, my statement is that I have, let's say here, q1 and q2 and somewhere else q7

and q8. Or, q7 and q974. It doesn't matter. The point is that this integral that

involves this pair of variables has nothing to do with the integral that involves the

other pair of variables. So this answer is the same thing as the average of qi minus

qj average of qk minus ql.

Essentially, in the 0 order probability that we are using, the particles are completely

independently exploring this space and these averages will independently rely on

one pair and independently rely on another pair. And once this kind of factorization

occurs, it's clear that this subtraction that I need to do for the variance will get rid of

this term. So these pairs do not contribute. No contribution.

If you like, this is this thing. All right, so let's do the next possible term, ij and ik, with

k not equal to this k.
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So basically, I make the pairs have one point in common. So previously, I had a pair

here, a pair here. Now I joined one of their points. So what do I get here?

I will get for this average qi minus qj qi minus ql. You can see that essentially, the

three integrals that I need to worry about are the integrals that involve these three

indices. All the others will give me 0. So this is going to be the integral qi qj ql

divided by V. I have V of qi minus qj V of qi minus ql.

AUDIENCE: You switched [INAUDIBLE].

PROFESSOR: OK. I think that's fine. All right.

Now, I can do the same thing that I did over here. I have three variables. I will pick

qi to stay as one of my variables. I replace qj with this difference, q j i. I replace ql

with its distance to i. And again, I can independently integrate over these three

variables. So this again, becomes the same thing as V of qi minus qj average V of qi

minus ql average. And again, there is no contribution.

Now, the first class it was obvious because this pair and this pair were completely

distinct. This class is a little bit more subtle because I joined one of the points

together, and then I used this and this as well as this point as independent

variables. And I saw that the sum breaks into pieces. And you won't be surprised if

no matter how complicated I make various more interactions over here, I can

measure all of the coordinates with respect to the single point and same thing would

happen.

This class of diagrams are called 1-particle reducible. And the first part had to do

with distinct graphs. You didn't have to worry about them. But if I were to sort of

convert this expression-- and we will do so shortly-- into graphs, it corresponds to

graphs where there is a point from which everything else is hanging. And measuring

coordinates with respect to that point will allow the average to break into pieces, and

then to be removed through this subtraction. So this is simple example of something

that is more general.
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So at the level of this second-order theorem, the only type of thing that will survive is

if the pairs are identical, ij and other term is also the same pair ij. What do I get

then?

I get V of qi minus qj squared minus V of qi minus qj 0 order squared. So it's the

variance of a single one of these bond contributions.

If I write that in terms of integrals, this becomes the integral d cubed q1, d cubed

q2-- well, qi qj. I will have factors of V. Then, I would have V squared qi minus qj for

the first term and then the square of something like this for the second term.

So putting everything together up to this order, what do I get? I will get log Z, which

is log of Z0. Let me remind you, log of Z0 was N log of V over lambda cubed N.

That's on form such as this.

And then I have these corrections. Note that both of the terms that have survived

correspond to looking at one pair. So the corrections will be of the order of N N

minus 1 over 2. Because in both cases, I really look at one pair.

The first contribution was minus beta integral d cubed q v of q. There was a factor

of 1 over V. Actually, I can take-- well, let's put the factor of 1 over V here for the

time being.

The next term will be beta squared over 2 because I am looking at the second-order

term. And what do I have?

I have the difference of integral d cubed q over V V squared. And the square of the

integral of d cubed q over V V. And presumably, there will be higher-order terms as

we will discuss.

Now, I'm interested in the limit of thermodynamics where N and V are large. And in

that limit, what do I get?

I will get log Z is log of Z0. And then I can see that these terms I can write as beta.

N N minus 1 I will replace will N squared. The factors-- here I have a 1 over V. Here,

I have 1 over V squared. So this factor is smaller by an amount that is order of V in
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the large V-limit.

I will bring the factor of V outside, so I have something like this. And then, what do I

have here?

Actually, let's keep this in this form, minus beta integral d cubed q V plus beta

squared over 2 integral d cubed q V squared [INAUDIBLE]. So the kinds of things

that we are interested and we can measure are the energy of the system, but let's

say we focus on pressure.

And if you look through various things that we derived before, beta times the

pressure you can get from taking a derivative of log Z with respect to V. We can

express the log Z in terms of the free energy, and then the derivative of free energy

with respect to volume will give you the pressure of the various factors of beta [?

and signs, ?] we will come up with this.

So from the first term, N long V, we get our ideal gas result. Beta p is the same thing

as density. And we see that we get a correction from here when I divide by-- when I

take a derivative with respect to V of 1 over V, I will get minus 1 over V squared. So

the next term would be the square of the density. And then, there is a series that we

will encounter which depends on the interaction potential.

Now, it turns out that so far I have calculated terms that relied on only two points, ij.

And hence, they become at the end proportional to density squared. If I go further in

my expansion, I will encounter things that I will need triangular points. For example,

i j k forming a triangle. And then, that would give me something that would be of the

order of the density cubed.

So somehow, I can also see that ultimately this series in perturbation theory, as we

shall see, also more precisely can be organized in powers of density. Why is that

important?

Because typically, as we discussed right at the beginning, when you look at the

pressure of a gas when it is dilute and over V is very small, it is always ideal gas-
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like. As you make it more dense, you start to get corrections that you can express in

powers of density. And the coefficients of that are called Virial coefficients. So in

some sense, we have already started in calculating the second Virial coefficient, and

there are higher-order Virial coefficients, which together give you the equation of

states relating pressure to density by a power series.

AUDIENCE: Question.

PROFESSOR: Yes.

AUDIENCE: The Virial coefficients, if they have integral over the whole volume, then they will be

functions of volume, right?

PROFESSOR: Yes. But imagine that I'm thinking about the gas in this room and the interaction of

two oxygen molecules. So what I am saying is you pick an oxygen molecule. There

is interaction and I have to integrate over where the other oxygen molecule is. And

by the time it is tiny, tiny bit [? away, ?] the interaction is 0. It doesn't really matter.

AUDIENCE: If the characteristic volume of interaction is much smaller than volume--

PROFESSOR: Of the space.

AUDIENCE: [INAUDIBLE], then the integrals just converge to [? constant. ?]

PROFESSOR: That's right. So if you want to be even more precise, you will get corrections when

your particles are close to the wall and uniformity, et cetera, is violated. So there

will, actually, be corrections to, say, log Z that are not only proportional ultimately to

number volume, but the area of the enclosure and other [? subleading ?] factors.

But in the thermodynamic limit, we ignore all of that. So a lot of that is resolved by

this statement here.

Again, you won't be surprised that if I were to go ahead, then there will be a term in

this series that would be beta cubed over 3 factorial integral over q of vq, et cetera.

And that's actually very good because as I have written for you currently, this

expression is totally useless. Why is it useless?
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Because let's think back about these two oxygen molecules in the gas in this room

and what the potential of interaction between them would look like. Presumably, it is

a function of the relative separation. We can call it r or q, it doesn't matter. And if

you bring them closer than the typical size of these molecules, their potential will go

to infinity. So basically, they don't want to come close to each other.

If you go very far away, typically you have the van der Waals attraction between the

particles. So out here, it is attractive. The potential is negative and falls off, typically,

as 1 over r to the 6 related to the polarizabilities of the particles. And these, when

you come very short distances, the electronic clouds will overlap and the potential

goes to infinity.

And if you want to sort of think about numbers, typical scales that we have here--

let's say here, are presumably of the order of angstroms. And the typical depths of

these potentials in units that make sense to statistical physics are of the order of

100 degrees Kelvin. So it's why typical gases liquidy at range of temperatures that is

of the order of 100 degrees Kelvin.

Now, if I want to take this potential and calculate this, I have trouble. Because the

integral over here will give me infinity. So this expression is, in general, fine. But

whenever you have perturbation theory, you start to evaluate things and you have

to see whether the correction indeed is sufficiently small. And it seems we can't

make it sufficiently small. Yes.

AUDIENCE: If you're modeling interatomic or intermolecular potential as a Lennard-Jones

potential, isn't the [INAUDIBLE] term at the-- or near the origin, a phenomenological

choice?

PROFESSOR: If you are using as a formula for this the Lennard-Jones potential, people

phenomenologically write something like 1 over r to the 12th power, et cetera. But I

don't have to assume that.

AUDIENCE: Right. Because I've seen forms of the Lennard-Jones potential which is

exponentially decaying at the origin. So it reaches a finite, albeit probably high value
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at the origin. Wouldn't that take care of the issue?

PROFESSOR: If you believe in that kind of potential, yes. So what you are saying is that if I make

this come to a finite value, I will be able to find the temperature that is sufficiently

high compared to this, and then things would be fine.

If we had that, then we would have fusion right here going on, right? So clearly,

there is some better truth to a potential that is really very, very high compared to

temperatures that we are looking at. So we don't have to worry about that.

Well, we have to worry about this issue. OK? All right.

So you say, well, how about the following-- let's say that I am something like the gas

in this room and I am sufficiently dilute. I'm going to forget about these terms. But

since this potential becomes essentially large, I can never ignore a particular term in

this series. And I keep going adding more and more terms in the series.

If I sort of think back about the picture that I was generating before

diagrammatically-- which again, we will clarify later on-- this term corresponds to

taking a pair of points and a V that connects them. And this term corresponds to two

V's going between the same pair of points. And you say, well, there will be terms

that will involve three V's, four V's, and they will contribute in the series in a manner

that I can recognize. So why don't I add all of those terms together? And if you like,

we can call the resulting object something else. What is that something else?

Well, what I have done is I have minus beta V. Well, all of them-- so what is this?

It is the integral d cubed q. I have minus beta V plus 1/2 beta V squared. The next

term is going to be minus 1 over 3 factorial beta V cubed because it will come from

the third-order term in the expansion. And I can go on. And you say, well, obviously

this whole thing came from the expansion of e to the minus beta V except that I

don't have the 0 order term, 1. So this quantity that I will call f of q rather than V of q

is obtained as e to the minus beta V of q minus 1.

So if I were to, in fact, add up an infinite number of terms in the series rather than
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having to integrate V V squared V cubed, each one of them is divergence. I have to

integrate this f of q. So let's see what this f of q-- or correspondingly, f of r looks like

as a function of r.

So in the range that I have my hard core and V is large and positive, this is going to

give me 0. So the function is minus 1 down here. At exactly whatever point it is that

the potential is 0, then f is also 0. So basically, I will come to the same 0.

When the potential is negative, this will be larger than 1. My f will be positive. So

presumably, it will have some kind of a peak around where this peak is. And then at

large distances, it goes back towards 0. So this is going to go back towards 1 minus

1, which is 0. So actually, this end of the potential is the same thing as minus beta.

And whereas I couldn't integrate any one term in this series, I can certainly integrate

the sum over all positions and it will give me a number, which will depend on

temperature, the properties of the potential, et cetera. And it is that number that will

tell me what the density squared term in the expression for the pressure is and what

the second Virial coefficient is. Yes.

AUDIENCE: Is this basically an excluded volume of sorts?

PROFESSOR: Yeah. So this part if I sent it to infinity, corresponds to an excluded volume. So if you

want really excluded volume, this would be minus 1 up to some point.

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah. But I'm talking about very general, so I would say that excluded volume can

be very easily captured within this [INAUDIBLE]. All right.

So we want to sort of follow-up from here. But since you will have a problem set, I

will mention one other thing. That this reorganization of the series that I made here

is appropriate to the limit of low densities, where I would have a nice expansion in

powers of density.

The problem that you will deal with has to do with plasmas, where the interaction

range is very large. And you already saw something along those lines when we had
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the Vlasov equation as opposed to Boltzmann equation. There was a regime where

you had to reorganize the series different ways. In that case, it was the BBGKY

hierarchy whether you were looking at the dense limit or a dilute limit. So this is the

analog of where the Boltzmann equation would have been inappropriate.

The analog of the regime where you are dense and something like the Vlasov

equation would be appropriate. So there is some kind of interaction range, n d

cubed if it is much larger than 1. Then it turns out that rather than looking at

diagrams that have the fewest number of points-- in this case, 2-- you have to look

at diagrams that have the largest number of points. Because each additional point

will give you an additional factor of N over V.

You can see that these factors of N N minus 1 over 2 came from the number of

points that I had selected. So if I had to select three points, I would have N cubed

and the corresponding V. So the more points that I have in my series, I will have

more powers of the density. So in that case, it turns out that rather than looking at

two points and all lines between them, you organize things in terms of what are

called ring diagrams, which are things such as this, this, this.

So basically, for a given number of lines, the most number of points is obtained by

creating your ring. And so one of the problems that you have is to sort of sum these

ring diagrams and see what happens.

But it seems like what I'm telling you here is while we calculated order of density

squared, but maybe I want to calculate order of density cubed. And it makes much

more sense rather than when faced with potentials of this form arranging the series

in powers of the potential to arrange it in powers of this quantity e to the minus beta

V minus 1. So let's go through a route in which I directly expand everything in terms

of this quantity. And that's the second type of expansion that I will call the cluster

expansion.

So once more, what we want to calculate is the partition function. It depends on

temperature, volume, number of particles obtained by integrating over all degrees

of freedom. The integration over momenta we saw is very simple. Ultimately, will
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give us this N factorial lambda to the 3N. This time, I won't pull out the factor of V to

the N at this point.

And then I have the integration over all of these q's. I did not divide by V because I

did not multiply by V to the N. OK. And then I have e to the minus beta U, but this is

my U. U is the sum of various terms. So e to the minus beta U will be a product over

all, let's say-- let's call this k pairs ij. e to the minus beta V of qi minus qj.

So basically, the only thing that I did was e to the minus beta-- this quantity I wrote

as a product of contributions from the different pairs.

Now, this quantity I have it in the line above. This is also a relative position. Clearly, I

can think of this as 1 plus the f that would correspond to the distance between qi

and qj. And again, I can either write it as Vf of qi minus qj, or simplify of i-- my

notation-- and write it as f i j. So f i j means-- so let me maybe write it here. f i j I

have defined to be e to the minus beta V of qi minus qj minus 1. So what do I

expect?

I saw that the first correction to something that was interesting to me had one power

of f in it that I had to ultimately integrate. So maybe what I should do is I should start

organizing things in terms of how many f's I have. So an expansion in powers of f.

So what's going to happen here?

I would have 1 over N factorial lambda to the 3N. I have a product of all of the

integrations. And I have all of these factors of 1 plus f1 2 times 1. So basically, this

is maybe-- it's really a product of 1 plus f1 2, 1 plus f1 3, 1 plus all of one of these

things. So the thing that has least number of f's is when I pick the 1 from all of these

brackets that are multiplying each other.

The next term is to pick 1f from one pair and all the others would be 1. The next

term would be sum over ij kl f i j f k l, and then there will be diagrams that would

progressively have more and more factors of f.

Now, what I will do is to represent the various terms that I generate in this series
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diagrammatically. So first of all, I have to integrate over N points. So I put points 1

through N. So I have 1, 2, 3, 4. It doesn't matter how I put them-- N.

And then, this 1 would correspond to just this diagram. The next thing is I put a line

for f i j. So let's say that I picked in this series the term that was f 2 3. I will represent

that by a line that goes between 2 and 3.

Later on in the picture, maybe I will pick a term that is f 2 3 f 4 5. So some second-

order term could be something like this.

Maybe later on in the series, I will pick a term that is connecting f3 and f4. So this

would be a third-order term in the series.

Maybe later on the series, I have some other pair over here. So any one of the

huge number of terms that I have generated here has one diagram that is

appearing over here.

Now, the next step is, of course I have to integrate over all of the q's. I mean, these

diagrams, what they represent is essentially some f of q1 minus q3, some f of

whatever. And I have to integrate over all of these q's. So the contribution to the

partition function that I will get would be some value associated with one of these

graphs obtained by doing the integrations over q.

Now, the thing that I want you to notice is that contribution of one of these graphs or

diagrams is the product of contributions of its linked clusters.

So here I have one particular diagram that is represented here. Well, let's say 2, 3,

4, 5 are linked together and separate from whatever this is. Let's say this is 7, 9.

So when I do the integrations over q2, q3, q4, q5, I don't really rely on any of the

other things. So my integration here, we break off into the integration that involves

this, the integration that involves this, as well as integrations over all of these points

that are not connected to anybody. All of those will simply give me a factor of v.

So is everybody happy with this simple statement that the contribution-- if I think of

these linked clusters as some collection of points that are linked together, the value
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that I would get for this diagram would be the contribution-- product of the

contributions that I would have for this. So yes?

AUDIENCE: Can you explain [INAUDIBLE]?

PROFESSOR: OK. So let's pick a particular thing. Let's say we do something like this, where this is

number 7, 245, 6, 5, 4. This is a particular thing. So what do I have to do?

There's also a whole bunch of points-- 1, 2, 3. What I am instructed to do is to

integrate over q1, q2, q3, et cetera.

Now, the integral over q1 is just the integral of q1. So this integral by itself will give

me V. Any number of points that are by themselves will also give me V. So the first

term that becomes nontrivial is when I have to do the integration over q4, q5, q6 of f

4 5, f 5 6, f 6 4.

I don't know what this is, but there is something that will come from here. Then, later

on I have to integrate over 7 and something else. So then I have the integral over

q7, q-- let's call this 8. f of 7 8. So this is something else.

So the overall value of this term in the perturbation theory is the product of

contributions from a huge number of one clusters. Here, I have a two cluster. Here,

I have a three cluster. Maybe I will have more things.

Also, notice that if I have more of these two clusters, the result for them would be

exactly the same. So if I have lots of these pairs, the same way that I had lots of

single points-- and it became V to the number of single points-- it will become

whatever that y is to the number of pair points, x, whatever that is, to the number of

triplets that I have in triangles. So this is how this object is built up. Yes?

AUDIENCE: How are we deciding how many triplets and how many pairs we actually have?

PROFESSOR: At this point, I haven't told you. So there is a multiplicity that we have to calculate.

Yes. So at this point, all I'm saying is given this, the answer is the product of

contribution. There is a multiplicity factor-- you're right. We have to calculate that.

16



OK? Anything else?

All right. So I mean, think of this as taking a number and writing it as the product of

its prime factors, factorizing into primes. So you sort of immediately know that

somehow prime factors, the prime numbers, are more important. Because

everything else you can write as prime numbers. So clearly, what is also buried in

heart of calculating this partition function is these clusters. So let me define the

analog of prime numbers as follows.

I define bl to be the sum over contributions of all linked clusters of l-points. So let's

go term by term. b1 corresponds essentially to the one point by itself in the diagram

that I was drawing down here. And corresponds to integrating over the coordinate

that goes all over the space. And hence, the volume is the same thing as the

volume V.

b2 is a cluster of two points. So it is this. And so it is the integral over q1 and q2,

which are two endpoints of this, of f of q1 minus q2. And this we have seen already

many times. It's the same thing as volume, the integral over q f of q. It is the thing

that was related to our second Virial coefficient.

Now, this is very important for b3. I note that I underlined here "all." And this is for

later convenience. It seems that I'm essentially pushing complexity from one place

to another. So there are a number of diagrams that have three things linked

together. This is one of them. Let's say, think of 1, 2, 3 connected to each other.

But then, I have diagrams. At this stage, I don't really care that this is one particle

irreducible. Here, I have no constraints on one particle irreducibility. And in fact, this

comes in three varieties because the bond that is missing can be one of three. So

once I pick the triplets of three points, sum over all clusters that involve these three

points is this, in particular with this one, appearing three times. Yes.

AUDIENCE: Do we still count all the diagrams when particles are identical?

PROFESSOR: Yes. Because here, at this stage, there is an N factorial out here. All I'm really doing

is transcribing a mathematical formula. The mathematical formula says you have to
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do a bunch of integrations. And I am just following translating that mathematical

formula to diagrams. At this stage, we forget. This has nothing to do with this N

factorial or identity. It's just a transcription of the mathematics

So at this stage, don't try to correct my conceptual parts but try to make sure that

my mathematical steps are correct. OK? Yes.

AUDIENCE: I didn't understand what that missing links represents.

PROFESSOR: OK. So at the end of this story, what I want to write down is that the value of some

particular term in this series is related to product of contributions. I described to you

how productive contributions comes along. And each contribution is a bunch of

points that are connected together. So what I want to do, in order to make my

algebra easier later on, is to say that-- let's say these three points are part of a

cluster. They are connected together somehow. So they will be giving me some

factor.

Now, they are connected, if they are connected like this, like this, like this, like that.

So basically, any one of these is a way of connecting these three points so that they

will make a contribution together. Yes.

AUDIENCE: So the one with all three bonds comes with a different [INAUDIBLE] in the series

than the ones with only two bonds, right?

PROFESSOR: Yes. Now, there is reason, ultimately, why I want to group all of them together.

Because there was a question before about multiplicity factors. I can write down a

closed form, nice expression for the multiplicity factor if I group them together.

Otherwise, I have to also worry that there are three of these and there is one of

them, et cetera. There is an additional layer of multiplicity. And I want to separate

those two layers of multiplicity.

So here, the thing that I have is I have these endpoints. I want to say that the

eventual result for endpoints comes from clusters that involves 1's, clusters that

involve pairs, and cluster that involve triplets.
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Now, I realize suddenly that if I made the multiplicity count here, then for this triplet,

I could have put all of them together like this or like that. And the next order of

business when I am thinking about four objects, I can connect them together into a

cluster in multiple ways. And there is a separate way of calculating the relative

multiplicity of what comes outside and the multiplicity of this quartic with respect to

entirety. So you have to think about this a little bit. So I'll proceed with this.

So this mathematically would be the integral q1, q2, q3, f 1 2, f 2 3, f 3 1 plus, say, f

1 2, f 2 3, plus f 1 3 f 3 2 plus f 2 3, f 3 1, something like this.

Well, 1, 2. 2 is repeated. 3 is repeated. I should repeat 1. OK. Of course, the last

three are the same thing, but this is the expression for this.

Now, before would be a huge complex of things. It would have a diagram that is of

this form. It would have a number of diagrams that are of this form. It would have

diagrams that are of this form, diagrams that are like this, and so forth.

Basically, even within the choice of things that have four clusters, there is a huge

number when you go to further and further [? down. ?]

OK, so maybe this statement will now clarify things. So what I have is that the

partition function is 1 over N factorial lambda to the 3N. And then it is all of the terms

that are obtained by summing this series. And so I have to look at all possible ways

that I can break N-points into these clusters.

Suppose I created a situation where I have clusters of size l and then I have nl of

them. So I saw that the contribution that I would get from the 1 clusters was

essentially the product of the number of 1 clusters. It was V to the number of points

that are not connected together. So I have to take b1, raise it to the power of N1,

which is the number of 1 cluster. Then, I have to do the same thing for b2, b3, et

cetera.

And then I have to make sure that I have looked at all ways of partitioning N the

numbers into these clusters. So I have a sum over nl l has to add up to n. And I

have to sum over all nl's that are consistent with this constraint. But then there is
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this issue of the multiplicity.

Given that I chose some articular set of these, if I were to reorganize the numbers, I

would get the same contribution. So let's say we pick this diagram that has precisely

a contribution that is V, which is b1 to the number of these one points. This to the

number of b2 to the power of the number of these, this, et cetera.

But then I can take these labels-- 1, 2, 3, 4, 5, 6-- that I assigned to these things

and permute them. If I permute them, I will get exactly the same contribution. So

there is a large number of diagrams that have exactly this same contribution

because of this permutation. There was a question back there.

AUDIENCE: You've already answered it.

PROFESSOR: All right. Actually, this is an interesting thing-- I don't know how many of you

recognize this. So essentially, I have to take a huge number, N, and break it into a

number of 1 clusters, 2 clusters, et cetera. The number of ways of doing that is

called a partition of an integer. And last century, the [INAUDIBLE] calculated what

that number is. So there is a [INAUDIBLE] theorem associated with that. And

actually, later in the course I will give you a problem to calculate the asymptotic

version of the [INAUDIBLE]. But this is different story.

So given that you had made one of these partitions of this integer, what is this

degeneracy factor? So let me tell you what this degeneracy factor is.

So given this choice of nl's, you say-- well, the first thing is what I told you. For a

particular graph, the value is independent of how these numbers were assigned. So

I will permute those numbers in all possible ways and I will get the same thing. So

that will give me N factorial. It's the number of permutations.

But then, I have over-counted things because within, let's say, a 2 cluster-- if I count

7, 8, 8, 7 they are the same thing. And by multiplying by this N factorial, I have over-

counted that. So I have to divide by 2 for every one of my 2 clusters. So I have to

divide by 2 to the power of N2.
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For the 3 clusters, I have the permutation of everything that is inside. So it is 3

factor here. So what I have here is I have to divide by the over-counting, which is l

factorial-- labels within a cluster-- to the number of clusters that I have that are

subject to this.

There is another thing that this pair is 100, 101 and this pair is 7, 8. Exchanging that

pair of numbers with that pair of numbers is also part of the symmetries that I have

now over-counted. So that has to be taken into account because the number of

these 2 clusters here is 2. Here is actually 3. I have to divide by 3 factorial. In

general, I have to divide by nl factorial.

OK. Again, this is one of those things that the best advice that I can give you is to

draw five or six points so your n is small. And draw some diagrams. And convince

yourself that what I told you here rapidly is correct. And it is correct. Yes.

AUDIENCE: Can you just clarify which is in the [INAUDIBLE]?

PROFESSOR: OK. So the N factorial is outside. And then-- so maybe write it better. For each l, I

have to multiply nl factorial and l factorial to the power of nl. So this is my partition

function in terms of these clusters.

Even with all of these definitions that I have up there, maybe not so obvious an

answer. And one of the reason it is kind of an obscure answer is because here I

have to do a constrained sum. That is, I have all of these variables. Let's call them

n1, n2, n3, et cetera. Each one of them can go from 0, 1, 2, 3. But they are all linked

to each other because their sum is kind of restricted by some total value l, by this

constraint.

And constrained sums are hard to do. But in statistical physics, we know how to gets

rid of constrained sums. The way that we do that is we essentially allow this N to go

all the way.

So if I say, let's make-- it's very hard for me to do this n1 from 0 to something, n2

from 0 to something with all of this constrained. My life would be very easier if I

could independently have n1 go take any value, n2 take any value, n3 take any
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value. But if I do that essentially for each choice of n1, n2, n3, I have shifted the

value of big N.

But there is an ensemble that I know which has possibly any value of N, and that's

the grand canonical. So rather than looking at the partition function, I say I will look

at the grand partition function Q that is obtained by summing over all N. Can take

any value from 0 to infinity. I have e to the beta mu N times the partition function

that is for N particles. So that's the definition of how you would go from the

canonical where you have fixed N to grand canonical where you have fixed the

chemical potential mu. So let's apply this sum over there.

I have a sum over N, but I said that if I allowed the nl's to vary independently, it is

equivalent to varying that N, recognizing that this n is sum over l l nl. That's the

constraint. So that's just the first term. I have rewritten this sum that was

constrained and this sum over the total number as independent sums over the nl's.

Got rid of the constraint.

Now, I write W. Oh, OK. The partition function. Now, write the partition function.

I have 1 over N factorial. I have lambda cubed raised to this power. So actually, let

me put this in this fashion. So both e to the beta mu over lambda cubed that is

raised to that power. OK, so that's that part.

The sum I have gotten rid of. I notice that my W has an N factorial. So this is the N

factorial that came from here. But then there is an N factorial that is up here from

the W. So the two of them will cancel each other, N factorial.

And then I have a product over all clusters. Part of it is this bl to the power of nl, and

then I have the contribution that is nl factorial l factorial to the power of nl. So this

part cancels. For each l, I can now independently sum over the values of nl can be

anything, 0 to infinity. And what do I have?

I have bl to the power of nl. I have division by nl factorial. I have l factorial to the

power of nl. And then I have e to the beta mu over lambda cubed raised to the

power of l nl.
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I recognize that each one of these terms in the sum is 1 over nl factorial something

raised to the power of nl, which is the definition of the exponential. So my q is a

product over all l's. Once I exponentiate, I have e to the beta mu over lambda cubed

raised to the power of l. And then I have bl divided by l factorial.

Or, log of Q, which is the quantity that I'm interested, is obtained by summing over

all clusters 1 to infinity e to the beta mu over lambda cubed raised to the power of l

bl divided by l factorial. So what does this tell us, which is kind of nice and

fundamentally important?

You see, we started at the beginning over here with a huge number of graphs.

These graphs could be organizing all kinds of clusters. And they would give us

either the partition function or summing over N, the grand partition function. But

when we take the log, I get only single connect objects.

And this is something that you had already seen as the connection that we have

between moments and Cumulants. So the way that we got Cumulants was to look at

the expansion of the log. So the function itself was the generator of all moments and

we took the log. And graphically, we presented that as getting the moments by

putting together all kinds of clusters of points that corresponded to Cumulants. And

this is again, a representation of the same thing. That is, in the log you have

essentially individual contributions. Once you exponentiated, you get multiple

contributions.

Now, the other thing is, that if I am thinking about the gas, then log of Q is e to the

minus beta g. And g is E minus TS minus mu N. Bur for a gas that has extensive

properties, E is TS mu N minus PV. So this is the same thing as beta PV. So this

quantity that we have calculated here is, in fact, related to the pressure directly

through this formula.

And the important part or the important observation is that it says that it should be

proportional to volume. You can see that each one of my b's that I calculated here

will have one free integral. If you like, its center of mass. You can go over the entire
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volume. So all of my b's are indeed proportionality to volume. And you can see what

disaster it would have been if there was a term here that was not just a linked

cluster but product of two linked clusters. Then I would have something that would

go like V squared. It's not allowed. So essentially, this linked cluster nature is also

related to extensivity in this sense.

So in some sense, what I have established here-- again, related to that-- is that

clearly all of my bl's are proportional to volume. And I can define something that I

will call bl bar, which is divide the thing by the volume. And then what we have

established is that the pressure of this interacting gas as an expansion beta p,

which takes this nice, simple form, sum over l e to the beta mu divided by lambda

cubed bl bar-- the intensive part of the contribution of these cluster-- divided by l

factorial. This, of course, runs from 1 to [INAUDIBLE]. Yes.

AUDIENCE: [INAUDIBLE] is raised to the l?

PROFESSOR: Who's asking the question?

AUDIENCE: The term in the parentheses is raised to the l?

PROFESSOR: Exactly. Thank you very much. Yes.

AUDIENCE: [INAUDIBLE]. But they don't, actually. Could that be true, for example [INAUDIBLE]?

PROFESSOR: OK. So the triangle, I have it here. Integral d q1, d q2, d Q3, f 1 2, f 2 3, f 3. Let's

write it explicitly. It is f of q1 minus q2, f of q2 minus q3, f of q3 minus q1. I call this

vector x. I call that vector y. This vector is x plus y. Yes.

AUDIENCE: Does the contribution from [INAUDIBLE]?

PROFESSOR: OK. So you say that I have here an expansion for the pressure. I had given you

previously an expansion for pressure that I said is sensible, which is this Virial

expansion, which is powers of density. This is not an expansion in powers of

density.

So whether or not the terms in this expansion becomes smaller or larger will depend
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on density in some indirect way. So my next task, which I will do next lecture, is

within this ensemble I have told you what the chemical potential is. Once I know

what the chemical potential is, I can calculate the number of particles as d log Q by

d beta mu. And hence, I can calculate what the density is. And so the answer for

this will also be a series in powers of e to the beta mu. And what then I will do is I

will combine these two series to get an expansion for pressure in powers of density,

and then identify the convergence of this series and all of that via that procedure.
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