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I.I Stability Conditions 

The conditions derived in section I.G are similar to the well known requirements for 

mechanical stability. A particle moving in an external potential U settles to a stable 

equilibrium at a minimum value of U . In addition to the vanishing of the force −U ′ , this 

is a consequence of the loss of energy to frictional processes. Stable equilibrium occurs at 

a minimum of the potential energy. For a thermodynamic system, equilibrium occurs at 

the extremum of the appropriate potential, for example at the maximum value of entropy 

for an isolated system. The requirement that spontaneous changes should always lead 

to an increased entropy, places important constraints on equilibrium response functions, 

discussed in this section. 

Consider a homogeneous system at equilibrium, characterized by intensive state func

tions (T,J, µ), and extensive variables (E,x,N). Now imagine that the system is arbitrar

ily divided into two equal parts, and that one part spontaneously transfers some energy 

to the other part in the form of work or heat. The two subsystems, A and B, initially 

have the same values for the intensive variables, while their extensive coordinates satisfy 

EA + EB = E, xA + xB = x, and NA + NB = N. After the exchange of energy between 

the two subsystems, the coordinates of A change to 

(EA + δE, xA + δx, NA + δN), and (TA + δTA, JA + δJA, µA + δµA), (I.60) 

and those of B to 

(EB − δE, xB − δx, NB − δN), and (TB + δTB , JB + δJB , µB + δµB). (I.61) 

Note that the overall system is maintained at constant E, x, and N. Since the inten

sive variables are themselves functions of the extensive coordinates, to first order in the 

variations of (E,x,N), we have 

δTA = −δTB ≡ δT, δJA = −δJB ≡ δJ, δµA = −δµB ≡ δµ. (I.62) 

Using eq.(I.48), the entropy of the system can be written as 

EA JA µA EB JB µB
S = SA + SB = − · xA − · NA + − · xB − · NB . (I.63) 

TA TA TA TB TB TB 

19




[ ( ) ] 

∣ ∣ 

∣ ∣ 

∣ 

∣ ∣ 

∣ ∣ 

∣ ∣ 

∣ ∣ 

Since by assumption we are expanding about the equilibrium point, the first order changes 

vanish, and to second order 

[ ( ) ( ) ( ) ] 

1 JA µA
δS = δSA + δSB = 2 δ δEA − δ · δxA − δ · δNA . (I.64) 

TA TA TA 

(We have used eq.(I.62) to note that the second order contribution of B is the same as A.) 

Eq.(I.64) can be rearranged to 

2 δEA − JA · δxA − µA · δNA
δS = − δTA + δJA · δxA + δµA · δNA

TA TA (I.65) 
2 

= − [δTAδSA + δJA · δxA + δµA · δNA] . 
TA 

The condition for stable equilibrium is that any change should lead to a decrease in entropy, 

and hence we must have 

δTδS + δJ · δx + δµ · δN ≥ 0. (I.66) 

We have now removed the subscript A, as the above condition must apply to the whole 

system as well as to any part of it. 

The above condition was obtained assuming that the overall system was kept at con

stant E, x, and N. In fact, since all coordinates appear symmetrically in this expression, 

the same result is obtained for any other set of constraints. For example, variations in δT 

and δx with δN = 0, lead to 

 

 
∂S ∣ ∂S ∣ 

 

 δS = δT + δxi 
 ∂T ∣ ∂xi 

∣ 

x 
∣ 

T . (I.67) 
 ∂Ji ∣ ∂Ji ∣ 
 

 δJi = δT + δxj 

∂T 
x ∂xj T 

Substituting these variations into eq.(I.66) leads to 

∂S ∣ ∂Ji ∣ 
∣ (δT )2 + ∣ δxiδxj ≥ 0. (I.68) 

∂T 
x ∂xj T 

Note that the cross terms proportional to δTδxi cancel due to the Maxwell relation in 

eq.(I.56). Eq.(I.68) is a quadratic from, and must be positive for all choices of δT and δx. 

The resulting constraints on the coefficients are independent of how the system was initially 

partitioned into subsystems A and B, and represent the conditions for stable equilibrium. 
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If only δT is non-zero, eq.(I.66) requires ∂S/∂T |
x ≥ 0, implying a positive heat capacity, 

since 

¯ ∣ ∂S ∣dQ 
Cx = = T ∣ ≥ 0. (I.69) 

dT ∂T 
x x 

If only one of the δxi in eq.(I.66) is non-zero, the corresponding response function 

∂xi/∂Ji|T,xj 6
must be positive. However, a more general requirement exists since all δx 

=i 

values may be chosen non-zero. The general requirement is that the matrix of coefficients 

∂Ji/∂xj|T 
must be positive definite. A matrix is positive definite if all of its eigenvalues 

are positive. It is necessary, but not sufficient, that all the diagonal elements of such a 

matrix (the inverse response functions) be positive, leading to further constraints between 

the response functions. Including chemical work for a gas, the appropriate matrix is 

[ 

− ∂P 
∣ − ∂P 

∣

] 

∂V T,N ∂N T,V 

∂µ ∣ ∂µ ∣ . (I.70) 
∂V ∂N 

T,N T,V 

In addition to the positivity of the response functions κT,N = −V −1 ∂V/∂P |T,N and 

∂N/∂µ|T,V , the determinant of the matrix must be positive, requiring 

∂P ∣ ∂µ ∣ ∂P ∣ ∂µ ∣ 
∣ ∣ − ∣ ∣ ≥ 0. (I.71) 

∂N ∂V ∣ ∂V ∂N ∣ T,V T,N T,N T,V 

Another interesting consequence of eq.(I.66) relates to the critical point of a gas where 

∂P/∂V |Tc,N = 0. Assuming that the critical isotherm can be analytically expanded as 

∂P ∣ 1 ∂2P ∣ 2 1 ∂3P ∣ 3δP (T = Tc) = δV + ∣ δV + δV + · · · , (I.72) 
∂V ∣ 2 ∂V 2 ∣ 6 ∂V 3 ∣ 

Tc,N Tc,N Tc,N 

the stability condition −δPδV ≥ 0 implies that ∂2P/∂V 2 
∣ must be zero, and the third 
Tc,N 

derivative negative, if the first derivative vanishes. This condition is used to obtain the 

critical point of the gas from mean-field approximations to the isotherms (such as the van 

der Waals isotherms). In fact, it is usually not justified to make a Taylor expansion around 

the critical point as in eq.(I.72), although the constraint −δPδV ≥ 0 remains applicable. 
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I.J The Third Law 

Differences in entropy between two states can be computed using the second law, 

from ΔS = ¯ /T . Low temperature experiments indicate that ΔS(X, T ) vanishes as dQrev

T goes to zero for any set of coordinates X. This observation is independent of the other 

laws of thermodynamics, leading to the formulation of a third law by Nernst, which states 

• The entropy of all systems at zero absolute temperature is a universal constant that can 

be taken to be zero. 

The above statement actually implies that 

lim S(X, T ) = 0, (I.73) 
T→0 

which is a stronger requirement than the vanishing of the differences ΔS(X, T ). This 

extended condition has been tested for metastable phases of a substance. Certain materials 

such as sulphur or phosphine can exist in a number of rather similar crystalline structures 

(allotropes). Of course, at a given temperature only one of these structures is truly stable. 

Let us imagine that as the high temperature equilibrium phase A, is cooled slowly, it makes 

a transition at a temperature T ∗ to phase B, releasing latent heat L. Under more rapid 

cooling conditions the transition is avoided, and phase A persists in metastable equilibrium. 

The entropies in the two phases can be calculated by measuring the heat capacities CA(T ) 

and CB(T ). Starting from T = 0, the entropy at a temperature slightly above T ∗ can be 

computed along the two possible paths as 

∗ ∗ 
∫ T ∫ TCA(T ′ ) CB(T ′ ) L

∗ ′ ′ S(T + ǫ) = SA(0) + dT 
T ′ 

= SB(0) + dT 
T ′ 

+ 
T ∗ 

. (I.74) 
0 0 

Such measurements have indeed verified that SA(0) = SB(0) ≡ 0. 

Consequences of the third law: 

(1) Since S(T = 0,X) = 0 for all coordinates X, 

∂S ∣ 
lim = 0. (I.75) 
T→0 ∂X T 

(2) Heat capacities must vanish as T → 0 since


∫ T CX(T ′ )
′ S(T,X)− S(0,X) = dT , (I.76) 

T ′ 

0 
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and the integral diverges as T → 0 unless


lim CX(T ) = 0. (I.77) 
T→0 

(3) Thermal expansivities also vanish as T → 0 since 

∣ ∣ 

1 ∂x ∣ 1 ∂S ∣ 
αJ = ∣ = ∣ . (I.78) 

x ∂T ∣ x ∂J ∣ J T 

The second equality follows from the Maxwell relation in eq.(I.56). The vanishing of the 

latter is guaranteed by eq.(I.75). 

(4) It is impossible to cool any system to absolute zero temperature in a finite number of 

steps. For example, we can cool a gas by an adiabatic reduction in pressure. Since the 

curves of S versus T for different pressures must join at T = 0, successive steps involve 

progressively smaller changes, in S and in T , on approaching zero temperature. Alterna

tively, the unattainability of zero temperatures implies that S(T = 0, P ) is independent 

of P . This is a weaker statement of the third law which also implies the equality of zero 

temperature entropy for different substances. 

In the following sections, we shall attempt to justify the laws of thermodynamics from 

a microscopic point of view. The first law is clearly a reflection of the conservation of 

energy, which also operates at the microscopic level. The zeroth and second laws suggest 

an irreversible approach to equilibrium, a concept that has no analog at the particulate 

level. It is justified as reflecting the collective behavior of large numbers of degrees of 

freedom. In statistical mechanics the entropy is calculated as S = kB ln g, where g is the 

degeneracy of the states (number of configurations with the same energy). The third law 

of thermodynamics thus requires that g = 1 at T = 0, i.e. that the ground state of any 

system is unique. This condition does not hold within the framework of classical statisti

cal mechanics, as there are examples of both non-interacting (such as an ideal gas), and 

interacting (the frustrated spins in a triangular antiferromagnet) systems with degenerate 

ground states, and a finite zero temperature entropy. However, classical mechanics is inap

plicable at very low temperatures and energies where quantum effects become important. 

The third law is then equivalent to the statement that the ground state of a quantum 

mechanical system is unique. While this can be proved for a non-interacting system, there 

is no general proof of its validity with interactions. Unfortunately, the onset of quantum 

effects (and other possible origins of the breaking of classical degeneracy) are system spe

cific. Hence it is not a priori clear how low the temperature must be, before the predictions 
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of the third law can be observed. Another deficiency of the law is its inapplicability to 

glassy phases. Glasses results from the freezing of supercooled liquids into configurations 

with extremely slow dynamics. While not truly equilibrium phases (and hence subject to 

all the laws of thermodynamics), they are effectively so due to the slowness of the dynam

ics. A possible test of the applicability of the third law to glasses, is discussed in test #1 

review problems. 
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