
8.333: Statistical Mechanics I Problem Set # 4 Due: 11/13/13
 

Non-interacting particles 

1. Rotating gas: Consider a gas of N identical atoms confined to a spherical harmonic 

trap in three dimensions, i.e. the particles are subject to the Hamiltonian 

N � � 
� 2p Ki 2H = + r .i2m 2 
i=1 

(a) Show that the angular momentum of each particle Li i = iri ×ipi is a conserved quantity, 
{

i
}

i.e. Li,H = 0. (Note that once interactions between particles are included, individ-
LN

ual angular momenta are no longer conserved, while their sum Li = Li i remains a i=1 

conserved quantity.) 

(b) Since angular momentum is conserved, a generalized canonical distribution can be 

defined with probability 

( )1 
p [µ ≡ {ipi, iri}] = exp −βH(µ)− βΩi · Li (µ) . 

Z(β, iΩ) 

Compute the classical partition function for this gas of identical particles, assuming Ωi = 
J

Ωẑ, with Ω < K/m. 

(c) Find the expectation value of angular momentum (Lz) in the above ensemble. 

(d) Write down the probability density of finding a particle at location (x, y, z), and hence 
( ) ( ) ( )

2 2 2obtain the expectation values x , y , and z . 

******** 

2. Molecular adsorption: N diatomic molecules are stuck on a metal surface of square 

symmetry. Each molecule can either lie flat on the surface in which case it must be aligned 

to one of two directions, x and y, or it can stand up along the z direction. There is an 

energy cost of ε > 0 associated with a molecule standing up, and zero energy for molecules 

lying flat along x or y directions. 

(a) How many microstates have the smallest value of energy? What is the largest microstate 

energy? 

(b) For microcanonical macrostates of energy E, calculate the number of states Ω(E,N), 

and the entropy S(E,N). 
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(c) Calculate the heat capacity C(T ) and sketch it.
 

(d) What is the probability that a specific molecule is standing up?
 

(e) What is the largest possible value of the internal energy at any positive temperature?
 

******** 

3. Curie susceptibility: Consider N non-interacting quantized spins in a magnetic field 

iB = Bẑ, and at a temperature T . The work done by the field is given by BMz, with a 
LN

magnetization Mz = µ mi. For each spin, mi takes only the 2s + 1 values −s,−s +i=1 

1, · · · , s − 1, s. 

(a) Calculate the Gibbs partition function Z(T,B). (Note that the ensemble corresponding
 

to the macrostate (T,B) includes magnetic work.)
 

(b) Calculate the Gibbs free energy G(T,B), and show that for small B,
 

Nµ2s(s + 1)B2 

G(B) = G(0)− + O(B4). 
6kBT 

(c) Calculate the zero field susceptibility χ = ∂Mz/∂B|B=0, and show that is satisfies 

Curie’s law 

χ = c/T. 

(d) Show that CB − CM = cB2/T 2 where CB and CM are heat capacities at constant B 

and M respectively. 

******** 

4. Langmuir isotherms: An ideal gas of particles is in contact with the surface of a 

catalyst. 

(a) Show that the chemical potential of the gas particles is related to their temperature 
[ ( ) J

and pressure via µ = kBT ln P/T 5/2 + A0 , where A0 is a constant. 

(b) If there are N distinct adsorption sites on the surface, and each adsorbed particle gains 

an energy ǫ upon adsorption, calculate the grand partition function for the two dimensional 

gas with a chemical potential µ. 

(c) In equilibrium, the gas and surface particles are at the same temperature and chemical 

potential. Show that the fraction of occupied surface sites is then given by f(T, P ) = 
( )

P/ P + P0(T ) . Find P0(T ). 
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(d) In the grand canonical ensemble, the particle number N is a random variable. Calculate 

its characteristic function (exp(−ikN)) in terms of Q(βµ), and hence show that 

∂mG � 
(Nm) = −(kBT )

m−1 
� ,c 
�∂µm 
T 

where G is the grand potential. 

(e) Using the characteristic function, show that 

( ) ∂(N) � 
N2

�= kBT . 
c �∂µ T 

(f) Show that fluctuations in the number of adsorbed particles satisfy 

( )

N2 1− f c = . 
(N)2 Nf 

c 

******** 

5. Molecular oxygen has a net magnetic spin, Si, of unity, i.e. Sz is quantized to -1, 0, or 

+1. The Hamiltonian for an ideal gas of N such molecules in a magnetic field Bi I ẑ is 

N 2pii
H = − µBSz ,i2m 

i=1 

where {pii} are the center of mass momenta of the molecules. The corresponding coordi­

nates {iqi} are confined to a volume V . (Ignore all other degrees of freedom.) 

(a) Treating {pii, iqi} classically, but the spin degrees of freedom as quantized, calculate the 

Gibbs partition function, Z(T,N, V, B). 

(b) What are the probabilities for Si
z of a specific molecule to take on values of -1, 0, +1 

at a temperature T? 
LN

(c) Find the average magnetic dipole moment, (M) /V , where M = µ Sz .i=1 i 

(d) Calculate the zero field susceptibility χ = ∂(M)/∂B|B=0
. 

******** 

6. One dimensional polymer: Consider a polymer formed by connecting N disc shaped
 

molecules into a one dimensional chain. Each molecule can align either along its long axis
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(of length 2a) or short axis (length a). The energy of the monomer aligned along its shorter 

axis is higher by ε, i.e. the total energy is H = εU , where U is the number of monomers 

standing up. 

(a) Calculate the partition function, Z(T,N), of the polymer. 

(b) Find the relative probabilities for a monomer to be aligned along its short or long 

axis. 

(c) Calculate the average length, (L(T,N)), of the polymer. 
( )

(d) Obtain the variance, L(T,N)2 . 
c 

(e) What does the central limit theorem say about the probability distribution for the 

length L(T,N)? 

******** 

7. Polar rods: Consider rod shaped molecules with moment of inertia I, and a dipole 

moment µ. The contribution of the rotational degrees of freedom to the Hamiltonian is 

given by 
  

2
1 

2 
pφ

Hrot. = pθ + − µE cos θ ,
2I sin2 θ

where E is an external electric field. (φ ∈ [0, 2π], θ ∈ [0, π] are the azimuthal and polar 

angles, and pφ, pθ are their conjugate momenta.) 

(a) Calculate the contribution of the rotational degrees of freedom of each dipole to the 

classical partition function. 

(b) Obtain the mean polarization P = (µ cos θ), of each dipole. 

(c) Find the zero–field polarizability 

∂P 
χT = . 

∂E E=0 

(d) Calculate the rotational energy per particle (at finite E), and comment on its high and 

low temperature limits. 

(e) Sketch the rotational heat capacity per dipole. 

******** 

8. (Optional) Disordered glass: The heat capacity of many disordered materials vanishes 

linearly at low temperatures. A commonly used model such glassy materials materials is 
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a collection of N non-interacting defects in thermal equilibrium at temperature T . Each 

defect is assumed to have two possible energies ǫi and ǫi + δi, with different values of ǫi 

and δi for each defect. 

(a) Compute the partition function Z(T ), the average energy E(T ), and the contribution 

to heat capacity C(T ) from these independent defects. 

(b) The number of defects with excitation energies between δ and δ+dδ is given by ρ(δ)dδ, 

where ρ(δ) is the density of states of defects as a function of excitation energy. Assuming 

that ρ(δ) is uniformly distributed between energies of 0 and Δ, find the defect heat capacity 

C(T ), and comment on its behavior at low and high temperatures. 

(c) A uniform density of states may not be realistic. What feature of ρ(δ) will ensure 

C ∝ T at low temperatures? 

******** 

9. (Optional) Classical virial theorem: Let X̄ = {qii, ipi} denote any of the 6N coordinates 

¯in phase space, and consider any function f(X). 

¯(a) Show that in a canonical ensemble governed by a Hamiltonian H(X) 

∂f ∂H 
= β f ,

∂Xi ∂Xi 

where β = 1/(kBT ). 

(b) Find the forms of the virial theorem obtained by substituting f = qi and f = pi in the 

general expression. 

******** 
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