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8.333: Statistical Mechanics I Fall 2007 Test 1


Review Problems 

The first in-class test will take place on Wednesday 9/26/07 from 

2:30 to 4:00 pm. There will be a recitation with test review on Friday 9/21/07. 

The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The test will be composed entirely from a subset of the following problems. Thus if you 

are familiar and comfortable with these problems, there will be no surprises! 

********


You may find the following information helpful:


Physical Constants 

Electron mass me ≈ 9.1 × 10−31kg Proton mass mp ≈ 1.7 × 10−27kg 

Electron Charge e ≈ 1.6 × 10−19C Planck’s const./2π h̄ ≈ 1.1 × 10−34Js−1 

Speed of light c ≈ 3.0 × 108ms−1 Stefan’s const. σ ≈ 5.7 × 10−8Wm−2K−4 

Boltzmann’s const. kB ≈ 1.4 × 10−23JK−1 Avogadro’s number N0 ≈ 6.0 × 1023mol−1 

Conversion Factors 

A ≡ 10−101atm ≡ 1.0 × 105Nm−2 1˚ m 1eV ≡ 1.1 × 104K 

Thermodynamics 

dE = dW For a gas: ¯ = −PdV For a wire: dW = Jdx TdS+¯ dW ¯

Mathematical Formulas 
� 

e−αx n! 
� 

1 
� 

√
π∞

dx xn = 
αn+1 2 ! = 

20 

� 

x 2 σ2k2∞ 
dx exp −ikx − = 

√
2πσ2 exp limN→∞ lnN ! = N ln N − N2σ2 2−∞ −

� 

e−ikx
� 

= 
�∞ 

n=0 
(−

n
ik
!
)n 

〈xn〉 ln 
� 

e−ikx
� 

= 
�∞ 

n=1 
(−

n
ik
!
)n 

〈xn〉c 

2 4 3 5 

cosh(x) = 1 + x 
2! + x 

4! + sinh(x) = x + x 
3! + x 

5! +· · · · · · 

2πd/2 
Surface area of a unit sphere in d dimensions Sd = (d/2−1)! 
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1. Surface tension: Thermodynamic properties of the interface between two phases are 

described by a state function called the surface tension S. It is defined in terms of the 

work required to increase the surface area by an amount dA through dW ¯ = SdA. 

(a) By considering the work done against surface tension in an infinitesimal change in 

radius, show that the pressure inside a spherical drop of water of radius R is larger than 

outside pressure by 2S/R. What is the air pressure inside a soap bubble of radius R? 

(b) A water droplet condenses on a solid surface. There are three surface tensions involved 

Saw, Ssw, and Ssa, where a, s, and w refer to air, solid and water respectively. Calculate 

the angle of contact, and find the condition for the appearance of a water film (complete 

wetting). 

(c) In the realm of “large” bodies gravity is the dominant force, while at “small” distances 

surface tension effects are all important. At room temperature, the surface tension of 

water is So ≈ 7×10−2Nm−1 . Estimate the typical length-scale that separates “large” and 

“small” behaviors. Give a couple of examples for where this length-scale is important. 

******** 

2. Surfactants: Surfactant molecules such as those in soap or shampoo prefer to spread 

on the air-water surface rather than dissolve in water. To see this, float a hair on the 

surface of water and gently touch the water in its vicinity with a piece of soap. (This is 

also why a piece of soap can power a toy paper boat.) 

(a) The air-water surface tension So (assumed to be temperature independent) is reduced 

roughly by NkBT/A, where N is the number of surfactant particles, and A is the area. 

Explain this result qualitatively. 

(b) Place a drop of water on a clean surface. Observe what happens to the air-water­

surface contact angle as you gently touch the droplet surface with a small piece of soap, 

and explain the observation. 

(c) More careful observations show that at higher surfactant densities 
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where a and b are constants. Obtain the expression for S(A, T ) and explain qualitatively 

the origin of the corrections described by a and b. 
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3. Temperature scales: Prove the equivalence of the ideal gas temperature scale Θ, and 

the thermodynamic scale T , by performing a Carnot cycle on an ideal gas. The ideal gas 

2




� 

� 

satisfies PV = NkBΘ, and its internal energy E is a function of Θ only. However, you 

may not assume that E ∝ Θ. You may wish to proceed as follows: 

(a) Calculate the heat exchanges QH and QC as a function of ΘH , ΘC , and the volume


expansion factors.


(b) Calculate the volume expansion factor in an adiabatic process as a function of Θ.


(c) Show that QH/QC = ΘH/ΘC . 

******** 

4. Equations of State: The equation of state constrains the form of internal energy as


in the following examples.


(a) Starting from dE = TdS −PdV , show that the equation of state PV = NkBT , in fact


implies that E can only depend on T .


(b) What is the most general equation of state consistent with an internal energy that


depends only on temperature?


(c) Show that for a van der Waals gas CV is a function of temperature alone. 

******** 

5. Clausius–Clapeyron equation describes the variation of boiling point with pressure. It is 

usually derived from the condition that the chemical potentials of the gas and liquid phases 

are the same at coexistence. For an alternative derivation, consider a Carnot engine using 

one mole of water. At the source (P, T ) the latent heat L is supplied converting water 

to steam. There is a volume increase V associated with this process. The pressure is 

adiabatically decreased to P − dP . At the sink (P − dP, T − dT ) steam is condensed back 

to water. 

(a) Show that the work output of the engine is W = V dP + O(dP 2). Hence obtain the 

Clausius–Clapeyron equation 
dP � L 

� = . (1) 
dT TV boiling 

(b) What is wrong with the following argument: “The heat QH supplied at the source to 

convert one mole of water to steam is L(T ). At the sink L(T −dT ) is supplied to condense 

one mole of steam to water. The difference dTdL/dT must equal the work W = V dP , 

equal to LdT/T from eq.(1). Hence dL/dT = L/T implying that L is proportional to T !” 

(c) Assume that L is approximately temperature independent, and that the volume change 

is dominated by the volume of steam treated as an ideal gas, i.e. V = NkBT/P . Integrate 

equation (1) to obtain P (T ). 

(d) A hurricane works somewhat like the engine described above. Water evaporates at the 

warm surface of the ocean, steam rises up in the atmosphere, and condenses to water at 
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the higher and cooler altitudes. The Coriolis force converts the upwards suction of the 

air to spiral motion. (Using ice and boiling water, you can create a little storm in a tea 

cup.) Typical values of warm ocean surface and high altitude temperatures are 800F and 

−1200F respectively. The warm water surface layer must be at least 200 feet thick to 

provide sufficient water vapor, as the hurricane needs to condense about 90 million tons 

of water vapor per hour to maintain itself. Estimate the maximum possible efficiency, and 

power output, of such a hurricane. (The latent heat of vaporization of water is about 

2.3 × 106Jkg−1.) 

(e) Due to gravity, atmospheric pressure P (h) drops with the height h. By balancing 

the forces acting on a slab of air (behaving like a perfect gas) of thickness dh, show that 

P (h) = P0 exp(−mgh/kT ), where m is the average mass of a molecule in air. 

(f) Use the above results to estimate the boiling temperature of water on top of Mount 

Everest (h ≈ 9km). The latent heat of vaporization of water is about 2.3 × 106Jkg−1 . 

******** 

6. Glass: Liquid quartz, if cooled slowly, crystallizes at a temperature Tm, and releases 

latent heat L. Under more rapid cooling conditions, the liquid is supercooled and becomes 

glassy. 

(a) As both phases of quartz are almost incompressible, there is no work input, and changes 

in internal energy satisfy dE = TdS + µdN . Use the extensivity condition to obtain the 

expression for µ in terms of E, T , S, and N . 

(b) The heat capacity of crystalline quartz is approximately CX = αT 3, while that of 

glassy quartz is roughly CG = βT , where α and β are constants. 

Assuming that the third law of thermodynamics applies to both crystalline and glass 

phases, calculate the entropies of the two phases at temperatures T ≤ Tm. 

(c) At zero temperature the local bonding structure is similar in glass and crystalline 

quartz, so that they have approximately the same internal energy E0. Calculate the 

internal energies of both phases at temperatures T ≤ Tm. 

(d) Use the condition of thermal equilibrium between two phases to compute the equilib­


rium melting temperature Tm in terms of α and β.


(e) Compute the latent heat L in terms of α and β.


(f) Is the result in the previous part correct? If not, which of the steps leading to it is 

most likely to be incorrect? 

******** 

7. Characteristic functions: Calculate the characteristic function, the mean, and the 

variance of the following probability density functions:


(a) Uniform p(x) = 1 for −a < x < a , and p(x) = 0 otherwise;
2a 
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(b) Laplace p(x) = 2
1 
a exp − |x

a
| ; 

(c) Cauchy p(x) = π(x2

a 
+a2) . 

The following two probability density functions are defined for x ≥ 0. Compute only 

the mean and variance for each. 
2 

(d) Rayleigh p(x) = x exp(− x ) , 
a2 2a2 

(e) Maxwell p(x) = 2 x 2 
exp(− x 2 

) .
π a3 2a2 

******** 

8. Tchebycheff inequality: Consider any probability density p(x) for (−∞ < x < ∞), 

with mean λ, and variance σ2 . Show that the total probability of outcomes that are more 

than nσ away from λ is less than 1/n2, i.e. 

1 
dxp(x) ≤ .

2 |x−λ|≥nσ n

Hint: Start with the integral defining σ2, and break it up into parts corresponding to 

|x − λ| > nσ, and |x − λ| < nσ. 

******** 

9. Optimal selection: In many specialized populations, there is little variability among 

the members. Is this a natural consequence of optimal selection? 

(a) Let {rα} be n random numbers, each independently chosen from a probability density 

p(r), with r ∈ [0, 1]. Calculate the probability density pn(x) for the largest value of this 

set, i.e. for x = max{r1, , rn}.· · · 
(b) If each rα is uniformly distributed between 0 and 1, calculate the mean and variance 

of x as a function of n, and comment on their behavior at large n. 

******** 
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