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III.E The H–Theorem and Irreversibility 

The second question posed at the beginning of this chapter was whether a collection 

of particles naturally evolves towards an equilibrium state. While it is possible to obtain 

steady state solutions for the full phase space density ρN , because of time reversal sym

metry these solutions are not attractors of generic non-equilibrium densities. Does the 

unconditional one particle PDF ρ1, suffer the same problem? While the exact density ρ1 

must necessarily reflect this property of ρN , the H–theorem proves that an approximate ρ1, 

governed by the Boltzmann equation, does in fact non-reversibly approach an equilibrium 

form. This theorem states that: 

• If f1(~ q, t) satisfies the Boltzmann equation, then dH/dt ≤ 0, where p, ~

H(t) = p d3~ p, ~ p, ~ .d3~ q f1(~ q, t) ln f1(~ q, t) (III.42) 

The function H(t) is related to the information content of the one particle PDF. Up to an 

overall constant, the information content of ρ1 = f1/N is given by I[ρ1] = 〈ln ρ1〉, which 

is clearly similar to H(t). 

Proof: The time derivative of H is 

dH ∂f1 ∂f1 
= d3p~1d

3q~1 (ln f1 + 1) = d3p~1d
3q~1 ln f1 , (III.43) 

dt ∂t ∂t 

since dV1f1 = N dΓρ = N is time independent. Using eq.(III.41), we obtain 

dH ∂U ∂f1 p~1 ∂f1 
= d3p~1d

3q~1 ln f1 · − · 
dt ∂~q1 ∂~p1 m ∂~q1 

− d3p~1d
3q~1d

3p~2d
2σ|~v1 − ~v2| [f1(p~1, ~q1)f1(p~2, ~q1) − f1(p~1 

′ , ~q1)f1(p~2 
′ , ~q1)] ln f1(p~1, ~q1), 

(III.44) 

where we shall interchangeably use d2σ, d2~b, or d2Ω|dσ/dΩ| for the differential cross-

section. The streaming terms in the above expression are zero, as shown through successive 

integrations by part, 

d3p~1d
3q~1 ln f1 

∂U 
· 
∂f1 

= − d3p~1d
3~q1f1 

∂U 
· 

1 ∂f1 
= d3p~1d

3q~1f1 
∂ 

· 
∂U 

= 0,
∂~q1 ∂~p1 ∂~q1 f1 ∂~p1 ∂~p1 ∂~q1 

and 

d3p~1d
3~q1 ln f1 

p~1 
· 
∂f1 

= − d3~p1d
3q~1 f1 

p~1 
· 

1 ∂f1 
= d3~p1d

3q~1f1 
∂ 

· 
p~1 

= 0. 
m ∂~q1 m f1 ∂~q1 ∂~q1 m 
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The collision term in eq.(III.44) involves integrations over dummy variables p~1 and p~2. The 

labels (1) and (2) can thus be exchanged without any change in the value of the integral. 

Averaging the resulting two expressions gives 

dH 1 
= − d3~qd3p~1d

3p~2d
2~b |~v1 − ~v2| [f1(p~1)f1(p~2) − f1(p~1 

′ )f1(p~2 
′ )] ln (f1(p~1)f1(p~2)) . 

dt 2 
(III.45) 

(The arguments, ~q and t, of f1 are suppressed for ease of notation.) We would now like 

to change the variables of integrations from the coordinates describing the initiators of 

the collision, (p~1, ~p2,~b), to those of their products, (p~1 
′ , ~p2 

′ ,~b ′ ). The explicit functional 

forms describing this transformation are complicated because of the dependence of the 

solid angle ˆ on ~ p2 − p~1|. However, we are assured that the Jacobian Ω in eq.(III.39) b and |~

of the transformation is unity because of time reversal symmetry; since for every collision 

there is an inverse one obtained by reversing the momenta of the products. In terms of 

the new coordinates 

dH 1 
= − d3qd~ 3p~1 

′ d3p~2 
′ d2~b ′ |~v1 − ~v2| [f1(p~1)f1(p~2) − f1(p~1 

′ )f1(p~2 
′ )] ln (f1(p~1)f1(p~2)) ,

dt 2 
(III.46) 

where we should now regard (p~1, ~p2) in the above equation, as functions of the integration 

variables (p~1 
′ , ~p2 

′ ,~b ′ ) as in eq.(III.39). As noted earlier, |~v1 − ~v2| = |~v1 
′ − ~v2 

′ | for any 

elastic collision, and we can use these quantities interchangeably. Finally, we relabel the 

dummy integration variables such that the primes are removed. Noting that the functional 

dependence of (p~1, ~p2,~b ) on (p~1 
′ , ~p2 

′ ,~b ′ ) is exactly the same as its inverse, we obtain 

dH 1 
= − d3~qd3p~1d

3p~2d
2~b |~v1 − ~v2| [f1(p~1 

′ )f1(p~2 
′ ) − f1(p~1)f1(p~2)] ln (f1(p~1 

′ )f1(p~2 
′ )) . 

dt 2 
(III.47) 

Averaging eqs.(III.45) and (III.47) results in 

dH 1 
= − d3~qd3p~1d

3p~2d
2~b |~v1 − ~v2| [f1(p~1)f1(p~2) − f1(p~1 

′ )f1(p~2 
′ )] 

dt 4 (III.48) 

[ln (f1(p~1)f1(p~2)) − ln (f1(p~1 
′ )f1(p~2 

′ ))] . 

The integrand of the above expression is always positive. If f1(p~1)f1(p~2) > f1(p~1 
′ )f1(p~2 

′ ), 

both terms in square brackets are positive, while both are negative if f1(p~1)f1(p~2) < 

f1(p~1 
′ )f1(p~2 

′ ). In either case, their product is positive. The positivity of the integrand 

establishes the validity of the H–theorem, 

dH 
≤ 0 . (III.49) 

dt 
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• Irreversibility: The second law is an empirical formulation of the vast number of everyday 

observations which support the existence of an arrow of time. Reconciling the reversibility 

of laws of physics governing the microscopic domain with the observed irreversibility of 

macroscopic phenomena is a fundamental problem. Of course, not all microscopic laws 

of physics are reversible: weak nuclear interactions violate time reversal symmetry, and 

the collapse of the quantum wave-function in the act of observation is irreversible. The 

former interactions in fact do not play any significant role in everyday observations that 

lead to the second law. The irreversible collapse of the wave-function may itself be an 

artifact of treating macroscopic observers and microscopic observables distinctly.† There 

are proponents of the view that the reversibility of the currently accepted microscopic 

equations of motion (classical or quantum) is indicative of their inadequacy. However, the 

advent of powerful computers has made it possible to simulate the evolution of collections of 

large numbers of particles, governed by classical, reversible equations of motion. Although 

simulations are currently limited to relatively small numbers of particles (106), they do 

exhibit the irreversible macroscopic behaviors similar to those observed in nature (typically 

involving 1023 particles). For example, particles initially occupying one half of a box 

proceed to irreversibly, and uniformly, occupy the whole box. (This has nothing to do with 

limitations of computational accuracy; the same macroscopic irreversibility is observed in 

exactly reversible integer based simulations, such as with cellular automata.) Thus the 

origin of the observed irreversibilities should be sought in the classical evolution of large 

collections of particles. 

The Boltzmann equation is the first formula we have encountered that is clearly not 

time reversible, as indicated by eq.(III.49). We can thus ask the question of how we 

obtained this result from the Hamiltonian equations of motion. The key to this, of course, 

resides in the physically motivated approximations used to obtain eq.(III.41). The first 

steps of the approximation were dropping the three body collision term on the right hand 

side of eq.(III.30), and the implicit coarse–graining of the resolution in the spatial and 

temporal scales. Neither of these steps explicitly violates time reversal symmetry, and the 

collision term in eq.(III.37) retains this property. The next step in getting to eq.(III.41) is 

to replace the two–body density f2(−), evaluated before the collision, with the product of 

two one body densities according to eq.(III.32). This treats the two body densities before 

† The time dependent Schrödinger equation is fully time reversible. If it is possible 

to write a complicated wave-function that includes the observing apparatus (possibly the 

whole universe), it is hard to see how any irreversibility may occur. 

58 



and after the collision differently. We could have alternatively expressed eq.(III.37) in 

terms of the two body densities f2(+) evaluated after the collision. Replacing f2(+) with 

the product of two one particle densities would then lead to the opposite conclusion, with 

dH/dt ≥ 0! For a system in equilibrium, it is hard to justify one choice over the other. 

However, once the system is out of equilibrium, the coordinates after the collision are more 

quite likely to be correlated, and hence the substitution of eq.(III.32) for f2(+) does not 

make sense. Time reversal symmetry implies that there should also be subtle correlations 

in f2(−) which are ignored in the so-called assumption of molecular chaos. 

While the assumption of molecular chaos before (but not after) collisions is the key 

to the irreversibility of the Boltzmann equation, the resulting loss of information is best 

justified in terms of the coarse graining of space and time: The Liouville equation and 

its descendants contain precise information about the evolution of a pure state. This 

information, however, is inevitably transported to shorter scales. A useful image is that 

of mixing two immiscible fluids. While the two fluids remain distinct at each point, the 

transitions in space from one to the next occur at finer resolution on subsequent mixing. 

At some point, a finite resolution in any measuring apparatus will prevent keeping track 

of the two components. In the Boltzmann equation the precise information of the pure 

state is lost at the scale of collisions. The resulting one body density only describes space 

and time resolutions longer than those of a two-body collision, becoming more and more 

probabilistic as further information is lost. 

III.F Equilibrium Properties 

What is the nature of the equilibrium state described by f1, for a homogeneous gas? 

(1) The equilibrium distribution: After the gas has reached equilibrium, the function H 

should no longer decrease with time. Since the integrand in eq.(III.48) is always positive, 

a necessary condition for dH/dt = 0 is that 

f1(p~1, ~q1)f1(p~2, ~q1) − f1(p~1 
′ , ~q1)f1(p~2 

′ , ~q1) = 0, (III.50) 

i.e. at each point ~q, we must have 

ln f1(p~1, ~q ) + ln f1(p~2, ~q ) = ln f1(p~1 
′ , ~q ) + ln f1(p~2 

′ , ~q ). (III.51) 

The left hand side of the above equation refers to the momenta before a two-body collision, 

and the right hand side to the those after the collision. The equality is thus satisfied by 
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∫ 
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any additive quantity that is conserved during the collision. There are 5 such conserved 

quantities for an elastic collision: the particle number, the three components of the net 

momentum, and the kinetic energy. Hence, a general solution for f1 is 

p~ 2 

ln f1 = a(q~ ) − α~ (q~ ) · p~ − β(~q ) . (III.52) 
2m 

We can easily accomodate the potential energy U(~q ) in the above form, and set 

2 

f1(~ q ) = N (~ −~ q ) · ~ q ) 
p

q ) . (III.53) p, ~ q ) exp α(~ p − β(~ + U(~
2m 

We shall refer to the above distribution as describing local equilibrium. While this form is 

preserved during collisions, it will evolve in time away from collisions, due to the streaming 

terms, unless {H1, f1} = 0. The latter condition is satisfied for any function f1 that 

depends only on H1, or any other quantity that is conserved by it. Clearly, the above 

density satisfies this requirement as long as N , and β are independent of ~q, and α~ = 0. 

According to eq.(III.16), the appropriate normalization for f1 is 

d3~ q f1(~ q )p d3~ p, ~ = N. (III.54) 

For particles in a box of volume V , the potential U(~q ) is zero inside the box, and infinite 

on the outside. The normalization factor in eq.(III.53) can be obtained from eq.(III.54) as 

[
∫ ∞ ( )]3 ( )3/2 ( ) 

N = NV dpi exp −αipi − 
βpi 

2 

= NV 
2πm 

exp 
mα2 

. (III.55) 
2m β 2β−∞ 

Hence, the properly normalized Gaussian distribution for momenta is 

( )3/2 [ ] 
β β(p~ − p~0)

2 

f1(~ q ) n − (III.56) p, ~ = exp ,
2πm 2m 

where p~0 = 〈~p 〉 = m~α/β is the mean value for the momentum of the gas, which is zero 

for a stationary box, and n = N/V is the particle density. From the Gaussian form of 

the distribution it can be easily concluded that the variance of each component of the 

momentum is pi 
2 = m/β, and 

〈 〉 〈 〉 3m 
p 2 = px 

2 + py 
2 + pz 

2 = . (III.57) 
β 
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(2) Equilibrium between two gases: Consider two different gases (a) and (b), moving in 

the same potential U , and subject to a two-body interaction Vab 

( 
q~ (a) − q~ (b)

) 
. We can 

define one-particle densities, f1
(a)

, and, f1
(b)

, for the two gases respectively. In terms of a 

generalized collision integral 

Cα,β = − d3p~2d
2Ω 
∣

∣

∣ dσα,β ∣

∣

∣ |~v1−~v2| f1
(α)

(p~1, ~q1)f1
(β)

(p~2, ~q1) − f1
(α)

(p~1 
′ , ~q1)f1

(β)
(p~2 

′ , ~q1) ,
dΩ 

(III.58) 

the evolution of these densities is governed by a simple generalization of the Boltzmann 

equation to 
 
 ∂f

(a) 
{ 

(a) (a) 
} 

 1 = − f ,H 1 1 + Ca,a + Ca,b 
∂t . (III.59) 

 ∂f
(b) 

{ } 
 
 1 (b) (b) 

∂t 
= − f1 ,H1 + Cb,a + Cb,b 

Stationary distributions can be obtained if all six terms on the right hand side of eqs.(III.59) 

are zero. In the absence of inter-species collisions, i.e. for Ca,b = Cb,a, we can obtain 

independent stationary distributions f1
(a) 

∝ exp −βaH
(
1 
a) 

and f1
(b) 

∝ exp −βbH
(
1 
b) 

. 

Requiring the vanishing of Ca,b leads to the additional constraint, 

f1
(a)

(p~1)f1
(b)

(p~2)−f1
(a)

(p~1 
′ )f1

(b)
(p~2 

′ ) = 0, =⇒ 
(III.60) 

βaH
(
1 
a)

(p~1) + βbH
(
1 
b)

(p~2) = βaH
(
1 
a)

(p~1 
′ ) + βbH

(
1 
b)

(p~2 
′ ) . 

Since the total energy H
(
1 
a) 

+ H
(
1 
b) 

is conserved in a collision, the above equation can be 

satisfied for βa = βb = β. From eq.(III.57) this condition implies the equality of the kinetic 

energies of the two species, 

p2 
a p2 

b 3 
= = . (III.61) 

2ma 2mb 2β 

The parameter β thus plays the role of an empirical temperature describing the equilibrium 

of gases. 

(3) The equation of state: To complete the identification of β with temperature T , consider 

a gas of N particles confined to a box of volume V . The gas pressure results from the force 

exerted by the particles colliding with the walls of the container. Consider a wall element 

of area A perpendicular to the x direction. The number of particles impacting this area, 

with momenta in the interval [~ p + d~ δt, is p, ~ p ], over a time period

dN (p~ ) = 
( 
f1(p~ )d3p~

)( 
A vx δt 

) 
. (III.62) 

61 



∫ ∫ 

∫ 

[ ( ) ] 

[ ( )] 

The final factor in the above expression is the volume of a cylinder of height vxδt per

pendicular to the area element A. Only particles within this cylinder are close enough to 

impact the wall during δt. As each collision imparts a momentum 2px to the wall, the net 

force exerted is 

1 
∫ 0 ∞ ∞ ( px 

) 
F = dpx dpy dpzf1(p~ ) A δt (2px). (III.63) 

δt −∞ −∞ −∞ m 

As only particles with velocities directed towards the wall will hit it, the first integral is 

over half of the range of px. Since the integrand is even in px, this restriction can be 

removed by dividing the full integral by 2. The pressure P is then obtained from the force 

per unit area as 

F 
∫ 

px 
2 1 

∫ 
2 

( 
β 
)3/2 ( 

βp2 ) 
n 

P = = d3~ p ) = d3~ x n exp − = , (III.64) p f1(~ p p 
A m m 2πm 2m β 

where eq.(III.56) is used for the equilibrium form of f1. Comparing with the standard 

equation of state, PV = NkBT , for an ideal gas, leads to the identification, β = 1/kBT . 

(4) Entropy: As discussed earlier, the Boltzmann H-function is closely related to the infor

mation content of the one-particle PDF ρ1. We can also define a corresponding Boltzmann 

entropy, 

SB(t) = −kBH(t), (III.65) 

where the constant kB reflects the historical origins of entropy. The H-theorem implies that 

SB can only increase with time in approaching equilibrium. It has the further advantage 

of being defined through eq.(III.42) for situations that are clearly out of equilibrium. For 

a gas in equilibrium in a box of volume V , from eq.(III.56), we compute 

H = d3~ p ) ln f1(p~ )V p f1(~

( )[ ( ) ]
∫ 2 2 

= V d3p~
N 

(2πmkBT )−3/2 exp − 
p

ln 
n 

− 
p

V 2mkBT (2πmkBT )3/2 2mkBT 

n 3 
= N ln − . 

(2πmkBT )3/2 2 
(III.66) 

The entropy is now identified as 

3 3 N 
SB = −kBH = NkB + ln (2πmkBT ) − ln . (III.67) 

2 2 V 
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The thermodynamic relation, TdSB = dE + PdV , implies 

∣ ∣ 
∂E ∣ ∂SB ∣ 3 
∣ =T ∣ = NkB ,

∂T ∣ ∂T ∣ 2V V 
∣ ∣ (III.68) 

∂E ∣ ∂SB ∣ NkBT 
P + ∣ =T ∣ = . 

∂V ∣ ∂V ∣ VT T 

The usual properties of a monatomic ideal gas, PV = NkBT , and E = 3NkBT/2, can 

now be obtained from the above equations. Also note that for this classical gas, the zero 

temperature limit of the entropy in eq.(III.67) is not independent of the density n, in 

violation of the third law of thermodynamics. 
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