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PROFESSOR: So the question is, how do we describe the various motions that are taking place?

And in principle, the Boltzmann equation that we have been developing should be

able to tell us something about all of that. Because we put essentially all of the

phenomena that we think are relevant to a dilute gas, such as what's going on in

this room, into that equation, and reduced the equation to something that had a

simple form where on the left hand side there was a set of derivatives acting on the

one particle, probability as a function of position, and momentum, let's say, for the

gas in this room.

And on the right hand side, we had the collision operator. And again, to get the

notation straight, this set of operations on the left hand side includes a time

derivative, a thing that involves the velocity causing variations in the coordinate, and

any external forces causing variations in momentum.

I write that because I will, in order to save some space, use the following notation in

the remainder of this lecture. I will use del sub t to indicate partial derivatives with

respect to time. This term I will indicate as p alpha over m d alpha. So d sub alpha

stands for derivative with respect to, say, x, y, and z-coordinates of position. And

this summation over the repeated index is implied here.

And similarly here, we would write F alpha d by dp alpha. We won't simplify that. So

basically, L is also this with the summation implicit.

Now, the other entity that we have, which is the right hand side of the equation, had

something to do with collisions. And the collision operator Cff was an integral that

involved bringing in a second coordinate, or second particle, with momentum p2,

would come from a location such that the impact parameter would be indicated by
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B. We would need to know the flux of incoming particles. So we had the relative

velocities.

And then there was a term that was essentially throwing you off the channel that

you were looking at. And let's say we indicate the variable here rather than say p by

p1. Then I would have here F evaluated at p1, F evaluated at p2, p2 being this

momentum that I'm integrating. And then there was the addition from channels that

would bring in probability.

So p1 prime and p2 prime, their collision would create particles in the channel p1,

p2. And there was some complicated relation between these functions and these

functions for which you have to solve Newton's equation. But fortunately, for our

purposes, we don't really need all of that. Again, all of this is evaluated at the same

location as the one that we have over here.

Now let's do this. Let's take this, which is a function of some particular q and some

particular p1, which is the things that we have specified over there. Let's multiply it

with some function that depends on p1, q, and potentially t, and integrate it over P1.

Once I have done that, then the only thing that I have left depends on q and t,

because everything else I integrated over. But in principle, I made a different

integration. I didn't have the integration over q. So eventually, this thing will become

a function of q.

OK, so let's do the same thing on the right hand side of this equation. So what I did

was I added the integration over p1. And I multiplied by some function. And I'll

remember that it does depend on q. But since I haven't written the q argument, I

won't write it here. So it's chi of p1.

So I want to-- this quantity j that I wrote is equal to this integral on the right. Now, we

encountered almost the same integral when we were looking for the proof of the H-

theorem where the analog of this chi of p1 was in fact log of f evaluated at p1. And

we did some manipulations that we can do over here.

First of all, here, we have dummy integration variables p1 and p2. We can just
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change their name and then essentially average over those two possibilities. And

the other thing that we did was this equation has the set of things that come into the

collision, and set the things that, in some sense, got out of the collision, or basically

things that, as a result of these collisions, create these two.

So you have this symmetry between the initiators and products of the collision.

Because essentially the same function describes going one way and inverting things

and going backwards. And we said that in principle, I could change variables of

integration. And the effect of doing that is kind of moving the prime coordinates to

the things that don't have primes.

I don't know how last time I made the mistake of the sign. But it's clear that if I just

put the primes from here to here, there will be a minus sign. So the result of doing

that symmetrization should be a minus chi of p1 prime minus chi of p2 prime. And

again, to do the averaging, I have to put something else.

Now, this statement is quite generally true. Whatever chi I choose, I will have this

value of j as a result of that integration. But now we are going to look at something

specific. Let's assume that we have a quantity that is conserved in collision. This will

be 0 for collision conserved quantity.

Like let's say if my chi that I had chosen here was some component of momentum

px, then whatever some of the incoming momenta will be the sum of the outgoing

momenta. So essentially anything that I can think of that is conserved in the

collision, this function that relates p primes to p1 and p2 has the right property to

ensure that this whole thing will be 0.

And that's actually really the ultimate reason. I don't really need to know about all of

these cross sections and all of the collision properties, et cetera. Because my focus

will be on things that are conserved in collisions. Because those are the variables

that are very slowly relaxing, and the things that I'm interested in. So what you have

is that for these collision conserved quantities, which is the things that I'm interested

in, this equation is 0.
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Now, if f satisfies that equation, I can certainly substitute over here for Cff Lf. So if f

satisfies that equation, and I pick a collision conserved quantity, the integral over p1

of that function of the collision conserved quantity times the bunch of first derivatives

acting on f has to be 0.

So this I can write in the following way-- 0 is the integral over p1. Actually, I have

only one momentum. So let's just ignore it from henceforth. The other momentum I

just introduced in order to be able to show that when integrated against the collision

operator, it will give me 0.

I have the chi, and then this bunch of derivatives dt plus p alpha over m p alpha plus

f alpha d by dp alpha acting on f. And that has to be 0.

STUDENT: So alpha stands for x, y, z?

PROFESSOR: Yes, alpha stands for the three components x, y, and z throughout this lecture. And

summation over a repeated index is assumed. All right, so now what I want to do is

to move this chi so that the derivatives act on both of them. So I'll simply write the

integral of dqp-- if you like, this bunch of derivatives that we call L acting on the

combination chi f. But a derivative of f chi gives me f prime chi. But also it keeps me

chi prime f that I don't have here. So I have to subtract that.

And why did I do that? Because now I end up with integrals that involve integrating

over f against something. So let's think about these typical integrals. If I take the

integral over momentum of f of p and q and t-- remember, f was the one particle

density. So I'm integrating, let's say, at a particular position in space over all

momentum.

So it says, I don't care what momentum. I just want to know whether there's a

particle here. So what is that quantity? That quantity is simply the density at that

location.

Now suppose I were to integrate this against some other function, which could

depend on p, q, and t, for example? I use that to define an average. So this is going

to be defined to be the average of O at that location q and t. So for example, rather
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than just calculating whether or not there are particles here, I could be asking, what

is the average kinetic energy of the particles that are here? Then I would integrate

this against p squared over 2m. And this average would give me the local

expectation value of p squared over m, just a normalization n so that it's

appropriately normalized.

So with this definition, I can write the various terms that I have over here. So let me

write it a little bit more explicitly. What do we have? We have integral d cubed p. We

have this bunch of derivatives acting on chi f minus f times this bunch of derivatives

acting on chi.

So let's now look at things term by term. The first term is a time derivative. The time

derivative I can take outside the integral. Once I take the time derivative outside the

integral, what is left? What is left is the integral of chi f, exactly what I have here. O

has been replaced by chi. So what I have is the time derivative of n expectation

value of chi using this definition.

Let's look at the next term. The next term, these derivatives are all over position.

The integration is over momentum. I can take it outside. So I can write it as d alpha.

And then I have a quantity that I'm integrating against f. So I will get n times this

local average of that quantity. What's that quantity? It's p alpha over m times chi.

What's the third term? The third term is actually an integral over momentum. But I'm

integrating over momentum. So again, you can sort of remove things to boundaries

and convince yourself that that integral will not give you a contribution.

The next bunch of terms are simply directly this-- f integrated against something. So

they're going to give me minus n times the various averages involved-- d t chi minus

n, the average of p alpha over m, the alpha chi. And then f alpha I can actually take

outside, minus n f alpha, the average of d chi by d p alpha. And what we've

established is that that whole thing is 0 for quantities that are conserved under

collisions.

So why did I do all of that? It's because solving the Boltzmann equation in six
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dimensional phase space with all of its integrations and derivatives is very

complicated. But really, the things that are slowly relaxing are quantities that are

conserved collisions, such as densities, average momentum, et cetera. And so I can

focus on variations of these through this kind of equation.

Essentially, what that will allow me to do is to construct what are known as

hydrodynamic equations, which describe the time evolution of slow variables of your

system, the variables that are kind of relevant to making thermodynamic

observations, as opposed to variables that you would be interested in if you're

thinking about atomic collisions.

So what I need to do is to go into that equation and pick out my conserved

quantities. So what are the conserved quantities, and how can I describe them by

some chi? Well, we already saw this when we were earlier on trying to find some

kind of a solution to the H by dt equals 0. We said that log f has to be the sum of

collision conserved quantities. And we identified three types of quantities.

One of them was related to the number conservation. And essentially, what you

have is that 1 plus 1 equals to 1 plus 1. So it's obvious. The other is momentum.

And there are three components of this-- px, py, pz.

And the third one is the kinetic energy, which is conserved in collisions. In a

potential, clearly the kinetic energy of a particle changes as a function of position.

But within the short distances of the collisions that we are interested in, the kinetic

energy is a conserved quantity.

So my task is to insert these values of chi into that equation and see what

information they tell me about the time evolution of the corresponding conserved

quantities. So let's do this one by one. Let's start with chi equals to 1.

If I put chi equals to 1, all of these terms that involve derivatives clearly needed to

vanish. And here, I would get the time derivative of the density. And from here, I

would get the alpha n expectation value of p alpha over m. We'll give that a name.

We'll call that u alpha. So I have introduced u alpha to be the expectation value of p
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alpha over m. And it can in principle depend on which location in space you are

looking at.

Somebody opens the door, there will be a current that is established. And so there

will be a local velocity of the air that would be different from other places in the

room. And that's all we have. And this is equal to 0. And this is of course the

equation of the continuity of the number of particles. You don't create or destroy

particles. And so this density has to satisfy this nice, simple equation.

We will sometimes rewrite this slightly in the following way. This is the derivative of

two objects. I can expand that and write it as dt of n plus, let's say, u alpha d alpha

of n. And then I would have a term that is n d alpha u alpha, which I will take to the

other side of the equation.

Why have I done that? Because if I think of n as a function of position and time--

and as usual, we did before define a derivative that moves along this streamline--

you will have both the implicit time derivative and the time derivative because the

stream changes position by an amount that is related to velocity.

Now, for the Liouville equation, we have something like this, except that the Liouville

equation, the right hand side was 0. Because the flows of the Liouville equation, the

Hamiltonian flows, were divergenceless. But in general, for a compressable system,

such as the gas in this room, the compressibility is indicated to a nonzero

divergence of u. And there's a corresponding term on the right hand side.

So that's the first thing we can do. What's the second thing we can do? I can pick p-

- let's say p beta, what I wrote over there. But I can actually scale it. If p is a

conserved quantity, p/m is also a conserved quantity.

Actually, as far as this chi is concerned, I can add anything that depends on q and

not p. So I can subtract the average value of this quantity. And this is conserved

during collisions. Because this part is the same thing as something that is related to

density. It's like 1 plus 1 equals to 1 plus 1. And p over beta is conserved also.

So we'll call this quantity that we will use for our candidate chi as c beta. So
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essentially, it's the additional fluctuating speed, velocity that the particles have, on

top of the average velocity that is due to the flow. And the reason maybe it's useful

to do this is because clearly the average of c is 0. Because the average of p beta

over m is u beta. And if I do that, then clearly at least the first thing in the equation I

don't have to worry about. I have removed one term in the equation.

So let's put c beta for chi over here. We said that the first term is 0. So we go and

start with the second term. What do I have? I have d alpha expectation value of c

beta.

And then I have p alpha over m. Well, p alpha over m is going to be u alpha plus c

alpha. So let's write it in this fashion-- u alpha plus c alpha for p alpha over m. And

that's the average I have to take.

Now let's look at all of these terms that involve derivatives. Well, if I want to take a

time derivative of this quantity, now that I have introduced this average, there is a

time derivative here. So the average of the time derivative of chi will give me the

time derivative from u beta.

And actually the minus sign will cancel. And so I will have plus n, the expectation

value of d-- well, there's no expectation value of something like this. When I

integrate over p, there's no p dependence. So it's just itself. So it is n dt of u beta.

OK, what do we have for the next term? Let's write it explicitly. I have n. p alpha

over m I'm writing as u alpha plus c alpha. And then I have the position derivative of

c beta. And that goes over here. So I will get d alpha of u beta with a minus sign. So

this becomes a plus.

The last term is minus n f alpha. And I have to take a derivative of this object with

respect to p alpha. Well, I have a p here. The derivative of p beta with respect to p

alpha gives me delta alpha beta. So this is going to give me delta alpha beta over

m. And the whole thing is 0.

So let's rearrange the terms over here. The only thing that I have in the

denominator is a 1/m. So let me multiply the whole equation by m and see what
8



happens. This term let's deal with last. This term, the first term, becomes nmdt of u

beta. The change in velocity kind of looks like an acceleration.

But you have to be careful. Because you can only talk about acceleration acting for

a particle. And the particle is moving with the stream. OK, and this term will give me

the appropriate derivative to make it a stream velocity.

Now, when I look at this, the average of c that appears here will be 0. So the term

that I have over there is u alpha d alpha u beta. There's no average involved. It will

give me n. m is common, so I will get u alpha d alpha u beta, which is nice. Because

then I can certainly regard this as one of these stream derivatives.

So these two terms, the stream derivative of velocity with time, times mass, mass

times the density to make it mass per unit volume, looks like an acceleration. So it's

like mass times acceleration. Newton's law, it should be equal to the force.

And what do we have if we take this to the other side of the equation? We have f

beta. OK, good, so we have reproduced Newton's equation. In this context, if we're

moving along with the stream, mass times the acceleration of the group of particles

moving with the stream is the force that is felt from the external potential.

But there's one other term here. In this term, the term that is uc will average to 0,

because the average of u is 0. So what I will have is minus-- and I forgot to write

down an n somewhere here. There will be an n. Because all averages had this

additional n that I forgot to put.

I will take it to the right hand side of the equation. And it becomes d by dq alpha of

n. I multiply the entire equation by m. And then I have the average of c alpha c beta.

So what happened here? Isn't force just the mass times acceleration? Well, as long

as you include all forces involved.

So if you imagine that this room is totally stationary air, and I heat one corner here,

then the particles here will start to move more rapidly. There will be more pressure

here. Because pressure is proportional to temperature, if you like. There will be
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more pressure, less pressure here. The difference in pressure will drive the flow.

There will be an additional force.

And that's what it says. If there's variation in these speeds of the particles, the

change in pressure will give you a force. And so this thing, p alpha beta, is called

the pressure tensor. Yes.

STUDENT: Shouldn't f beta be multiplied by n, or is there an n on the other side of that?

PROFESSOR: There is an n here that I forgot, yes. So the n was in the first equation, somehow got

lost.

STUDENT: So the pressure is coming from the local fluctuation?

PROFESSOR: Yes. And if you think about it, the temperature is also the local fluctuation. So it has

something to do with temperature differences. Pressure is related to temperature.

So all the things are connected. And in about two minutes, I'll actually evaluate that

for you, and you'll see how. Yes.

STUDENT: Is the pressure tensor distinct from the stress tensor?

PROFESSOR: It's the stress tensor that you would have for a fluid. For something more

complicated, like an elastic material, it would be much more complicated-- not much

more complicated, but more complicated. Essentially, there's always some kind of a

force per unit volume depending on what kind of medium you have. And for the gas,

this is what it is. Yes.

STUDENT: So a basic question. When we say u alpha is averaged, averaged over what? Is it

by the area?

PROFESSOR: OK, this is the definition. So whenever I use this notation with these angles, it means

that I integrated over p. Why do I do that? Because of this asymmetry between

momenta and collision and coordinates that is inherent to the Boltzmann equation.

When we wrote down the Liouville equation, p and q were completely equivalent.

But by the time we made our approximations and we talked about collisions, et
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cetera, we saw that momenta quickly relax. And so we can look at the particular

position and integrate over momenta and define averages in the sense of when you

think about what's happening in this room, you think about the wind velocity here

over there, but not fluctuations in the momentum so much, OK?

All right, so this clearly is kind of a Navier-Stokes like equation, if you like, for this

gas. That tells you how the velocity of this fluid changes. And finally, we would need

to construct an equation that is relevant to the kinetic energy, which is something

like p squared over 2m.

And we can follow what we did over here and subtract the average. And so

essentially, this is kinetic energy on top of the kinetic energy of the entire stream.

This is clearly the same thing as mc squared over 2, c being the quantity that we

defined before.

And the average of mc squared over 2 I will indicate by epsilon. It's the heat

content. Or actually, let's say energy density. It's probably better. So now I have to

put mc squared over 2 in this equation for chi and do various manipulations along

the lines of things that I did before. I will just write down the final answer.

So the final answer will be that dt of epsilon. We've defined dt. I move with the

streamline. So I have dt plus u alpha d alpha acting on this density, which is a

function of position and time. And the right hand side of this will have two terms.

One term is essentially how this pressure kind of moves against the velocity, or the

velocity and pressure are kind of hitting against each other. So it's kind of like if you

were to rub two things-- "rub" was the word I was looking. If you were to rub two

things against each other, there's heat that is generated.

And so that's the term that we are looking at. So what is this u alpha beta? u alpha

beta-- it's just because p alpha beta is a symmetric object. It doesn't make any

difference if you exchange alpha and beta. You symmetrize the derivative of the

velocity. And sometimes it's called the rate of strain.

And there's another term, which is minus 1/n d alpha of h alpha. And for that, I need
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to define yet another quantity, this h alpha, which is nm over 2 the average of 3 c's,

c squared and then c alpha. And this is called the heat transport.

So for a simpler fluid where these are the only conserved quantities that I have, in

order to figure out how the fluid evolves over time, I have one equation that tells me

about how the density changes. And it's related to the continuity of matter. I have

one equation that tells me how the velocity changes.

And it's kind of an appropriately generalized version of Newton's law in which mass

times acceleration is equated with appropriate forces. And mostly we are interested

in the forces that are internally generated, because of the variations in pressure.

And finally, there is variations in pressure related to variations in temperature. And

they're governed by another equation that tells us how the local energy density,

local content of energy, changes as a function of time. So rather than solving the

Boltzmann equation, I say, OK, all I need to do is to solve these hydrodynamic

equations. Question?

STUDENT: Last time for the Boltzmann equation, [INAUDIBLE].

PROFESSOR: What it says is that conservation laws are much more general. So this equation you

could have written for a liquid, you could have written for anything. This equation

kind of looks like you would have been able to write it for everything. And it is true,

except that you wouldn't know what the pressure is. This equation you would have

written on the basis of energy conservation, except that you wouldn't know what the

heat transport vector is.

So what we gained through this Boltzmann prescription, on top of what you may just

guess on the basis of conservation laws, are expressions for quantities that you

would need in order to sort these equations, because of the internal pressures that

are generated because of the way that the heat is flowing.

STUDENT: And this quantity is correct in the limit of--

PROFESSOR: In the limit, yes. But that also really is the Achilles' heel of the presentation I have

given to you right now. Because in order to solve these equations, I should be able
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to put an expression here for the pressure, and an expression here for the h. But

what is my prescription for getting the expression for pressure and h? I have to do

an average that involves the f. And I don't have the f.

So have I gained anything, all right? So these equations are general. We have to

figure out what to do for the p and h in order to be able to solve it. Yes.

STUDENT: In the last equation, isn't that n epsilon instead of epsilon?

PROFESSOR: mc squared over 2-- I guess if I put here mc squared over 2, probably it is nf.

STUDENT: I think maybe the last equation it's n epsilon, the equation there.

PROFESSOR: This equation is OK. OK, so what you're saying-- that if I directly put chi here to be

this quantity, what I would need on the left hand side of the equations would involve

derivatives of n epsilon. Now, those derivatives I can expand, write them, let's say,

dt of n epsilon is epsilon dt of n plus ndt of epsilon.

And then you can use these equations to reduce some of that. And the reason that I

didn't go through the steps that I would go from here to here is because it would

have involved a number of those cancellations. And it would have taken me an

additional 10, 15 minutes.

All right, so conceptually, that's the more important thing. We have to find some way

of doing these things. Now, when I wrote this equation, we said that there is some

kind of a separation of time scales involved in that the left hand side of the equation,

the characteristic times are order of the time it takes for a particle to, say, go over

the sides of the box, whereas the collision times, 1 over tau x, are such that the right

hand side is much larger than the left hand side.

So as a 0-th order approximation, what I will assume is that the left hand side is so

insignificant that I will set it to 0. And then my approximation for the collision is the

thing that essentially sets this bracket to 0. This is the local equilibrium that we wrote

down before.
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So that means that I'm assuming a 0-th order approximation to the solution of the

Boltzmann equation. And very shortly, we will improve up that. But let's see what

this 0-th order approximation gives us, which is-- we saw what it is. It was essentially

something like a Gaussian in momentum.

But the coefficient out front of it was kind of arbitrary. And now that I have defined

the integral over momentum to be density, I will multiply a normalized Gaussian by

the density locally. And I will have an exponential.

And average of p I will shift by an amount that depends on position. And I divide by

some parameter we had called before beta. But that beta I can rewrite in this

fashion. So I have just rewritten the beta that we had before that was a function of q

and t as 1 over kBT. And this has to be properly normalized. So I will have 2 pi

mkBT, which is a function of position to the 3/2.

And you can check that the form that I have written here respects the definitions

that I gave, namely that if I were to integrate it over momentum, since the

momentum part is a normalized Gaussian, I will just get the density. If I were to

calculate the average of p/m, I have shifted the Gaussian appropriately so that the

average of p/m is the quantity that I'm calling u.

The other one-- let's check. Essentially what is happening here, this quantity is the

same thing as mc squared over 2kT if I use the definition of c that I have over there.

So it's a Gaussian weight. And from the Gaussian weight, you can immediately see

that the average of c alpha c beta, it's in fact diagonal. It's cx squared, cy squared.

So the answer is going to be delta alpha beta. And for each particular component, I

will get kT over m.

So this quantity that I was calling epsilon, which was the average of mc squared

over 2, is essentially multiplying this by m/2 and summing over delta alpha alpha,

which gives me a factor of 3. So this is going to give me 3/2 kT. So really, my

energy density is none other than the local 3/2 kT. Yes?

STUDENT: So you've just defined, what is the temperature. So over all previous derivations, we
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didn't really use the classical temperature. And now you define it as sort of average

kinetic energy.

PROFESSOR: Yeah, I have introduced a quantity T here, which will indeed eventually be the

temperature for the whole thing. But right now, it is something that is varying locally

from position to position. But you can see that the typical kinetic energy at each

location is of the order of kT at that location.

And the pressure tensor p alpha beta, which is nm expectation value of c alpha c

beta, simply becomes kT over m-- sorry, nKT delta alpha beta. So now we can sort

of start. Now probably it's a better time to think about this as temperature. Because

we know about the ideal gas type of behavior where the pressure of the ideal gas is

simply density times kT.

So the diagonal elements of this pressure tensor are the things that we usually think

about as being the pressure of a gas, now at the appropriate temperature and

density, and that there are no off diagonal components here. I said I also need to

evaluate the h alpha. h alpha involves three factors of c.

And the way that we have written down is Gaussian. So it's symmetric. So all odd

powers are going to be 0. There is no heat transport vector here.

So within this 0-th order, what do we have? We have that the total density variation,

which is dt plus u alpha d alpha acting on density, is minus nd alpha u alpha. That

does not involve any of these factors that I need.

This equation-- let's see. Let's divide by mn. So we have Dt of u beta. And let's

again look at what's happening inside the room. Forget about boundary conditions

at the side of the box. So I'm going to write this essentially for the case that is inside

the box. I can forget about the external force. And all I'm interested in is the internal

forces that are generated through pressure.

So this is dt plus u alpha d alpha of u beta. I said let's forget the external force. So

what do we have? We have the contribution that comes from pressure. So we have

minus the alpha. I divided through by nm. So let me write it correctly as 1 over nm. I
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have the alpha. My pressure tensor is nkT delta alpha beta.

Delta alpha beta and this d alpha, I can get rid of that and write it simply as d beta.

So that's the equation that governs the variations in the local stream velocity that

you have in the gas in response to the changes in temperature and density that you

have in the gas.

And finally, the equation for the energy density, I have dt plus u alpha d alpha. My

energy density is simply related to this quantity T. So I can write it as variations of

this temperature in position. And what do I have on the right hand side?

I certainly don't have the heat transport vectors. So all I have to do is to take this

diagonal p alpha beta and contract it with this strain tensor u alpha beta. So the only

term that I'm going to get after contracting delta alpha beta is going to be d alpha u

alpha.

So let's make sure that we get the factors right. So I have minus p alpha beta is nkT

d alpha u alpha. So now we have a closed set of equations. They tell me how the

density, temperature, and velocity vary from one location to another location in the

gas. They're completely closed. That's the only set of things that come together.

So I should be able to now figure out, if I make a disturbance in the gas in this room

by walking around, by talking, by striking a match, how does that eventually, as a

function of time, relax to something that is uniform? Because our expectation is that

these equations ultimately will reach equilibrium. That's essentially the most

important thing that we deduce from the Boltzmann equation, that it was allowing

things to reach equilibrium. Yes.

STUDENT: For the second equation, that's alpha? The right side of the second equation?

PROFESSOR: The alpha index is summed over.

STUDENT: The right side. Is it the derivative of alpha or beta? Yeah, that one.

PROFESSOR: It is beta. Because, you see, the only index that I have left is beta. So if it's an index
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by itself, it better be beta. How did this index d alpha become d beta? Because the

alpha beta was delta alpha beta.

STUDENT: Also, is it alpha or is it beta?

PROFESSOR: When I sum over alpha of d alpha delta alpha beta, I get d beta. Yes.

STUDENT: Can I ask again, how did you come up with the f0? Why do you say that option?

PROFESSOR: OK, so this goes back to what we did last time around. Because we saw that when

we were writing the equation for the hydt, we came up with a factor of what that

was-- this multiplying the difference of the logs. And we said that what I can do in

order to make sure that this equation is 0 is to say that log is additive in conserved

quantities, so log additive in conserved quantities.

I then exponentiate it. So this is log of a number. And these are all things that are,

when I take the log, proportional to p squared and p, which are the conserved

quantities.

So I know that this form sets the right hand side of the Boltzmann equation to 0. And

that's the largest part of the Boltzmann equation. Now what happens is that within

this equation, some quantities do not relax to equilibrium. Some-- let's call them

variations. Sometimes I will use the word "modes"-- do not relax to equilibrium.

And let's start with the following. When you have a sheer velocity-- what do I mean

by that? So let's imagine that you have a wall that extends in the x direction. And

along the y direction, you encounter a velocity field. The velocity field is always

pointing along this direction. So it only has the x component. There's no y

component or z component. But this x component maybe varies as a function of

position.

So my ux is a function of y. This corresponds to some kind of a sheer. Now, if I do

that, then you can see that the only derivatives that would be nonzero are

derivatives that are along the y direction. But this derivative along the y direction in

all of these equations has to be contracted typically with something else. It has to be
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contacted with u.

But the u's have no component along the y direction. So essentially, all my u's would

be of this form. Basically, there will be something like uy. Something like this would

have to be 0.

You can see that if I start with an initial condition such as that, then the equations

are that dt of n-- this term I have to forget-- is 0. Because for this, I need a

divergence. And this flow has no divergence. And similarly over here what I see as

dt of the temperature is 0. Temperature doesn't change.

And if I assume that I am under circumstances in which the pressure is uniform,

there's also nothing that I would get from here. So essentially, this flow will exist

forever. Yes.

STUDENT: Why does your u alpha d alpha n term go away? Wouldn't you get a uxdxn?

PROFESSOR: OK, let's see, you want a uxdxn. What I said is that all variations are along the y

direction.

STUDENT: Oh, so this is not just for velocity, but for everything.

PROFESSOR: Yes, so I make an assumption about some particular form. So this is the reasoning.

If these equations bring everything to equilibrium, I should be able to pick any initial

condition and ask, how long does it take to come to equilibrium?

I pick this specific type of equation in which the only variations for all quantities are

along the y direction. It's a non-equilibrium state. It's not a uniform state. Does it

come relax to equilibrium? And the answer is no, it doesn't.

STUDENT: What other properties, other than velocity, is given [INAUDIBLE]?

PROFESSOR: Density and temperature. So these equations describe the variations of velocity,

density, and temperature. And the statement is, if the system is to reach equilibrium,

I should be able to start with any initial configuration of these three quantities that I

want. And I see that after a while, it reaches a uniform state. Yes.
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STUDENT: But if your initial conditions aren't exactly that, but you add a slight fluctuation, it is

likely to grow, and it will eventually relax.

PROFESSOR: It turns out the answer is no. So I'm sort of approaching this problem from this more

kind of hand-waving perspective. More correctly, what you can do is you can start

with some initial condition that, let's say, is in equilibrium, and then do a

perturbation, and ask whether the perturbation will eventually relax to 0 or not.

And let's in fact do that for another quantity, which is the sound mode. So let's

imagine that we start with a totally nice, uniform state. There is zero velocity initially.

The density is uniform. The temperature is uniform. And then what I do is I will start

here. And I will start talking, creating a variation that propagates in this x direction.

So I generated a stream that is moving along the x direction. And presumably, as I

move along the x direction, there is a velocity that changes with position and

temperature. Now initially, I had the density. I said that was uniform. Once I make

this sound, as I move along the x direction, and the air is flowing back and forth,

what happens is that the density will vary from the uniform state. And the deviations

from the uniform state I will indicate by mu.

Similarly, the third quantity, let's assume, will have a form such as this. And

currently, I have written the most general form of variations that I can have along

the x direction. You could do it in different directions. But let's say for simplicity, we

stick with this. I haven't told you what mu theta and u are. So I have to see what

they are consistent with the equations that we have up there.

One thing that I will assume is that these things are small perturbations around the

uniform state. And uniform-- sorry, small perturbations typically means that what I

intend to do is to do a linearized approximation. So basically, what I will do is I will

essentially look at the linear version of these equations.

And again, maybe I didn't emphasize it before. Clearly these are nonlinear

equations. Because let's say you have u grad u. It's the same nonlinearity that you

have, let's say, in Navier-Stokes equation. Because you're transporting something
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and moving along with the flow.

But when you do the linearization, then these operators that involve dt plus

something like u-- I guess in this case, the only direction that is varying is x--

something like this of whatever quantity that I have, I can drop this nonlinear term.

Why? Because u is a perturbation around a uniform state. And gradients will pick up

some perturbations around the uniform state. So essentially the linearization

amounts to dropping these nonlinear components and some other things that I will

linearizer also. Because all of these functions here, the derivatives act on product of

n temperature over here. These are all nonlinear operations.

So let's linearize what we have. We have that Dt of the density-- I guess when I take

the time derivative, I get n bar the time derivative of the quantity that I'm calling mu.

And that's it. I don't need to worry about the convective part, the u dot grad part.

That's second order.

On the right hand side, what do I have? I have ndu. Well, divergence of u is already

the first variation. So for n, I will take its 0-th order term. So I have minus n bar dxux.

The equation for ux, really the only component that I have, is dt of ux. Actually, let's

write down the equation for temperature. Let's look at this equation. So I have that

dt acting on 3/2 kB times T. I will pick up T bar. And then I would have dt of theta.

What do I have on the right hand side? I have a derivative here. So everything else

here I will evaluate at the 0-th order term, so n bar k T bar dxux. So I can see that I

can certainly divide through n bar here. And one of my equations becomes dt of mu

is minus dxux.

But from here, I see that dxux is also related once I divide by kT to 3/2 dt theta. And

I know this to be true. And I seem to have an additional factor of 1 over n bar here.

And so I made the mistake at some point, probably when I wrote this equation.

STUDENT: It's the third equation.

PROFESSOR: Yeah, so this should not be here. And that should not be here means that I probably
20



PROFESSOR:

made a mistake here. So this should be a 1/n, sorry. There was indeed a 1/n / here.

And there is no factor here.

So we have a relationship between the time derivatives of these variations in density

and dx of ux. Fine, what does the equation for u tell us? It tells us that dt of ux is

minus 1 over m n bar. Because of the derivative, I can set everything at the

variation. And what do I have here? I have d by dx of n bar kB T bar. And if I look at

the variations, I have 1 plus mu plus theta. The higher order terms I will forget. Yes.

STUDENT: Shouldn't that be plus 3/2 dt theta?

PROFESSOR: It should be plus, yes. There is a minus sign here. And that makes it plus. So the n

bar we can take outside. This becomes minus kT over m at space variations of mu

plus theta.

Now, what we do is that what I have here is information about the time derivatives of

mu and theta. And here I have space derivatives. So what do I do? I basically apply

an additionally dt here, which we'll apply here. And then we can apply it also here.

And then we know how dt of mu and dt of theta are related to dx of ux. The minus

signs disappear. I have kB T bar divided by m. I have dt of mu is dxux. dt of theta is

2/3 dxux. So I will get 1 plus 2/3 dx squared of ux.

So the second derivative of ux in time is proportional to the second derivative of ux

in space. So that's the standard wave equation. And the velocity that we have

calculated for these sound waves is 5/3 kB the average T over m.

So that part is good. These equations tell me that if I create these disturbances,

there are sound waves, and we know there are sound waves. And sound waves will

propagate with some velocity that is related up to some factors to the average

velocity of the gas particles.

But what is not good is that, according to this equation, if my waves, let's say,

bounce off perfectly from the walls, they will last in this room forever. So you should

still be hearing what I was saying last week and the week before. And clearly what
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we are missing is the damping that is required.

So the statement is that all of these equations are fine. They capture a lot of the

physics. But there is something important that is left out in that there are some

modes-- and I describe two of them here-- that basically last forever, and don't

come to equilibrium. But we said that the Boltzmann equation should eventually

bring things to equilibrium.

So where did we go wrong? Well, we didn't solve the Boltzmann equation. We

solved an approximation to the Boltzmann equation. So let's try to do better.

STUDENT: I'm sorry, but for the last equation, you took another derivative with respect to t.

PROFESSOR: Yes, I took a derivative with respect to t. And it noted that the derivative with respect

to t of these quantities mu is related to derivative with respect to x or u. And there

was one other derivative with respect to x already, making it two derivatives. So this

is the kind of situation that we are facing. Yes.

STUDENT: Is the 5/3 k in any way related to the heat capacity ratio of [INAUDIBLE] gas?

PROFESSOR: Yes, that's right, yes. So there are lots of these things that are implicit in these

questions. And actually, that 3/2 is the same thing as this 3/2. So you can trace a lot

of these things to the Gaussian distribution. And they appear in cp versus cv and

other things. Yes.

STUDENT: Just clarifying something-- this v is different from the mu in the top right?

PROFESSOR: Yes, this is v, and that's mu. This v is the velocity of the sound. So I defined this

combination, the coefficient relating the second derivatives in time and space as the

sound velocity. So let's maybe even-- we can call it vs. All right?

STUDENT: And how did you know that that is the [INAUDIBLE] oscillation, the solution that you

got?

PROFESSOR: Because I know that the solution to dx squared anything is v squared-- sorry, v

squared dx squared anything is dt squared anything, is phi is some function of x
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minus vt. That is a pulse that moves with uniform velocity is a solution to this

equation.

So we want to do better. And better becomes so-called first order solution. Now, the

kind of equation that we are trying to solve at the top is something that its algebraic

analog would be something like this-- 2 times x. It's a linear on the left hand side, is

quadratic on the right hand side. Let's write it in this form-- except that the typical

magnitude of one side is much larger than the other side, so let's say something like

this.

So if I wanted to solve this equation, I would say that unless x is very close to 2, this

10 to the 6 will blow things up. So my x0 is 2. And that's what we have done. We've

solved, essentially, the right hand side of the equation.

But I can get a better solution by taking 2 and saying there's a small variation to that

that I want to calculate. And I substitute that into the original equation. On the left

hand side, I will get 2 times 2, 1 plus epsilon. On the right hand side, I will get 10 to

the sixth. And then essentially, I subtract 2 plus 2 epsilon squared from 5. What do I

get? I will get 4 epsilon plus 4 epsilon squared.

Then I say that epsilon is small. So essentially, I linearize the right hand side. I

forget about that. I say that I keep the epsilon here, because it's multiplying 10 to

the 6. But the epsilon on the other side is multiplying nothing. So I forget that. So

then I will have my epsilon to be roughly, I don't know, 2 times 2 divided by 4 times

10 to the 6. So I have gotten the correction to my first 0-th order solution to this first

order.

Now we will do exactly the same thing, not for our algebraic equation, but for our

Boltzmann equation. So for the Boltzmann equation, which was Lf is C of ff, we said

that the right hand side is larger by a factor of 1 over tau x compared to the left

hand side. And so what we did was we found a solution f0 that when we put in the

collision integral, the answer was 0.

Now I want to have a better solution that I will call f1. Just like I did over there, I will
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assume that f0 is added to a small function that I will call g. And then I substitute this

equation, this thing, to the equation. So when I substitute, I will get L acting on f0 1

plus g.

Now, what did I do over here? On the left hand side, I ignored the first order term.

Because I expect the first order term to be already small. And the left hand side is

already small. So I will ignore this. And on the right hand side, I have to linearize. So

I have to put f0 1 plus g, f0 1 plus g.

Essentially what I have to do is to go to the collisions that I have over here and write

for this f0 1 plus g. There are four of such things. Now, the 0-th order term already

cancels. Because f0 f0 was f0 f0 by the way that I constructed things.

And then I can pull out one factor of f0 out of the integration. So when I linearize

this, what I will get is something like f0 that goes on the outside. I have the integral

d2p2 d2b v2 minus v1. And then I have something like g of p1 plus g of p2 minus g

of p1 prime minus g of p2 prime. So basically, what we have done is we have

defined a linearized version of the collision operator that is now linear in this variable

g.

Now in general, this is also still, although a linear operator, much simpler than the

previous quadratic operator-- still has a lot of junk in it. So we are going to simply

state that I will use a form of this linearized approximation that is simply g over tau,

get rid of all of the integration. And this is called the single collision time

approximation.

So having done that, what I have is that the L acting on f0 on the left hand side is

minus f0 g over tau x on the right hand side. And so I can immediately solve for g.

Because L is a first order derivative operator.

My g is minus tau x, the Liouville operator acting on f0-- sorry, log of f0. I divide it

through by f0. So derivative of f0 divided by f0 is the derivative acting on log of f0.

So all I need to do is to essentially do the operations involved in taking these

derivatives. Let's say we forget about the force. Because we are looking in the
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middle of the box, acting on log of what I had written before. So what I have is log of

n minus p minus mu squared over 2mkT. Remember, ukTn are all functions of

position. So there will be derivatives involved here.

And I will just write down what the answer is. So the answer becomes minus tau x.

You would have, once you do all of these derivatives and take advantage of the

equations that you have written before-- so there's some lines of algebra involved.

The final answer is going to be nm c alpha c beta minus-- I should really look at this.

m over kT c alpha c beta minus delta alpha beta over 3 c squared u alpha beta, and

then mc squared over 2kT minus 5/2 c alpha over T d alpha of T. Yes.

STUDENT: Sorry, what's the thing next to the c squared, something alpha beta?

PROFESSOR: Delta alpha beta, sorry. So there is a well-defined procedure-- it's kind of

algebraically involved-- by which more or less in the same fashion that you can

improve on the algebraic solution, get a better solution than the one that we had

that now knows something about these relaxations. See, the 0-th order solution that

we had knew nothing about tau x. We just set tau x to be very small, and set the

right hand side to 0. And then nothing relaxed.

Now we have a better solution that involves explicitly tau x. And if we start with that,

we'll find that we can get relaxation of all of these modes once we calculate p alpha

beta and h alpha with this better solution. We can immediately, for example, see

that this new solution will have terms that are odd. There is c cubed term here.

So when you're evaluating this average, you will no longer get 0. Heat has a chance

to flow with this improved equation. And again, whereas before our pressure was

diagonal because of these terms, we will have off diagonal terms that will allow us to

relax the shear modes. And we'll do that next.
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