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PROFESSOR: OK, let's start. So we were talking about melting in two dimensions, and the picture

that you had was something like a triangular lattice, which at zero temperature has

particles sitting at precise sites-- let's say, on this triangular lattice-- but then at finite

temperature, the particles will to start to deform. And the deformations were

indicated by a vector u.

And the idea was that this is like an elastic material, as long as we're thinking about

these long wavelength deformations. u and the energy costs can be written for an

isotropic material in two dimensions in terms of two invariants. And traditionally, it is

written in terms of the so called lame coefficients, mu and lambda.

Where this uij, which is the strain, is obtained by taking derivatives of the

deformation, the iuj, and symmetrizing it. This symmetrization essentially eliminates

an energy at a cost for rotations.

And then because of this simple quadratic translation of invariant form, we could

also express this in terms of fullier mode. And I'm going to write the fullier

description slightly differently than last time.

Basically, this whole form can be written as u plus 2 lambda over 2 q dot u tilde of q

squared. And the other term-- other than previously I had written things in terms of

q dot u and q squared u squared-- we write it in terms of q crossed with u tilde of q

squared.

Essentially, you can see that this ratifies that they're going to have modes that are in

the direction of q, the longitudinal modes. Cost is nu plus 2 lambda, and those that

are transfers or orthogonal to the direction of q, whose cost is just mu.
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And clearly if I were to go into real space, this is kind of related to a divergence of u.

And the divergence of u corresponds to essentially squeezing or expanding this

deformation.

So what these measures is essentially the cost of changing the density. And this

combination is related to the bark modulus. You have that even for a liquid. So if

you have a liquid, you try to squeeze it. There will be a bulk energy cost.

And this term, which in the real space is kind of related to kern u, you would say is

corresponding to making the rotations. So if you try to rotate this material locally,

then the corresponding sheer cost of the formation has a cost that is indicated by

mu, the sheer modulus.

And basically what really makes a solid is this term. Because as I said, a liquid also

has the bark modulus, but lacks the resistance to try to sheer it, which is captured

by this, that is unique and characteristic of a solid.

So this is the energy cost. The other part of this whole story is that this structure has

order. And we can characterize that order which makes it distinct from a liquid or

gas a number of ways.

One was to do an x-ray scattering, and then you would see the back peaks. And

really that type of order is translational. And you characterize that by an order

parameter. It's kind of like a spin that you have in the case of a magnet being up or

down.

In this case, this object was e to the i g dot u-- the deformation that you have that's

on location r. And then these g's are chosen to be the inverse lattice vectors.

It doesn't really matter whether I write here u of r or the actual position. Because the

actual positions starts at zero temperature, we devalue r 0, such that the dot

product of that g is a multiple of 2pi. And so essentially, that's what captures this.

Clearly, if I start with a zero temperature picture and just move this around, the
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phase of this order parameter over here will change, but it will be the same across

the system. And so this is long range correlation that is present at zero temperature,

you can ask what happens to it at finite temperature.

So we can look at the row g at some position, row g star at some other position. And

so that was related to exponential of minus g squared over 2-- something like u

squared x, or u of x minus 0 squared.

And what we saw was that this thing had a characteristic that it was falling off with

distance according to some kind of power law. The exponent of this power law,

when calculated, clearly is related to this g squared. Because this is the quantity that

goes logarithmically.

And so the answer was g squared over 4 pi. Heat was dependent on these two

modes being present. So you have nu 2 nu plus lambda, and then 2 nu plus

lambda. You had a form such as this.

Now this result was obtained as long as we were treating this field, u, as just the

continuum field that satisfies this. And this result is really different, also, from the

expectation that at very high temperature the particle in a liquid should not know

anything about the particle further out in the liquid, as long as they're beyond some

small correlation links.

So we expect this to actually decay exponentially at high temperatures. And we

found that we could account for that by addition of these locations, can cause a

transition to a high temperature phase in which row g, row g star, between x and 0,

decays exponentially.

As opposed to this algebraic behavior, indicating that these locations-- once you go

to sufficiently high temperature, such that the entropy of creating and rearranging

these dislocations overcomes the large cost of creating them in the first place, then

you'll have this absence of translational order, and some kind of exponential decay

of this order parameter.

So at this stage, you may feel comfortable enough to say that addition of these
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dislocation causes our solid to melt and become a liquid. Now, I indicated, however,

that the sun also has an orientational role.

What I could do is-- at each location in the solid, I can ask how much has the angle

been deformed, and look at the bond angle. So maybe this particle moved here,

and this particle moved here. Somewhere else, the particles may have moved in a

different fashion. And the angle that was originally, say, along the x direction, had

rotated somewhere else.

And clearly, again, at zero temperature, I can look at the correlations of this angular

order, and they would be the same across the system. I can ask what happens

when I include these deformations and then the dislocations.

So in the same way that we defined the translational order parameter, I can define

an orientational order parameter. Let's call it sci at some location, r, which is e to the

i. Theta at that location r--

Except that when I look at the triangular lattice, it may be that the triangles have

actually rotated by 60 degrees or 120 degrees. And I can't really tell whether I

clicked once, zero times, twice, et cetera.

So because of this symmetry of the original lattice on their on their theta going to

theta plus 2 pi over 6, I have to use something like this that will not be modified if I

make this transformation, even at zero temperature. If I miscount some angle by 60

degrees, this will become fine.

Now I want to calculate the correlations of this theta from one part of this system to

another part of the system. So for that, what I need to do is to look at the

relationship between theta and the distortion field, u, that I told you before.

Now you can see that right on the top right corner I took the distortion field, and I

took it's derivative, and then symmetrized the result in pencil. And that

symmetrization actually removes any rotation that I would have. So in order to bring

back the notation, I just have to put a minus sign.
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And indeed, one can show that the distortion or displacement u or r across my

system-- let's call it u of x-- leads to a corresponding angular distortion, theta, at x,

which is minus one half-- let's call it z hat dotted with curve of u.

So if, rather than doing the i u j plus d j u i, if I put a minus sign, you can see that I

have the structure of a curve. In two dimensions, actually curve would be something

that would be pointing only along the z direction. And so I just make a scale on my

dot, without taking that in the z direction.

And so you can do some distortion, and convince yourself that for each distortion

you will get an angle that is this.

AUDIENCE: Do we need some kind of thermalization to fix the dimensions of this? Because that

can go u has dimensions of fields, and u--

PROFESSOR: I'm only talking about two dimensions. And in any case, you can see that u is a

distortion-- is a displacement-- the gradient is reduced by the displacement, so this

thing is dimensionless as long as you have these dimensions.

AUDIENCE: Sorry.

PROFESSOR: Yes?

AUDIENCE: That's a 2, right? Not a c?

PROFESSOR: That's a 2. It's the same 2 that I have for the definition of the strain. Rather than a

plus, you put a minus.

AUDIENCE: So can we think of these as two sets of Goldstone modes, or is that not a way to

interpret it? Is it like two order parameters? I mean, you have a think that has u

dependence, but--

PROFESSOR: OK, so let's look at this picture over here. You do have two sets of Goldstone modes

corresponding to longitudinal transfers. You can see that this curve is the thing is

that I call the angle. So if you like, you can put the angle over here.
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But the difference between putting an angle here, and this term, is that in terms of

the angle, there is no q dependence. So it is not a ghost. Because the cost of

making a distortion of wave number q does not vanish as q squared works.

All right, so then I can look at the correlation between, say, sci of x, sci star of zero.

And what I will be calculating is expectation value of e to the i 6. And then I will have

this factor of--

So let me write it in this fashion. Theta of x minus theta of 0. Since u is Gaussian

distributed, theta in the Gaussian distributor. So for any Gaussian distributed entity,

we can write the exponential of e to the something as its average as exponential of

minus 1/2 the average of whatever is in the exponent.

So I will get 36 divided by 2. I do have the expectation value of delta theta squared.

But delta theta is related up to this factor of 1/4 to some expectation value of kern u.

So I would need to calculate kern mu at x minus kern u at 0, the whole thing

squared with the Gaussian average.

Now, this entity-- clearly what I can do is to go back and look at these things in

terms of Fourier space, rather than position space. So this becomes an integral d 2

q 2 pi to the d. I will get e to the i q dot x minus 1. And then I have something like q

cross u tilde of q. And I have to do that twice.

When I do that twice, I find that the different q's are uncorrelated. So I will get,

rather than two of these integrals, one of these integrals. And because the q and q

prime are said to be the same, the product of those two factors will be the integral 2

minus 2 cosine of q dot x term that we are used to.

And so that's where the x dependence appears. And then I need the average of q

cross mu of q. And that I can read off the beta [INAUDIBLE], root the energy over

here. You can see that there is a Gaussian cost for q plus u of q squared, which is

simply 1 of a lingering variance.

So basically, this term you'll the sum of 1 over u. Now the difference between all of
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the calculations that we were doing previously, as was asked regarding Goldstone

modes-- if I was just looking at u squared, which is what I was doing up here, I

would need to put another factor of 1 over q squared [INAUDIBLE].

And then I would have the coulomb integral that would grow logarithmically. But

here you can see that the whole thing-- the cosine integrated against the constant--

will average out to 0. So I will think you have 2 over u times this integral is a

constant.

So the whole thing, at the end of the day, is exponential of-- that becomes a 9

divided by 2. There's a factor of 1 over the mu, and then I have twice the integral of

d 2 q over 2 pi squared. Which is-- you can convince yourself simply the density of

the system a number of times.

So as opposed to the translational order, which was decaying as above our lot, then

we include the phonon modes. When we include these phonon modes, we find that

the orientational order decays much more weakly. So that was falling off as I went

further and further. This, as I go further and further, eventually reaches a constant

that is less than 1, but it is something.

Using conversely proportional to temperature-- so as I go to 0 temperature, these

go to 1. And basically because this order parameter, with respect to-- well, this

measure of distortion with respect to that measure of distortion has an additional

factor of gradient. I will get an additional factor of q squared, and then everything

changes accordingly.

So orientational order is much more robust. This phase that we were calling the

analogue of a two dimensional solid had only quasi long range order. The long

range order was decaying as a power law.

Yes?

AUDIENCE: Is n dependent on the position, or--

PROFESSOR: No. So basically, if you were to remember the number of points it should be the
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same as the number of allowed fullier modes. And this goes to an integral-- 2 q over

2 pi squared-- when I put the area in two dimensions.

So the integral over whatever [INAUDIBLE] zone you have over the fullier modes is

the same thing as the number of points that you have in the original lattice, divided

by area, or 1 over the size of one of those triangles squared.

Yes?

AUDIENCE: Where is the x dependent in that expression?

PROFESSOR: OK, the x dependence basically disappears because you integrate over the cosine

of q x. And if x is sufficiently large, those fluctuations disappear.

AUDIENCE: Oh, so we're really looking at the [INAUDIBLE].

PROFESSOR: Yes, that's right. So at short distances, there are going to be some oscillations or

whatever. But it gradually-- we are interested in the long distance behavior. At very

short distances, I can't even use the continuum description for things that are three

or lattice spacings apart.

So maybe I should explicitly say that this is usually called quasi long range order,

versus this dependence, which is two long ranges.

So given that this is more robust than these forum-like fluctuations, the next

question is, well does it completely disappear when I include these locations.

So again, this calculation, based on Gaussian's, relies on just the fullier modes of

that line that I have up there. It does not include the dislocations, which, in order to

properly account, you saw that we need to look at a collections of these locations

appearing at different positions on the lattice. And they had these vectorial nature of

the fullier interactions among them.

So presumably, when I go into the base where these locations unbind-- and by

unbinding-- as I said, in the low temperature picture of the dislocations, they should
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appear very close to each other because it is costly to separate them by an amount

that grows invariably in the separation.

In the unbound phase, you have essentially a gas of dislocations that can be

anywhere. So the picture here now is that indeed this is a phase, that if I just focus

on the dislocations, there is a whole bunch of them. In a triangular lattice, they could

be pointing in any one of three directions, plus or minus.

And then there is certainly an additional contribution to the angle that comes from

the presence of these dislocations. So you calculate-- if you have a dislocation that

has inverse b, let's say at the origin, what kind of angular distortion does it cause.

And you find that it goes like v dot x, divided by the absolute value of x. This is for

one dislocation. This is the theta that you would get for that dislocation at location x.

Essentially, you can see that if I were to replace the u that I have here with the u

that was caused by dislocation, you would get something like this formula. Because

remember the u that was caused by dislocation was something like the gradient of

the log potential.

It's kind of hard to work, but maybe I'll make an attempt to write it. So let's take a

gradient of theta. Gradient of theta, if I use that formula,

you would say, OK, I have minus 1/2 z hat dot kern of something. And if I take a

gradient of the kern, the answer should be 0. But that's as long as this u is a well

defined object.

And our task was to say that this u, then you have these dislocations, is not a well

defined object, in the sense that you take the kern, and the gradient then you would

get 0. So essentially, I will transport the gradient all the way over here, and the part

of u that will survive that is the one that is characterized by this dislocation feat.

Now, you can see that this object kind of looks like a Laplacian of this distortion. It's

two the derivatives of this distortion field that had this logarithm in it. And when you
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take two derivatives of a logarithm, you get the delta function.

So if you do things correctly, you will find that this answer here becomes a sum over

i v i delta function of x minus xi. So basically, each dislocation at location x i-- again,

depending on its v being in each direction-- gives a contribution to the gradient of

theta.

And if I were to take the gradient of the expression that I have over here, the

gradient of this object is also-- this is like the field that you have for the logarithmic

potential-- will give you the data function. So that's where the similarity comes.

So the full answer comes out to be-- if you have a sum over the dislocations, the

sum over the distortion fields that each one of them is causing-- and you will have a

form such as this.

Yes?

AUDIENCE: Should the denominator be squared?

PROFESSOR: Yes, that's right. The potential goes logarithmically. The field, which is the gradient

of the potential, falls off as 1 over separation. So since I put the separation out

there, I have to put the separation squared.

So you can see that the singular part, the part that arises from dislocations-- if I

have a soup of dislocations, I can figure out what theta is. Now what I did look for--

actually, I was kind of hinting at that-- if I take the gradient of theta-- and I forgot to

put the factor of 1/2pi here-- does the 4 vertices that had charged to pi-- I had the

potential. That was 1/r. So for dislocations it becomes d/2pi.

If I take the gradient, then the gradient translates to sum over pi, the i data function

of x minus x i-- the expression that I have written over there. And if I do the fullier

transform, you see what I did over here was essentially to look at theta in fullier

space. So let's do something similar here.
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So when I do the fullier transform of this, I will get pi q-- the fullier transform of this

angular feat. And on the right hand side, what I would get is essentially the fullier

transform of the field of dislocations. So I have defined my v of q to be sum over i

into the i q dot position of the i dislocation, the vector that characterizes the

dislocation.

And it would make sense to also tap into the normalization that gives 1 over the

square root of area. If you don't do that, then at some other point you have to worry

about the normalization.

So if I just multiply both sides by q-- and I think I forgot the minus sign throughout,

which is not that important-- but theta tilde of q becomes i q dot b of q, divided--

maybe I should've been calling this b tilde-- divided by q squared.

So this is important. Essentially, you take the collection of dislocations in this picture

and you calculate what the fullier transform is, call that the tilde of q. Essentially, you

divide by 1 factor of q, and you can get the corresponding angle of feat.

Now what I needed to evaluate for here was the average of theta tilde of q squared.

And you can see that if I write this explicitly, let's say, q i for be tilde i 4, then the two

of them I will get q beta b tilde of beta. And then I would have a q to the side.

And the average over here becomes the average over all contributions of these

dislocations that I can put across my system. Now, explicitly I'm interested in the

limit where q goes to 0.

So these things depend on q. What I'm interested in is the limit as q goes to 0,

especially what happens to this average. It becomes-- multiplying two of these

things together-- actually, in the limit where q goes to 0, what I have is the sum over

all of the b's.

So in the limit where q goes to 0, this becomes an integral or sum. It doesn't matter

which one of them I write. q has gone to 0, so I basically need to look at the average
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of the alpha of x, the beta of x [INAUDIBLE], divided by area.

So what is there in the numerator? We can see that in the numerator, sq goes to 0.

What I'm looking at is the sum of all of these dislocations that I have in the system.

Now the average up the sum is 0, because in all of our calculations, we've been

restricting the configurations that we moved from. Because if I go beyond that

strategy, it's going to cost too much.

But what I'm looking at is not the average of b, which is 0, but the average of b

squared, which is the variance. So essentially I have a system that has a large area,

a. It is on average neutral. And the question is, what is the variance of the net

charge.

And my claim is that the variance of the net charge is, by central limit theorem,

proportional to the area-- actually, it is proportional to the units that are independent

from each other. So roughly I would expect that in this high temperature phase, I

have a correlation that is c.

And within each portion of side c, will be neutral. But when I go within things that are

more than c apart, there's no reason to maintain the strategy. So overall I have

something like throwing coins, but at each one of them, the average is 0, with

probability being up or down.

But when I look at the variance for the entire thing, the average will be proportional

to the area in units of these things that are independent of each other. It was from

the normalization factor of 1 over area.

And these, really, I should write as a proportionality, because I don't know precisely

what the relationship between these independent sides that correlation

[INAUDIBLE]. But they have to be roughly proportional.

So what do you compute? You compute that the limit as q goes to 0, of the average

of my theta tilde of q squared is a structure such as this.

I forgot to put one more thing here. I don't expect to be any correlations between
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the x component and the y component of this answer-- the variance, the covariance

of the dislocations in one direction and the other direction-- so I put the delta

function there.

If I put this over here, I would get the q squared divided by q to the 4th. So I will get

a 1 over4 q squared. And I have the c squared and then some unknown coefficient

up here.

So it's interesting, because we started without thinking about dislocations, just in

terms of the distortion field. And we said that this object is related to the angle. And

indeed, we had this distortion, that energy cost of distortions is proportional to angle

squared. And that angle, therefore, is not the Goldstone mode because it doesn't go

like q squared.

Now we go to this other phase now, with dislocations all over the place, and we

calculate the expectation value of theta squared. And it looks like it came from a

theory that was like Goldstone modes.

So you would say that once I am in this phase, where the dislocations are unbound,

there is an effective energy cost for these changes in angle that is proportional to

the radiant of the angle squared.

So that means fullier space, this would go to k a over 2, integral into q 2 pi squared,

q squared theta tilde of q squared. So that if you had this theory, you would

definitely say that the expectation value of theta tilde of q squared is 1 over k a q

squared.

The variance is k a q squared invers. You compare those two things and you find

that once the dislocations have unbound, and there is a correlation lend that

essentially tells you how far the dislocations are talking to each other and

maintaining neutrality, that there is exactly an effective stiffness, like a Goldstone

note, for angular distortions, that is proportional to c squared.

And hence, if I were to look at the orientation of all their correlations, I would
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essentially have something like expectation value of theta q squared, which is 1

over q squared. If I fully transform that, I get the log. And so I will get something that

falls off in the distance to some other exponent, if I recall [INAUDIBLE].

If I have a true liquid-- in a liquid, again, maybe in a neighborhood of seven or eight

particles, neighbors, et cetera, they talk to each other and the orientations are

correlated. But then I go from one part of the liquid to another part of the liquid,

there is no correlation between bond angles. I expect these things to decay

exponentially.

So what we've established is that neither the phonon nor the dislocations are

sufficient to give the exponential decay that you expect for the bond. So this object

has quasi long range order, versus what I expect to happen in the liquid, which is

exponential of minus x over psi.

So the unbinding of dislocations gives rise to the new phase of matter that has this

quasi long range order in the orientations. It has no positional order. It's a kind of a

liquid crystal that is called a hexatic.

Yes?

AUDIENCE: So your correlation where you got 1 over k q squared, doesn't that assume that

you're allowing the angle to vary in minus [INAUDIBLE] when you do your

averaging? What about the restriction--

PROFESSOR: OK, so what is the variance of the angle here? There's a variance of the angle that

is controlled by this 1 over k a. So if I go back and calculate these in real space, I

will find that if I look at theta at location x minus theta at location 0, the answer is

going to go like 1 over k logarithm x.

So what it says is that if things are close enough to each other-- and this is in units

of 1/a-- up to some factor, let's say log 5, et cetera. So I don't go all the way to

infinity. The fluctuations in angle are inversely set by a parameter that we see as I

approach right after the transition is very large.
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So in the same sense that previously for the positional correlations I had the

temperature being small and inverse temperature being large, limiting the size of

the translational fluctuations, here the same thing happens for the bond angle

fluctuations. Close to the transitions, they are actually small.

So the question that you asked, you could have certainly also asked over here. That

is, when I'm thinking about the distortion field, the distortion field is certainly going to

be limited. If it becomes as big as this, then it doesn't make sense.

So given that, what sense or what justification do I have in making these Gaussian

integrals? And the answer is that while it is true that it is fluctuating, as I go to low

temperature, the degree of fluctuations is very small.

So effectively what I have is that I have to integrate over some finite interval a

function that kind of looks like this. And the fact that I replaced that with an

integration from minus infinity to infinity rather than from minus a to a just doesn't

matter.

So we know that ultimately we should get this, but so far we've only got this, so what

should we do? Well, we say OK, we encountered this difficulty before in something

that looked like an angle in the xy model-- that low temperature had power-law

decay, whereas we knew that at high temperatures they would have to have

exponential decay. And what we said was that we need these topological defects in

angle.

So what you need-- topological defects-- or in our case, theta is a bond angle. And

these topological defects in the bond angle have a name. They're called

disconnections.

And very roughly they correspond to something like this. Suppose this is the center

one of these discriminations, and then maybe next to this, here I have locally at the

distance r-- if I look at a point, I would see that the bonds that connect it to its
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neighbor have an orientation such as the one that I have indicated over here.

Now what I want to do is, as I go around and make a circuit, that this angle theta

that I have here to be 0, rotates and comes back up to 60 degrees. So essentially

what I do is I take this line and I gradually shift it around so that by the time I come

back, I have rotated by 60 degrees. It's kind of hard for me to draw that, but you can

imagine what I have to do.

So what I need to do is to have the integral over a circuit that encloses this

discrimination such that when I do a d s dotted with the gradient of the bond

orientational angle, I come back to pi over 6 times some integer. And again, I expect

the [INAUDIBLE] dislocations that correspond to minus plus 1.

Then the cost of these is obtained by taking this distortion fee, gradient of theta,

whose magnitude at a distance r from the center of this object is going to be 1 over

2 pi r times pi over 6 times whatever this integer n is. And then if I substitute this 1

over r behavior in this expression, which is the effective energy of this entity, I will

get the logarithmic cost for making a single disclination.

Which means that at low temperature, I have to create disclination pairs. And then

there will be an effective interaction between disclination pairs, that is [INAUDIBLE]

in exactly the same way that we calculated for the x y model.

So up to just this minor change that the charge of a refect is reduced by a factor of

six, this theory is identical the theory of the unbinding of the x y model [INAUDIBLE]

defects.

Yes?

AUDIENCE: Why is it pi over 6 and not 2 pi over 6?

PROFESSOR: You are right. It should be 2 pi over 6. Thank you.

Yes?
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AUDIENCE: So when you were saying that the-- so the distance of this hexatic phase would

require the dislocations to occur to [INAUDIBLE] [INAUDIBLE] orientational defects.

Is there an analogous case where-- I guess you can't have dislocations in the

orientation without the dislocation--

PROFESSOR: So if you try to make these objects in the original case, in the origin of lattice, you

will find that their cost grows actually like l squared log l, as opposed to dislocations,

whose cost only grows as log l. So these entities are extremely unlikely to occur in

the original system.

If you sort of go back and ask what they actually correspond to, if you have a picture

that you have generated on the computer, they're actually reasonably easy to

identify. Because the centers of these disclinations correspond to having points, that

have, rather than 6 neighbors, 5 or 7 neighbors.

So you generate the picture, and you find mostly you have neighborhoods with 6

neighbors, and then there's a site where there's 5 neighbours, and another site

that's 7 neighbors. 5 and 7 come more or less in pairs, and you can identify these

disclination pairs reasonably easy.

So at the end of the day, the picture that we have is something like this. We are

starting with the triangular lattice that I drew at the beginning, and you're increasing

temperature. We're asking what happens.

So this is 0 temperature. Close to 0 temperature, what we have is an entity that has

translational quasi long range order. So this quantity goes like 1 over x to this power

a to g. Whereas the orientations go to a constant.

Now, this a to g is there because there's a shear modulus. And so throughout this

phase, I have a shear modulus. The parameter that I'm calling u, I had scaled

inversely with temperature. So I have this shear modulus u that diverges once we

scale by temperature as 1 over temperature.

But then as I come down, the reduction is more than one over temperature because

I will have this effect of dislocations appearing in pairs, and the system becomes
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softer. And eventually you will find that there's a transition temperature at which the

shear modulus drops down to 0.

And we said that near this transition, there is this behavior that mu approaches mu

c, whatever it is, with something-- let's call this t 1. T 1 minus t to this exponent mu

bar which was planned to be 6963.

Now, once we are beyond this temperature t 1, then our positional correlations

decay exponentially at some correlation, like c. And this c is something that diverges

on approaching this transition.

So basically I have a c that goes up here to infinity. And the fact that if we calculate

the c, it diverges according to this strange formula that was 1 over t minus t 1 to this

exponent mu bar Very strange type of divergence.

But then, associated with the presence of this c is the fact that when you look at the

orientational correlations, they don't decay as an exponential but as a power-law 8

of c.

And this 8 of c is related to this k a, and falls off as 1 over c squared. So here it

diverges as you approach this transition.

Now, as we go further and further on, the disclinations will appear-- disclinations

with [INAUDIBLE] resolve of the angles to be parallel to each other. And there's

another transition that is [INAUDIBLE], at which this is going to suddenly go down to

0. And close to here, we have that a to c reaches the critical value of 1/4 v to square

root of-- let's call it t 2-- v the square root singularity.

And then finally we have the ordinary liquid phase, where additionally I will find that

psi 6 of x psi star 6 of 0 decays exponentially. Let's call it psi 6. And this psi 6 is

something that will diverge of this transition as an exponential of minus 1 over

square root of t minus t2.

So this is the current scenario of how melting could occur for a system of particles in
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two dimensions. If it is a continuous phase transition, it has to go through these two

transitions with the intermediate exotic phase.

Of course, it is also possible-- and typically people were seeing numerically when

they were doing hearts, spheres, et cetera, that there is a direct transition from here

to here, which is discontinuous, like you have in three dimensions. So that's an area

of a discontinuous transition that is not ruled out.

But if you have continuous transitions, it has to have this intermediate phase in

[INAUDIBLE].

Any questions?

Yes?

AUDIENCE: [INAUDIBLE] so the red one is mu. The yellow one is theta psi, and the purple one

is [INAUDIBLE].

PROFESSOR: The correlation, then, that I would put here. So they are three different entities.

So throughout the course, we have been thinking about systems that are described

by some kind of an equilibrium probability distribution. So what we did not discuss is

how the system comes to that equilibrium. So we're going to now very briefly talk

about dynamics, and the specific type of dynamics that is common to condensed

matter systems at finite temperature, which I will call precipative dynamics.

And the prototype of this is a Brownian particle that I will briefly review for you. So

what you have is that you have a particle that is within some kind of a solvent, and

this particle is moving around. So you would say, let's for simplicity actually focus on

the one direction, x.

And you would say that the mass of the particle times its acceleration is equal to the

forces that it's experiencing. The forces-- well, if you are moving in a fluid, you are

going to be subject to some kind of a dissipative force which is typically portional to
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your velocity.

If you, for example, solve for the hydrodynamic of a sphere in a fluid, you find that

mu is related to viscosity inversely to the size of the particle, et cetera. But that

behavior is generic. You're not going be thinking about that.

Now suppose that additionally I put some kind of an optical trap, or something that

tries to localize this potential. So then there would be an additional force v 2, the

derivative of the potential with respect to x.

And then we are talking about Brownian particles. Brownian particles are constantly

jiggling. So there is also a random force that is a function of time.

Now we are going to be interested in the dynamics that is very much controlled by

the dissipation term. And acceleration we can forget. And if we are in that limit, we

can write the equation as mu-- I can sort of rearrange it slightly as-- actually, let me

change location to this.

So that the eventual velocity x dot is going to be proportional to the external force.

mu the coefficient that is the mobility. So mu essentially relates the force to the

velocity. Of course, this is the average force.

And there is a fluctuating part, so essentially, I call mu times this to be the a times

function of t.

Now, if I didn't have this external force, the fluctuations of the particles would be

diffusive. And you can convince yourself that you can get the diffusive result

provided that you relate the correlations of this force that fluctuating and have 0

average, the diffusion constant d of the particle in the medium through delta of t

minus t.

So if their track was not there, you solve of this equation without the track and find

that the prohibitive distribution for x grows as a Gaussian whose width grows with

time, as d t. d therefore must be the diffusion constant.
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Now, in the presence of the potential, this particle will start to fluctuate. Eventually if

you wait long enough, there is a probability that it will be here, a probability to be

somewhere else. So at long enough times, there's a probability p of x to find the

particle. And you expect that t of x will be proportional to exponential of minus v of x

divided by whatever the temperature is.

And you can show that in order to have this occur, you need to relate mu and d

through the so called Einstein relation. So this is a brief review of Brownian particles.

Yes?

AUDIENCE: The average and time correlation of eta can be found by saying the potential is 0,

right?

PROFESSOR: Mm hmm.

AUDIENCE: Those will still be true even if the potential is not 0, right?

PROFESSOR: Yes. So I just wanted to have an idea of where this d comes from. But more

specifically, this is the important thing. That if at very long times you want to have a

probability distribution coming from this equation, that has the Boltzmann form with

k t, the coefficients of mu and the noise, you have to relate through the so called

Einstein relation.

And once you do that, this result is true no matter how complicated this v of x is. So

in general, for a complicated v of x, you won't be able to solve this equation

analytically. You can only do it numerically. Yet you are guaranteed that this

equation with this noise correlator will have asymptotically a probability distribution

of [INAUDIBLE].

The problem that we have been looking at all along is something different. Let's say

you have, let's say, a piece of magnet or some other system that we characterize,

let's say, by something m of x. Again, you can do it for vector, but for simplicity, let's

do it for the scalar case.
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So we know, or we have stated, that subject to the symmetries of the system, I

know the probability. For some configuration of this field is governed by a form, let's

say, that has Landau Ginzburg character.

So that has been our starting point. We have said that I have a prohibitive

distribution that is of this form. So that statement is kind of like this statement. But

the way that I came to that statement was to say that there was a degree of

freedom x, the position of the particle, that was fluctuating subject to forces and

external variables from the particles of the fluid, that was given by this so called

Langevin equation.

So I had a time dependent prescription that eventually went to the Boltzmann way

that I wanted. Here I have started with the final Boltzmann weight. And the question

is, can I think about a dynamics for a field that will eventually give this state.

So there are lots and lots of different dynamics that I can impose. But I want to look

at the dynamics that is closest to the Brownian particle that I wrote, and that's where

this word dissipative comes. So among the universe of all possible dynamics, I'm

going to look at one that has a linear time derivative for the field n.

So this is the analog of the x dot. And so I write that it is equal to some coefficient,

that with their minds, the ease with which that particle-- well the field of that location

x changes as a function of the forces that is exerted on it.

I assume that mu is the same across my system. So here I'm already assuming

there's no x dependence. This system is uniform. And then there was a d v by d x.

So v was ultimately the thing that was appearing in the Boltzmann weight. So clearly

the analog of the v that I have is this Landau Ginzburg.

So I will do a function of the derivative of this quantity that I will call beta h, with

respect to m of x. Again, over there, I had one variable, x. You can imagine that I

could have had a system where two particles, x 1 and x 2, also have an interaction

among them.
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Then the equation that I would have had over there would be the force that is acting

on particle 1, by taking the total potential-- which is the external potential plus the

potential that comes from the inter particle interaction. So I would have to take a

derivative of the net potential energy v, divided with respect to either x 1 or x 2 to

calculate the force on the first one or the second one.

So here for a particular configuration m of the field across the system, if I'm

interested in the dynamics of this position x, I have to take this total internal potential

energy, and take the derivative with respect to the variable that is sitting on that

side. So that's why this is a functional derivative of this end.

And then I will have to put a noise, eta. Well, again, if I had multiple particles, I

would subject each one of them to an independent noise. So at each location, I

have an independent noise. So the noise is a function of time, but it is also wearing

across my system.

So if I take that form and do the functional derivative-- so if I take the derivative with

respect to m of x, I have to take the derivative of these objects. So I will have minus

derivative of t m squared is t m. The u m to the 4th is 4 u m q, and so forth.

Once I have gotten rid of these terms, then I would have terms that depend on the

gradient. So I would have minus the derivative of this object with respect to the

gradient. So here I would get k gradient of m. And then the next term would be

Laplacian derivative, with respect to Laplacian. So I would put l Laplacian of m, and

so forth with the methodologies of taking function derivatives. And then I have the

noise.

So this leads to an equation which is called a time dependent, Landau Ginzberg.

Because we started with the Landau Ginzberg weight, and this equation, as we see

shortly, subject to similar restrictions as we had before, will give us, eventually, this

probability distribution.

This is a difficult equation in the same sense that the original Landau Ginzberg is

difficult to look at correlations, et cetera. This is a nonlinear equation, causes
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various difficulties, and we need approaches to be able to deal with the difficult, non

linealities.

So what we did for the Landau Ginzburg was to initially get insights and simplify the

system by focusing on the linearized or Gaussian version. So let's look at the

version of this equation that is linearized.

And when it is linearized, what I have on the left hand side is d m by d t. What I have

on the right hand side is mu. I have t m. I got rid of the non linear term, so the next

term that I will have will be k Laplacian of m, and then will be minus l 4th derivative

of m, and so forth. And then there will be a noise [INAUDIBLE].

One thing that I can immediately do is to go to fullier transform. So m of x goes to m

theta of q. And if I do that, but not fullier transform in time, I will get that the time

derivative of m tilde of q is essentially what I have here.

And I forgot the minus that I have here. So this minus is important. And then this

becomes negative, this becomes positive.

So that when I go fullier transform, what I will get is minus t plus k q squared plus l q

to the 4th, and so forth. And tilde of q with this mu out front. And then the fullier

transform of what my noise is.

First thing to note is that even in the absence of noise, there is a set of relaxation

times. That is, for eta it was to 0. Or in general, I would have n tilde of q and p.

I can solve this equation kind of simply. It is the m by d t is some constant times n--

let's call it gama of q-- which has dimensions of 1 over time. So I can call that 1 over

tau of q. If I didn't have noise, if I started with some original value at time 0, it is

going to decay exponentially with this characteristic time.

And once I have noise, it is actually easy to convince yourself that the answer is 0 2

t d t prime e to the minus this gamma of q or inversify. Tau of q times eta of q i t

prime.
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So you see that you have a hierarchy of relaxation times, ta of q, which are 1 over u

t plus k q squared, and so forth, which scale in two limits. Either the wavelength

lambda, which is the inverse of q is much larger than the correlation length-- and

the correlation length of this model you have seen to be the square root of t over k,

square root of k over t-- or the other limit, where lambda is much less than c.

In this limit, where we are looking at modes that are much shorter than the

correlation length, this term is dominant. This becomes 1 over mu k q squared. In

the other limit, it goes to a constant 1 over u t.

So this linear equation has a whole bunch of modes that can be characterized by

their wavelength or their wave number. You find that the short wavelength modes

have this characteristic, time, that becomes longer and longer as the wavelength

increases. So if you make the wavelength twice as large, and you want to relax a

system that is linearly twice as large, this says that it will take 4 times longer.

Because the answer goes like lambda squared.

Whereas eventually you reach the size of the correlation length. Once you are

beyond the size of the correlation length, it doesn't matter. It's the same time. But

the interesting thing, of course, to us is that there are phase transitions that are

continuous. And close to that phase transition, the correlation length goes to infinity.

Which means that the relaxation time also will go to infinity.

So according to this theory, there's a particular divergence as 1 over t minus t c. But

it will be modified, and as I will discuss next time, this is only-- even within to

dissipative class-- one type of dynamics that you can have. And there are additional

dynamics, and this system characterizes criticality as single universality class in

statics. There are many dynamic universality classes that correspond to this same

static.
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