
� 

VI.D Self–Duality in the Two Dimensional Ising Model 

Kramers and Wannier discovered a hidden symmetry that relates the properties of the 

Ising model on the square lattice at low and high temperatures. One way of obtaining this 

symmetry is to compare the high and low temperature series expansions of the problem. 

The low temperature expansion has the form 

Z =e 2NK 
� 

1 +Ne−4×2K + 2Ne−6×2K + 
� 

· · · 
2NK 

� 

−2K×perimeter of island (VI.20) =e e . 
Islands of (−) spins 

The high temperature series is 

Z =2N coshK2N 
� 

1 +N tanhK4 + 2N tanhK6 + 
� 

· · · 
=2N coshK2N tanhK length of graph . (VI.21) 

graphs with 2 or 4 lines per site 

As the boundary of any island of spins serves as an acceptable graph (and vice versa), 

there is a one to one correspondence between the two series. Defining a function g to 

indicate the logarithm of the above series, the free energy is given by 

lnZ � � 

= 2K + g e −2K = ln 2 + 2 ln coshK + g (tanhK) . (VI.22) 
N 

The arguments of g in the above equation are related by the duality condition 

−2K̃ ˜ 1 
e tanhK, = K = ln tanhK . (VI.23) ↔ ⇒ D(K) ≡ − 

2 

The function g (which contains the singular part of the free energy) must have a special 

symmetry that relates its values for dual arguments. (For example the function f(x) = 

x/(1 + x2) equals f(x−1), establishing a duality between the arguments at x and x−1.) 

Eq.(VI.23) has the following properties: 

1. Low temperatures are mapped to high temperatures, and vice versa. 

2. The mapping connects pairs of points since D(D(K)) = K. This condition is established 

by using trigonometric identities to show that 

sinh 2K =2 sinh K coshK = 2 tanhK cosh2 K 

2 tanhK 2e−2K̃ 2 1 (VI.24) 
= = = = . 

1 − tanh2 K e−4K̃ e2K̃ e−2K̃ sinh 2 K̃1 − −
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Hence, the dual interactions are symmetrically related by


sinh 2K sinh 2 K̃ = 1 . (VI.25) · 

3. If the function g(K) is singular at a point Kc, it must also be singular at K̃c. Since 

the free energy is expected to be analytic everywhere except at the transition, the critical 

model must be self dual. At the self dual point 

e
e −2Kc = tanhKc =

1 − −2Kc 

,
1 + e−2Kc 

which leads to the quadratic equation, 

e −4Kc + 2e −Kc − 1 = 0, = e −2Kc = −1 ±
√

2 .⇒ 

Only the positive solution is acceptable, and 

Kc = −
2

1
ln 

√
2 − 1 =

2

1
ln 

√
2 + 1 = 0.441 · · · . (VI.26) 

4. As will be explored in the next section and problem sets, it is possible to obtain dual 

partners for many other spin systems, such as the Potts model, the XY model, etc. While 

such mappings place useful constraints on the shape of phase boundaries, they generally 

provide no information on critical exponents. (The self–duality of many two dimensional 

models does restrict the ratio of critical amplitudes to unity.) 

VI.E Dual of the Three Dimensional Ising model 

We can attempt to follow the same procedure to search for the dual of the Ising model 

on a simple cubic lattice. The low temperature series is 

Z =e 3NK 
� 

1 +Ne−2K×6 + 3Ne−2K×10 + 
� 

· · · 
=e 3NK 

� 

Islands of (−) spins 

e −2K×area of island ′ s boundary . (VI.27) 

By contrast, the high temperature series takes the form 

Z =2N coshK3N 
� 

1 + 3N tanhK4 + 18N tanhK6 + · · · 
� 

=2N coshK3N 
� 

graphs with 2, 4, or 6 lines per site 

tanhKnumber of lines . (VI.28) 
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Clearly the two sums are different, and the 3d Ising model is not dual to itself. Is there any 

other Hamiltonian whose high temperature series reproduces the low temperature terms 

for the 3d Ising model? To construct such a model note that: 

1. The low temperature terms have the form e−2K×area, and the area is the sum of faces 

covered on the cubic lattice. Thus plaquettes must replace bonds as the building blocks of 

the required high temperature series. 

2. How should these plaquettes be joined together? The number of bonds next to a site 

can be anywhere from 3 to 12 while there are only two or four faces adjacent to each bond. 

This suggests ‘glueing’ the plaquettes together by placing spins σ̃i = ±1, on the bonds of 

the lattice. 

3. By analogy to the Ising model, we can construct a partition function, 

� � � ˜
K̃˜ P ) ∝ K σ̃1 

P σ̃2 
P σ̃3 

P σ̃4 
PZ̃ 
 =
 σP 

1 σ̃P 
2 σ̃P 

3 σ̃4(1 + tanh
 ,
 (VI.29)
e
 P 

i
P =±1} plaquettes P {σ̃i}{σ̃

where σ̃P
i are used to denote the 4 dual spins around each plaquette, and K̃ is given by 

eq.(VI.23). This partition function describes a system dual to the original 3d Ising model, 

in the sense of reproducing its low temperature series. (Some reflection demonstrates 

that the low temperature expansion of the above partition function reproduces the high 

temperature expansion of the Ising model.) 

Eq.(VI.29) describes a Z2 lattice gauge theory. The general rules for constructing 

such theories in all dimensions are: (i) Place Ising spins σ̃i = ±1, on the bonds of the 

lattice. (ii) The Hamiltonian is −βH = K 
� � 

σ̃i . In addition to the global all plaquettes P

Ising symmetry, ˜ σi, the Hamiltonian has a local (gauge) symmetry. To observe this σi → − ˜

symmetry, select any site and change the signs of spins on all bonds emanating from it. As 

in each of the faces adjacent to the chosen site two bond spins change sign, their product, 

and hence the overall energy, is not changed. 

There is a rigorous proof (Elitzur’s theorem) that there can be no spontaneous sym

metry breaking for Hamiltonians with a local symmetry. The essence of the proof is that 

even in the presence of a symmetry breaking field h, the energy cost of flipping a spin is 

finite (6h for the gauge theory on the cubic lattice). Hence the expectation value of spin 

changes continuously as h 0. (By contrast, the energy cost of a spin flip in the Ising →
model grows as Nh.) This theorem presents us with the following paradox: Since the three 

dimensional Ising model undergoes a phase transition, there must be a singularity in its 
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partition function, and also that of its dual. How can there be a singularity in the parti

tion function of the three dimensional gauge theory if it does not undergo a spontaneous 

symmetry breaking? 

To resolve this contradiction, Wegner suggested the possibility of a phase transition 

without a local order parameter. The two phases are then distinguished by the asymptotic 

behavior of correlation functions. The appropriate correlation function must be invariant 

under the local gauge transformation. For example, the Wilson loop is constructed by 

selecting a closed path of bonds S, on the lattice and examining 

CS = 〈Product of σ̃ around the loop〉 = σ̃i . (VI.30) 
i∈S 

As any gauge transformation changes the signs of two bonds on the loop, their product is 

unaffected and CS is gauge invariant. Since the Hamiltonian encourages spins of the same 

sign, this expectation value is always positive. Let us examine the asymptotic dependence 

of CS on the shape of the loop at high and low temperatures. In a high temperature 

expansion, the correlation function is obtained as a sum of all graphs constructed from 

plaquettes with S as a boundary. Each plaquette contributes a factor of tanh K̃, and 

1 K σ̃1 
P σ̃2 

P σ̃3 
P σ̃4 

PCS = σ̃i e 
Z 

{σ̃i} i∈S 

P 

� �Area of S � � �� � � � � 

= tanh K̃ 1 + O tanh K̃2 ≈ exp −f tanh K̃ × Area of S . 

(VI.31) 

The low temperature expansion starts with the lowest energy configuration. There are 

in fact NG = 2N such ground states related by gauge transformations. The NP plaquette 

interactions are satisfied in the ground states, and excitations involve creating unsatisfied 

plaquettes. Since CS is gauge independent, it is sufficient to look at one of the ground 

states, e.g. the one with σ̃i = +1 for all i. Flipping the sign of any of the 3N bonds 

creates an excitation of energy 8 K̃ with respect to the ground state. Denoting the number 

of bonds on the perimeter of the Wilson loop by PS, we obtain 

˜

CS = 
NG 

eKNP 1 + (3N − PS)
� 

e−2K̃×4(+1) + (−1)P
� 

Se
−2K̃×4 + · · · 

K̃NP K×4 +NG 
· 

e 1 + 3Ne−2 ˜
(VI.32) · · · 

=1 − 2PSe 
−8K̃ + · · · ≈ exp −2e −8K̃PS + · · · . 
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The asymptotic decay of CS is thus different at high and low temperatures. At high 

temperatures, the decay is controlled by the area of the loop, while at low temperatures it 

depends on its length. The phase transition marks the change from one type of decay to 

the other, and by duality has the same singularities in free energy as the Ising model. 

The prototype of gauge theories in physics is quantum electrodynamics (QED), with 

the action 

S = d4 x ψ̄
� 

∂ + A +m 
� 

ψ +
1

(∂µAν − ∂νAµ)
2 
.−i/ e/ (VI.33) 

4 

The spinor ψ is the Dirac field for the electron, and the 4–vector A describes the electro

magnetic potential. The phase of ψ is not observable, and the action is invariant under 

the gauge symmetry ψ 7→ eieφψ, and Aµ 7→ Aµ − ∂µφ, for any φ(x). The Z2 lattice gauge 

theory can be regarded as the Ising analog of QED with the bond spins playing the role 

of the electromagnetic field. We can introduce a ‘matter’ field by placing spins si = ±1, 

on the sites of the lattice. The two fields are coupled by the Hamiltonian, 

−βH = J si σ̃ij sj + K σ̃P 
1 σ̃P 

2 σ̃P 
3 σ̃P

4 , (VI.34) 
〈i,j〉 P 

where σ̃ij is the spin on the bond joining i and j. The Hamiltonian has the gauge symmetry 

si 7→ (−1)si, and σ̃i,µ 7→ −σ̃i,µ, for all bonds emanating from any site i. 

Regarding one of the lattice directions as time, a Wilson loop is obtained by creating 

two particles at a distance x, propagating them for a time t, and then removing them. The 

probability of such an event is roughly given by Cs ∼ e−U(x)t, where U(x) is the interaction 

between the two particles. In the high temperature phase, CS decays with the area of the 

loop, suggesting U(x)t = f(tanh K̃)|x|t. The resulting potential U(x) = f(tanh K̃)|x|, is 

like a string that connects the particles together. This is also the potential that describes 

the confinement of quarks at large distances in quantum chromodynamics. The decay with 

the length of the loop at low temperatures implies U(x)t ≈ g(e−8K̃)(|x| + t). For t ≫ |x| 
the potential is a constant and the force vanishes. (This asymptotic freedom describes the 

behavior of quarks at short distances.) The phase transition implies a change in the nature 

of interactions between particles mediated by the gauge field. 
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