
MITOCW | watch?v=2Ep48LwBhAQ

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high-quality educational resources

for free. To make a donation, or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: OK, let's start. So last time we started thinking about phase transitions. We said that

a simple example obtained by taking a piece of magnet such as iron, nickel and

seeing what happens as a function of temperature.

And there's a phase transition between a paramagnet at high temperature and a

ferromagnet at low temperatures. This transition takes place at a characteristic Tc.

And a nice way to describe what was happening thermodynamically was to also look

at the space that included a magnetic field. And then it was clear that various

thermodynamic properties had a singularity, had a discontinuity at the line h equals

to 0 for all T less than or equal to Tc.

Then we saw that if we looked at characteristic isotherms going from high

temperatures going to low temperatures where there was a discontinuity, we more

or less had to conclude by continuity that the one that goes along Tc, the

magnetization as a function of field, has to come and hug the axis at 90 degree

angle corresponding to having infinite susceptibility.

We also said that once you have infinite susceptibility, you can pretty much

conclude that you are going to have long-range correlations across the sample. So

that if you make a fluctuation here, the influence is going to be felt at large distances

away. OK?

So given with that piece of knowledge, we said what we can do is to basically do

some kind of averaging. I can take pieces of the sample. And at each piece, I can

find locally what the magnetization is and have this field m as a function of x that

varies from one point to another point. Presumably, close to this point either below

or above, this m fluctuates across the sample over large distances and is typically
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small. So then we use those pieces of information to proceed as follows.

We said all thermodynamic properties of the system can in principle be obtained by

looking at a kind of partition function or Gibbs partition function that depends on

temperature, let's say, which is obtained by tracing the Hamiltonian that governs all

microscopic degrees of freedom that describe this system. The electrons, their

spins, nuclei, all kinds of things.

Now naturally, this I cannot do. But I can focus on this magnetization field close to

Tc and say that each configuration of magnetization has some kind of a weight. And

in principle, what I can do is I can subdivide all configurations of microscopic

degrees of freedom that are consistent with a particular macroscopic weight.

Macroscopic field m of x. And hence, in principle compute what that weight is.

The analog of tracing over all degrees of freedom would now become integrating

over all configurations of this magnetization that I indicate through this symbol of

functional integration over all configurations.

Now, clearly I can no more obtain this than I can do the original trace. So what did

we do?

We said I can guess what this is going to look like. Because in the absence of the

field, it's a function that has rotational symmetry. So what I can do is I can write the

log of that probability as something. So far I haven't done anything.

I made the assumption that I can write it as an integral over space of some kind of a

density at each point. So that was this kind of quasi-locality assumption. And then I

would write anything that comes to my mind that is consistent with rotational

symmetry.

Now, since m is small in the vicinity of this point, it makes sense that I should make

something like a Taylor expansion. So the Taylor expansion will start not with a

linear term, which violates rotational symmetry, but something that is quadratic. And

I can add any even power such as m to the fourth and higher order terms. And I can

add all kinds of gradients that are consistent, again, with rotational symmetry. And
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the first of those terms is gradient of m squared. And there are many more.

Of course, there can be an overall constant term. Maybe I will write it out front.

Insert a Z regular, which means that you-- in the process, you have all kinds of

other degrees of freedom that are not reflected in the magnetization. You're going

to have phonon degrees of freedom. So there will be a contribution from the

phonons to the partition function of the system.

We are not interested in any of those things. We are interested in what becomes

singular over here. And the reason I write that as Z regular is because it's

presumably some benign function of temperature as I pass through this point. So it

is, indeed, a function of temperature.

It is also worth emphasizing that not only is this parameter that appears outside

representing all kinds of other degrees of freedom a function of temperature, that

these phenomenological parameters that I introduced here are also functions of

temperature. Because the microscopic weight, the true Hamiltonian, is the one that

is scaled by 1 over kt.

Just because of analogy, I sometimes call this combination of what is happening

here beta H or minus beta H as appearing in the exponent. But that, by no means,

indicates that the coefficient here are scaling inversely with temperature like the true

microscopic coordinates. Because in order to do this coarse graining, I have to

integrate over a lot of different configurations. So there is energy associated with

this. There is entropy associated with this. There is all kinds of complicated things

that go into this-- these parameters. So that's important to remember.

Finally, if I slightly go away from here just to explore the vicinity of having a finite

magnetic field, then I can work in the ensemble where I have added the field here.

And the weight here will be modified by an amount that is h dot m. So what is

occurring here is this Landau-Ginzburg model that I right now introduced in the

context of magnetic systems. But very shortly, I will introduce this in the context of

super-fluidity.
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I can go back to the original example that we started with the liquid gas phenomena,

replace m with some kind of a density difference, and then it would indicate a phase

transition of the liquid gas system. So it is supposed to be very general, applicable

to a lot of things because it is constructed on the basis of nothing other than

symmetry principles. But at the cost of having no knowledge of how these

phenomenological parameters depend on the microscopics of the system-- on

temperature. Clearly, for example, even in the context of magnet, I would construct

the same theory for iron, nickel, cobalt, et cetera. But presumably these coefficients

will be very different from one system as opposed to the other.

All right, so that's supposed to be, as far as we are concerned, sufficient to figure

out what is going on in the vicinity of this transition. Maybe I should emphasize one

more thing, which is that I said that after all what we are trying to figure out is the

nature of singularities in free energy, in phase diagrams, et cetera.

Yet, when I wrote this, I insisted on making an analytical expansion. And the reason

making an analytical expansion here is justified is because to get this expansion, I

summed over degrees of freedom-- I averaged degrees of freedom over some finite

piece of my system.

Maybe I took a 100 by 100 by 100 Angstrom cubed block of material and averaged

the magnetization of spins in that area, et cetera. And the idea that we also

encountered last semester is that as long as you are dealing with a finite system, all

of the manipulations that you are doing involve analytic functions such as e to the

minus beta H applied to a finite number of integrations. And you simply cannot get a

singularity out of such a process.

So the averaging process that goes in this coarse graining must give you analytical

functions. That's not the origin of the singularity. The origin of the singularity must

come from taking the size of the system, the volume of this piece of iron, essentially

to infinity. That's what gives us the singularity.

Also, because of that I expect that at the end of the day, this Z of T and h that I

calculate will be something that is proportional to volume or something like that in
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the exponent. That is, I will have something like e to the-- from this component

minus V some beta f regular. And actually, let me just forget about the beta and just

write it as some other function regular. It's an extensive quantity.

And the result of this integration of all of the field configurations should give me

another contribution that is proportional to volume. And hopefully, all of the

singularities that I expect will come from this piece.

And I am going to expect those singularities to arise only in the limit where V

becomes large. Now, last semester we saw a trick that allowed us to do integrations

when the final answer was extensive.

It was the saddle point result. Basically, we said that as we span the integration

range, there is a part that corresponds to extremizing whatever you are integrating

that gives you overwhelmingly larger weight than any other part of the integration.

So let's try to, without justification-- and we'll correct this-- apply that same principle

of a saddle point approximation to the functional integration that we are doing over

here.

That is, rather than integrating over all functions, let's find the extremum. Where is

this function maximized, the integrand is maximized?

So what I need to do is to find maximum of exponent. So what is happening over

here.

I am going to make one further statement here before I do that, which is that this

term, the thing that is proportional to gradient of m, has something to do with the

way spins know about their neighborhood. And if I am looking at something that is

ferromagnet, the tendency is for neighbors to be in the same direction. That's how

ferromagnetism emerges. And that corresponds to having a K that is positive.

So that helps me a lot in finding the extremum of the function because it means that

the extremum will occur when m of x is uniform across the system. Any variations in

m of x will give you a cost from that and will reduce the probability. So with K

positive, I know that the optimal solution is going to correspond to a uniform value
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across the system. What is this uniform value?

If I put a uniform value, first of all, the integration will simply give me the volume.

That's good because that's what I expect over here. So at the end of the day, what

do I get?

I will get that F singular is, in fact, the minimum of psi of m where psi of m is

obtained by simply evaluating what is in the integrand at a uniform value of m. t over

2 m squared mu m to the fourth. Potentially higher orders, but no K. The K

disappeared. Minus h m.

Actually, I kind of expect also that the uniform solution, if I put a magnetic field, will

point along the magnetic field. If there's an up field, the uniform solution will be

along the field. If it's 0, then I don't know. If it is down field, it will be the opposite. So

it makes sense that if I have a field, the uniform magnetization should point along it,

which means that over here this dot product is really just h times m. So I reduced

the complexity of the problem subject to this saddle point approximation to just

minimizing some function.

Now, it is important to note, since I was talking about analyticities, and singularities,

and things like that, that whereas the function that is appearing here as psi of m as

we discussed is completely analytical, the operation of finding the minimum of a

function is something that introduces non-analyticity. So that's how we are going to

get that structure that we have over there. Let's explicitly show how that occurs.

So I'm going to show you the shape of this function in the space that is spanned by

the parameters that I have here, which are t and h. We will come to u later on. But

for the time being, since I want to show things in a plane, let's stick with t and h.

So first of all, let's look at the regime where t is positive. So this is 0. To the right is t

is positive. Right on the axis when h equals to 0, the function is m squared plus m to

the fourth, et cetera. The coefficient of m squared is positive. So basically, right on

this axis the function is like a parabola. So what I am plotting here are different

forms of psi of m. So this is m squared is a parabola.
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If I go further out, m to the fourth is something to worry about. But if I'm really

looking at case where the emerging magnetization is small, I can stick just with the

lowest order term in the expansion. Yes?

AUDIENCE: Are we plotting h or psi? The axis label was h.

PROFESSOR: OK. So there is a two-parameter plane t h. At each plant in this parameter plane, I

can plot what psi of m looks like. Unfortunately, I can't bring it out of the plane, so I

am going to put it in the two dimensions. So this is why I wrote psi of m with green to

distinguish it with the h that is in white. So this is supposed to be right on the axis. If

I go up on the axis, what would psi of m look like?

So now I have a term that is positive h m. So it starts linearly to go down, and then

the m squared term takes over. So now the minimum is over here. Whereas, right

on the axis-- again, by symmetry-- the minimum was at 0.

If I go and look at what happens at the other side when h is negative, then the slope

is in the opposite direction. So the function kind of looks like this. And the minimum

has shifted over here. So if I were to plot now what the minimum m bar is as a

function of the field h, as I scan from some positive t-- from h positive to h negative,

what we have is that this sequence then corresponds to a curve in which,

essentially, m is proportional to h. Something like this. So this is for t that is positive.

Now, what happens if I try to draw these same curves for t that is negative? Let's

stick first again to the analog of this curve, but now for h equal to 0. So for h equals

to 0, in plotting psi if m, whereas previously the parabola had the positive coefficient,

now the parabola has a negative coefficient. So it kind of looks like this.

Now, one of the things that I know for sure in my system-- again, mathematics does

not tell us that, physics tells us that. That I have a piece of iron and I know that the

typical configurations of magnetization are some small number. So if the

mathematics says that I have a function such as this, it is wrong because it would

say that the extremum would go towards infinity. But that's where the u-term comes

into play.
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So I need now to have a u-term with a positive sign to ensure that the function does

not have an extremum that goes to minus plus infinity. Physics tells us that the

function that I get if t is negative should have a positive u. Now, what happens if we

take this curve and go to h positive?

Well, now again, like we did over here, I start to shift it in one direction. In particular,

what I find is that the minimum to the left goes up and the minimum to the right goes

down. What did I do?

Drew this poorly. I start to go like this. So now there is a well-defined minimum over

here.

If I go to negative fields, I will get the opposite Where I have this. So now if I follow a

path that corresponds to these t negative structures, what do I get?

What I get is that the extremum is at some positive value. So this is for t that is

negative. As I scan h from positive values, I am tracking this minimum. But that

minimum ends up over here at 0. So basically, I come to here.

Whereas, if I come from the negative side, I am basically following the opposite

curve. And then I have a discontinuity exactly at the h equals [INAUDIBLE].

Again, by continuity if I am exactly at t equals to 0, the function is kind of-- rather

than the parabola is m to the fourth, and a little bit of thought convinces you that the

shape of the curve kind of looks like this. We will quantify what that shape is shortly

for t equals to 0. So what did we do?

We were able to reproduce exactly the structure of the isotherms that we are getting

for the case of the ferromagnet from this simple theory. In order to just match

exactly this with what is going on with iron or nickel, what do I have to do?

I just have to ensure that this parameter t goes to 0 at Tc of whatever the material

is. Now, remember that I said that my t is really a function of temperature. So I can

certainly make an expansion of it around any point. Let's see the Tc of the material.

So what I require is that the first term in that expansion has to be 0. Then I will have
8



something that is linear in T, and then quadratic in T minus Tc squared and so forth.

So there is one condition that I have to impose, that that function of t-- which again,

by all of the arguments that I mentioned, completely has to be an analytic function

of temperature. Hence, expandable in a Taylor series. The 0 to order term in that

Taylor series has to be 0. What else?

That I can expand any other function. U of t is u0 plus u1 T minus Tc and so forth. K

of t is k0 plus k1 T minus Tc and so forth.

And I don't really care about any of these coefficients. The only things that I know

are the signs. a has to be positive because the high temperature side corresponds

to paramagnet. u0 has to be positive because I require the stability types of things

that I mentioned. And k0 has to be positive because I want to have this kind of

ferromagnetic behavior.

Apart from that, I really don't know much. So the Landau-Ginzburg Hamiltonian with

one condition reproduces the phenomenology of the magnet and all the other

phase transitions, which as one of you-- I think it was David-- was pointing out to

me, is very much like dealing with a branch cut singularity in the mathematical

sense along this axis terminating at that point. So this branch cut singularity is a

consequence of this minimization procedure of a purely analytical function.

And the statement of universality at this level is that pick any analytical function and

do this minimization. You will always get the same mathematical branch cut that we

will now explain in terms of the exponents.

So we said that experimentally these phase transitions, their universality was

characterized by looking at singularities of various quantities and looking at the

exponent, the functional forms. So let's first look at the magnetization. So if I do the

extremization of this, what do I do?

I have to have d psi by dm equals to 0. d psi by dm is tm bar plus 4u m bar cubed

minus h.
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For h equals to 0 along the symmetry axis, then I have two solutions. Because that I

can write as t plus 4u m bar squared times m bar equals to 0. If I state at that

equation, I immediately see that the possible solutions are m bar is 0. And that's

really the only solution that I have for any t that is positive.

While for t negative, in addition to the solution at 0, which is clearly unphysical

because it corresponds to a maximum and not a minimum, I have solutions at

minus plus square root of minus t over 4u.

And so if I were to plot this magnetization as a function of t, essentially I have a kind

of coexistence curve because I have nothing above and below I have a square root

singularity. So this corresponds to the exponent beta being 1/2. So that's the

prediction [? from each. ?] What about the shape of this green curve, the isotherm

that you have at t equals to Tc?

Well, t equals to Tc, in our language, corresponds to small t equals to 0, which

means that I have to look at the equation 4u m bar cubed equal to h or m bar is

proportional to-- well, let's write it. h over 4u to the power of 1/3. So this green curve

that comes with infinite slope corresponds to a 1/3 singularity. The exponent delta

was defined to be the inverse of this, so this corresponds to having an exponent

delta that is 3.

We had behavior of susceptibility characterized by another set of exponent. Now,

the susceptibility, quite generally, is the response of the magnetization if you change

the field. And typically, we were interested in the limit where we measured a

response if you are just at h equals to 0 and then you put a little bit more.

The equation that we have that relates h and m bar is simply that h equals to tm bar

plus 4u m bar cubed. Rather than taking dm by dh, let me evaluate its inverse,

which is dh by dm. dh by dm is t plus 12u m bar squared. And so this inverse

susceptibility, if I am for t positive, m bar is also 0. So the inverse susceptibility is t.

If I am for t negative, m bar squared is minus t over 4u. I put a minus t over 4u here.

And it becomes t minus 3t. So it becomes minus 2t. Again, nicely positive. Response
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functions have to be positive.

If I were to plot this susceptibility, therefore as a function of temperature, or t that is

related to T minus Tc, what do I get?

I will get a divergence that is inverse of 1 over T minus Tc-- on both sides. So

basically, I get something like this.

And we said that the divergence of the susceptibility we characterize by exponent

gamma. And as I had promised, we explicitly see that, in this case, the gammas on

both sides of the transition are the same and equal to unity. The inverse vanishes

linearly, so the susceptibility diverges with unit exponent. But actually, we are

making-- we can make an additional statement here that experimentalists can go

and check that I hadn't told you before.

Now, you see in all of these other cases the only thing that I can say is universal

side is the functional form. This is where the exponent beta came from. But the

amplitude of what is happening there, or the amplitude of what is happening here,

these are things that depend on you and all of these things that I have no idea

about.

Similarly here, because I don't know what the relationship between t minus Tc and

the parameter t is, it involves this number a that I don't know of. But one thing that I

notice is that the ratio of these two things is a pure number. So I say, OK, what you

have is if you measure the susceptibility on the two sides of the transition, you will

see amplitudes. And then T minus Tc absolute value to minus gamma plus or

gamma minus.

I have told you that the gammas are the same. I don't know what the amplitudes

are, but I can tell for sure that the ratio of amplitudes-- if this is the theory that

describes things-- is a pure number of 2. So that's another thing that you can go

and say the experimentalists can check. They can check the divergence, and then

see that the amplitude ratio is a universal object.

OK, there's one other response function that I had mentioned. There was the
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exponent alpha that came from the heat capacity. So how do I calculate heat

capacity? So the heat capacity, which is a function of temperature, let's focus only in

the case where h equals to 0, is obtained by taking a temperature derivative of the

internal energy of the system.

Now, the energy, on the other hand, is obtained by taking a d by d beta of log of the

partition function. Now, I have all of my answers in terms of these parameters t, u,

et cetera. But I know that to lowest order, there is a linear relationship between

small t and the real temperature that I have to put into these expressions.

So in particular, I can do the following. I can say that something like d by dT d by d

beta, where beta is 1 over kt, is something approximately when you look at the

linear regime that is close to Tc of the order-- 1 over beta is going to be kb t

squared. And then I would have d by dT, and then another d by dT.

I have to evaluate all of these things eventually in the vicinity of the critical point.

Everything else is going to be a correction. So to lowest order, I will do that. And

then I note that this is related-- derivatives between temperature and small t are

related through a factor of a. So I do this and I put a squared up here. Doesn't

matter.

The only reason I do that is because through the process that we have described

here, I get an idea for what log of Z is. So in particular, log of Z has a part that

comes from all of the regular degrees of freedom and a part that comes from this

additional minimization that we are doing. So we have a minus V times the minimum

of the function, which is t over 2 m bar squared plus u m bar to the fourth when

evaluated at h equals to 0.

So this is log Z, which is some regular function of temperature, and hence t. Why is

this part singular?

Because for t that is positive, m is 0. So this is going to give me 0 contribution for t

that is positive. Whereas, for t that is negative, I have to substitute the value of m

bar squared as I found above, which is minus t over 4u. So I will get t over 2 times
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minus t over 4u. So that's going to give me minus t squared over 8u.

Here I will have-- once I substitute that formula, plus t squared over 16u. The overall

thing would be minus t squared over 16u. So I have to take two derivatives of this

function. You can see that the function will give me 0 above for t positive and it will

give me a constant for t negative.

So if I were to plot two derivatives of this function as T or T minus Tc is varied. Well,

there is a background part that comes from all the other degrees of freedom. So

there is basically some kind of behavior you would have had normally.

What we find is that above t positive, that normal behavior is the only thing that you

have. And when you are below, taking two derivatives of this, something is added to

this. So basically, the prediction is that the heat capacity of the system as a function

of temperature should have a jump discontinuity.

Now, I said that in a number of cases we see that the heat capacity actually

diverges and we introduce then exponent alpha to parametrize that divergence.

Since we don't have this divergence, people have resorted to indicating this with

alpha equals to 0. But since alpha equals to 0 is ambiguous, putting a discontinuity

in addition to be precise about what is happening.

So the predictions of the saddle point method applied to this field theory are the set

of exponents and functional forms beta equals to 1/2, gamma as being 1, et cetera.

A nice set of predictions. And of course, the test is, do they agree?

It turns out that there is one and only one case where you do the experiments and

you get these precise exponents. And that's something like a superconductor. And

the picture that I showed you last time for the gas, et cetera, corresponds to totally

different set of exponents. So at this point, we have to face one of two alternatives.

One, the starting point is wrong. We put everything we could think of in the starting

point. Maybe we forget something, but it seems OK. The other is, maybe we didn't

do the analysis right when we did the saddle point approximation. And we'll

gradually build the case that that is, indeed, the case and that we should treat the

13



problem in a slightly better fashion. Any questions? OK. Yes?

AUDIENCE: Just to remind me, the saddle point approximation was saying m was continuous, a

continuous number across the substrate?

PROFESSOR: The saddle point approximation is to evaluate the functional integral, which

corresponds to looking at all configurations, replacing that integration with the value

of the integrand at the point that is most probable.

In this case, the most probable point was the uniform case. But maybe in some

other case, the most probable configuration would be something else. The saddle

point is to replace the entire functional integral with just one value of the integral.

Yes?

AUDIENCE: So your second claims that analysis is probably wrong somewhere. It is most likely

when we are trying to compute the energy of the system from all of field m and we

just assumed something incorrectly, and that's why we get incorrect exponents?

PROFESSOR: No. My claim is that up to the place that I say Landau-Ginzburg, I have been

extremely general. It may be that I missed something, but I will convince you that

that's not the case. Then the line below that says saddle point approximation. My

claim is that that's where the error came.

AUDIENCE: Also, we can do a similar kind of analysis for liquid gas transition in critical

[INAUDIBLE]?

PROFESSOR: Yes.

AUDIENCE: And then, how would it be reasonable to assume uniform density? Because I guess

the whole point of behavior--

PROFESSOR: We did exactly that approximation in 8.3.3.3. I wrote down some theory for the liquid

gas transition out of which came the van der Waals equation.

AUDIENCE: Yes.
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PROFESSOR: And the assumption for that was that the density in the grand canonical ensemble,

in the grand canonical ensemble was uniform. So that you either got the density for

the liquid or the density for the gas. But I made there the saddle point approximation

also. I assumed that there was a uniform density that was--

AUDIENCE: OK. So was just likely to be the point where--

PROFESSOR: Yes.

AUDIENCE: --something breaks up.

PROFESSOR: Yes. So before doing that, let me point out to something interesting that happened.

And it's just a matter of terminology.

Note that we constructed the Landau-Ginzburg Hamiltonian for h equals to 0 on the

basis that we should have rotational symmetry. Nonetheless, even for h equals to 0,

what we find are solutions where the magnetization is pointing in one direction or

the other. So it is possible to have the state that emerges as a result of a weight that

has some symmetry to not have that symmetry. So the symmetry is spontaneously

broken and the direction in space is selected.

Now, of course, what that means is that if you apply the rotation operation to one of

these ground states, then you will generate another equally good ground state. You

can take everything that is pointed along the z-axis and make them all point along

the x-axis. That's an equally good ground state.

So essentially, you have a manifold of possible states. And making a change from

one state deforming to another ground state does not cost you any energy. So one

consequence of that is that slow deformations should cost little energy. What do I

mean by that?

So let's imagine that I start with a state where after I minimize, I find that all of my

magnetizations are pointing up. Now, as I said, I could rotate everybody into this

direction and the formation of my state would cost no energy. That's a uniform

deformation. What if I took a deformation that is very slow? So I gradually rotate
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from one to the other state.

Then in the limit where the wavelength of this deformation becomes of the order of

the size of your system, you should have no energy cost. And it kind of makes

sense that in the limit where you have long wavelengths, you should have little

energy cost. So you should have slow wavelength, no energy distortions or modes,

called Goldstone modes. But you can only have this for a broken continuous

symmetry such as what I have depicted there, where all orientations are equally

likely.

But if I had the liquid gas system, the density was either above average or below

average. If I had uniaxial magnet, the spin would be either pointing up or down.

Then I can't deform slowly from one to the other. So for discrete symmetries, you

don't have these modes. For continuous symmetries, you have these modes.

And actually, we've already seen one set of those modes. These were the phonons.

When in the first lecture I was constructing this theory of elasticity, I said if we take

the whole deformation and move it uniformity, there is no cost. And then we were

able, based on that, to conclude that long wavelength phonons have little cost. And

we wrote their dispersion, relation, et cetera. So phonons are an example of

Goldstone modes. These kinds of rotations of spins in a magnet-- magnons are

another example of these modes.

But something else that we said, therefore in the first lecture, is something that we

should start to think about. Which is that we said that because these modes exist

and they have so little energy cost, if I am at some finite temperature, I will be able

to excite them. So I know for sure that if I'm at finite temperature, there are at least

these fluctuations that are going on in my system. And maybe in lieu of that, I

should be wary of assuming that only the state where everything is uniform is the

thing that is contributing. What about the fluctuations?

So let's think about these fluctuations that are easiest and most easily generated

and look at their thermal excitations and consequences for the phase in phase

transition. And let's do that in the context of superfluid.
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So we saw the problem of super fluidity towards the end of 8.3.3.3. You had helium

that was an ordinary liquid. We cooled it below 2.8 degrees and suddenly it became

a new form of matter that has this ability to flow through capillaries, et cetera. And

we pointed out that there was some kind of quite likely quantum origin to that

because of the similarities that it showed to Bose-Einstein condensation.

And basically, it was in this context that Landau introduced something like this The

theory that we write down where he chose as order parameter as the analog of the

m of x that we have over there, a complex function psi of x. And very roughly, you

can regard this-- and again, this is very rough-- as overlap of wave function with the

ground state at position x in some coarse-grained sense.

Now, anything quantum mechanical we saw has an amplitude and a phase. So this

is actually a number plus a phase. Or if you like, it has a real part and an imaginary

part. And there is no way that we know anything about the phase. The phase is not

an unobservable. So the probability that when we scan the system we have

identified some psi of x that the probability should depend on the phase is

meaningless. It's not an observable. So this functional should only depend on things

like absolute value of psi.

If, like Landau, we assume that it is a local form, then the kinds of terms that we can

write are absolute value of psi squared, absolute value of psi to the fourth power.

And the tendency for the order to expand across the system you would put through

a term such as gradient of psi squared.

Now, for the case of the superfluid, there is no physical field that corresponds to the

h. That just you don't have that field.

You can convince yourself that if you write psi to be psi 1 plus psi 2, i psi 2-- real

and imaginary part. And put that in this formula, that corresponds exactly to the

theory that we wrote over there as long as we choose a two-component

magnetization. So these two theories are identical.

Now, if I look at this system for t negative and try to find a minimum of the functional
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that I have over there, then the shape of the function functional psi-- poor choice of

notation. Psi both being the wave function as well as the function that I have to

extremize. But let's stick with it. It has a minimum that goes along a circuit.

So basically, take this picture that we have over here that corresponds to essentially

one direction and rotate it. And what you will get is what is sometimes called the

wine bottle type of shape, or the Mexican hat potential, or whatever. But essentially,

it means that there is a ring of possible ground states. So the minimum occurs for

psi of x having some particular magnitude which corresponds to the location of this

ring-- how far away it is from the center. And that will be given by the square root of

t formula that we have up there.

But then there is a phase that is something that you don't know. Now, let's ask the

question. Suppose I allow this phase to vary from one part of the sample to another

part of the sample. So that's the analog of this slow distortion that I was making up

there. So essentially, as I go from one part of the sample to another part of the

sample, I slowly move around this bottom of this with potential. And I ask, what is

the cost of this distortion that I impose on the system?

If I calculate beta H for psi bar e the i theta x, what I get is whatever I have put over

here, such as this function which minimizes the-- which is the location of the

minimum. But because of the variation in theta that I have allowed, there is a cost.

So let's write that as beta H0 plus this additional cost.

The additional cost comes from this term. If I simply put psi bar in to the i theta over

there, I will get an integral d dx k psi bar squared over 2 gradient of theta squared.

So there is an additional energy cost. This is very similar to the energy cost that we

had for phonons. Because if I Fourier transform, you can see that I get a k squared

just like we got for the case of phonons.

And just like for the case of phonons, I expect that at some finite temperature, these

kinds of modes are thermally excited. So in reality, I expect that if I'm at some finite

temperature, this phase will fluctuate across my system.
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And maybe I should note that whereas I'm here thinking in terms of thermal

fluctuations, by appropriate boundary conditions one can establish a gradient of

theta that is uniform across the system. And that actually corresponds to a

superfluid flow. So the case of a superfluid flow can be regarded by having a

gradient of theta being proportional to velocity, and then this is something like the

kinetic energy. But that's a different story. Let's just stick with the fact that this is the

cost of making these distortions. And I want to know, what's the probability of having

one of these distorted shapes? Yes.

AUDIENCE: Question. When you're introducing the psi as another parameter and you call it

overlap of [INAUDIBLE] what is boundaries and what values this sort of parameter

can take? So I basically wonder if we have this Mexican hat-shaped potential with

minima on the ring of radius at 1, can the value of potential-- of the other parameter

principally be further than that?

PROFESSOR: OK. So again, here we are trying to phenomenologically explain an observation that

there is a transition between a case where there is no super fluidity and right when

a certain small amount of super fluidity has been established in the system. The

question that you asked over here is legitimate, but you could have asked it also for

the case of the magnetization. So you could have said, why not to have that

potential with the minimum somewhere else? But that does not explain the

phenomena that we are trying to explain.

The phenomena that we are trying to explain is the observation that I go from

having nothing to having a little bit of something. And I choose the mathematical

form that is capable of describing that.

AUDIENCE: My question basically was, when we were talking about magnetization, if you take a

piece of metal, you can magnetize it from 0 to a pretty large value.

PROFESSOR: No.

AUDIENCE: If we are interested in something not too large--

PROFESSOR: No.
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AUDIENCE: And as I say, [INAUDIBLE].

PROFESSOR: What is your scale? What is very large? For a magnet, there is a maximum

magnetization--

AUDIENCE: In this case, I mean that spontaneous magnetization for a magnet would be lower

than saturation, no?

PROFESSOR: What is saturation?

AUDIENCE: When all spins are same direction.

PROFESSOR: OK. So you have a microscopic picture in mind. Now, the place that we are is far

from that saturation magnetization. Similarly, in this case, presumably if I go to 0

temperature, there is some uniformity. And if I call this an overlap, the maximum of

it will be 1.

AUDIENCE: Yeah. But basically, I just don't understand-- what is overlap of wave function?

PROFESSOR: Well, that's why I didn't want to go into that detail. But basically, the overlap of two

wave functions would be the psi 1 star psi 2 of x. And if you are thinking about the

ground state, let's say that I have normalized this function to have a maximum of 1.

The point is that what that maximum is, is folded into all of these parameters-- a, u,

et cetera-- and is pretty irrelevant to the nature of the transition.

AUDIENCE: OK.

PROFESSOR: OK? So the probability of a particular configuration of theta across the system is

given by this formula. I can unpack that a little bit better just like we did for the case

of phonons by writing theta in terms of Fourier modes. e to the i q dot x theta of q,

which for the time being, I assume I have discretized appropriate values of q. I

choose this normalization root V in this context.

If I substitute that over here, what I find is that beta H as a function of the collection

of theta q's is, again, some beta H0, which is not important. I put gradient of theta.
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Once I do gradient of theta, you can see that I get a factor of iq. I will have two of

them, so the answer is going to be proportional to q squared.

Let's call this combination k psi bar squared k bar so that I don't have to write it

again and again. k bar over 2. And then theta of q squared. OK?

So the probability of some particular combination of these Fourier amplitudes is

proportional to exponential of this. And therefore, a product of independent

Gaussian-distributed quantities. q squared. Yes.

AUDIENCE: When you plug in your summation of your-- well, your Fourier series into the

gradient and then you square that, why don't you get interactions between the

different Fourier amplitudes?

PROFESSOR: OK, let's do it explicitly. I have integral d dx gradient of theta gradient of theta.

Gradient of theta is iq sum-- OK. Is i sum over q q e to the i q dot x theta tilde of q.

And I have to repeat that twice. So I have i sum over q prime q prime into the i q

prime dot x theta tilde of q prime. So basically, this went into that. This went into

that. OK?

So I have a sum over q, sum over q prime, and an integral over x. What is the

integral over x of e to the i q plus q prime dot x?

It is 0, unless q and q prime add up to 0. This is delta function. So you put it there.

Only one sum survives. Actually, I had introduced the normalizations that were root

V. The normalizations get rid of this factor of V. That's why I had normalized it with

the root V. And I will get one factor of q remaining. Since q prime is minus q iq iq

prime becomes q squared. And then I have theta tilde of q theta tilde of minus q,

which gives me this.

So each mode is independently distributed according to a Gaussian, which

immediately tells me the average of theta of q tilde is, of course, 0. Let's be careful

and put the tildes all over the place. While the average of theta tilde of q squared is

1 over k bar q squared.
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Again, all that says is that as you go to long wavelength modes and q goes to 0, the

fluctuations become larger because the energy cost is smaller. OK, so that's

understandable. But now, let's look at what is happening in real space.

I pick two points, x and x prime. And I ask, how do the fluctuations vary from one

point to another point? So I'm interested in theta x. Let's say minus theta. Let's

calculate the following first, theta of x, theta of x prime just because the algebra is

slightly easier.

Now, theta of x I can write in terms of theta tilde of q. So this becomes sum over q q

prime e to the iq dot x e to the iq prime dot x prime. There is a factor of 1 over V

that comes from the normalization I chose. And then the average of theta tilde of q

theta tilde of q prime.

But we just established that the different modes are independent of each other. So

basically, this gives me a delta function that forces q and q prime to add up to 0. If

they do add up to 0, the expectation that I get is 1 over k bar q squared. And so

what I find is that this becomes related to a sum over q 1 over V e to the iq dot x

minus x prime divided by k bar q squared.

If I go to the continuum limit where the sum over q I replace with an integral over q,

then I have to introduce the density of states. And so then I find that theta of x theta

of x prime is 1 over k bar integral d dq 2 pi to the d the Fourier transform of 1 over q

squared.

Now, the Fourier transform of 1 over q squared is something that appears all over

physics. So let's give it a name. So we're going to call the integral d dq 2 pi to the d

e to the iq dot x divided by q squared. And let's put a minus sign in front of that. And

I'll give it the name the Coulomb potential in d dimensional space.

And for those of you who haven't seen this, the reason this is the Coulomb potential

is because if I take two derivatives and construct the Laplacian of that function-- so I

take two derivative with respect to x here, the two derivatives will go inside the

integral. And what they do is they bring down two factors of iq divided by q squared.
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The minus sign disappears, q squared over q squared goes to 1. Fourier transform

of e to the iq x is simply the delta function. So this Cd of x is the potential that would

emerge from a unit charge at the origin at a distance x.

So again, for those who have forgotten this or not seen it, let's calculate it explicitly

using Gauss' theorem. The potential due to a unit charge is going to be spherically

symmetric, so it's only a function of the magnitude of x. It doesn't depend on the

orientation.

And Gauss' law states that the integral of Laplacian over volume is the same as the

integral of the analog of the electric field, which is the gradient over the surface. So I

have the surface integral of gradient.

Now, for the case that we are dealing with, the left-hand side Laplacian is a delta

function. So when we integrate that over the sphere, I simply get 1. So this gives me

1. What do I get on the right-hand side?

It's just like the flux of the electric field that you have calculated. It is the magnitude

of the electric field times the surface area. And I am doing this generally in d

dimensions. So the surface area in d dimension grows like x to the d minus 1. And

then there is a factor such as 2 pi, 4 pi, et cetera, which is the solid angle that you

would have to put in d dimensions.

And to remind you, the solid angle in d dimensions is 2 pi to the d over 2 d over 2

minus 1 factorial. So the magnitude of this derivative dC by dx following from that is

simply 1 divided by x to the d minus 1, or x to the 1 minus d divided by Sd. So this is

generalizing how you would calculate Gauss' law in three dimensions.

So now I just integrate that and I find that the d dimensional Coulomb potential is x

to the 2 minus d divided by 2 minus d Sd. And of course, there could be some

constant of integration. So it reproduces the familiar 1 over x law in three

dimensions.

But the thing that is important to note is how much this Coulomb potential depends
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on dimensions. It determines these angle-- angle fluctuation correlations. And

typically, here in this context we want to know something about large distances. If I

make a fluctuation here, how far away is the influence of that fluctuation felt?

So I would be interested in the limit of this when the separation is large-- goes to

infinity. And we can see that the answer very much depends on the dimensions.

So we find that for d that is greater than 2, like the Coulomb potential in three

dimensions, you basically go to a constant. While in d less than 2, it is something

that grows as a function of distance as x to the 2 minus d 2 minus d Sd. And

actually, write at the borderline dimension of d equals to 2, it also grows at large

distances. If you do the integration correctly, you will find that it is 1 over 2 pi log x

over some distance or [INAUDIBLE].

Now, what you are really interested-- actually, this thing that I wrote down is not

particularly meaningful. The thing that you are interested in is what I had originally

written, which is that if I look at the angle that I have at x and then I go far away--

because the angel itself is not an observable, but angle differences are. So the

average of this quantity will be 0. But there will be some variance to it, so I can look

at this quantity.

And that quantity-- I can expand this-- is twice the average of theta at some

particular location. Presumably, it doesn't matter which location I look at. So it's the

variance locally that you have in the angles. And then minus twice theta of x theta of

x prime, which is the quantity that I calculated for you above.

So all I need to do is to take the Coulomb potential that I calculated, multiply it by a

factor of 2, divide by a factor of k bar that I basically indicated as part of the

definition. So this object is going to be 2 x to the 2 minus d divided by k bar 2 minus

d Sd. And actually, the reason I do this is because now I can indicate the overall

constant as follows.

Remember that all of our statistical field theories are obtained by averaging. And I

shouldn't believe any of these formulas when I look at very short wavelengths. So I
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shouldn't really believe any answer that I got from those formulas when the points x

prime and x come too close to each other. So there is something of the order of a

lattice spacing, averaging distance, et cetera, that I'll call a.

And by the time I get to a, I expect that my fluctuations vanish because that's the

distance over which I'm doing the average. So I manage to get rid of whatever this

constant is by substituting [INAUDIBLE] with the scale over which I expect my theory

to cease to be valid.

But again, what I find is that if I look at the fluctuation between two points at large

distances, if I am in dimensions greater than 2, this thing eventually goes to a

constant. Which means that if I'm in three dimensions, the fluctuation in phase

between one place and another place are not necessarily small or large because I

don't know what the magnitude of this constant is, but they are not getting bigger as

I go further and further along.

Whereas, no matter what I do in d that is less than or equal to 2, this thing at large

distances blows up. So I thought that I had a system where I had broken

spontaneous symmetry and all of my spins, all of my phases were pointing in one

direction. But I see that when I put these fluctuations, no matter how small I make

the amplitude, the amplitude doesn't matter.

If I go to far enough distances, fluctuations will tell me that I don't know what the

phase is from here to here because it has gone over many multiples of 2 pi, so that

it has become divergent. So what that really means is that because of fluctuations,

you cannot have long-range order. So destroy continuous long-range order in

dimensions that are less than or equal to 2. This is called the Mermin-Wagner

theorem.

So you shouldn't have any, for example, super fluidity, magnetization, anything in

two dimensions of one dimension. If you go to long enough, you will see that

fluctuations have destroyed your order. So we can see already how important

fluctuations are.
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This d equal to 2 is called the lower critical dimension. It is this phenomena of

symmetry breaking, ordering, phase transition, et cetera, that we are discussing for

continuous systems-- for continuous symmetry breaking can only exist in three

dimensions but not in two dimensions. We'll see that for discrete symmetries, you

can have ordering in two dimensions, but not one dimensions. So there, the lower

critical dimension is 1. Yes.

AUDIENCE: And does this hold for any n? This example you were doing--

PROFESSOR: Yes.

AUDIENCE: --it just has two components.

PROFESSOR: Any n. n equals to 2, 3, 4, anything. We'll see later on, towards the end of the

course, that there is a slight proviso for the case of n equals to 2, but that we'll leave

for later.
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