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PROFESSOR: OK, let's start. So we've been trying to understand critical points. And this refers to

the experimental observation that in a number of systems we can be changing

some parameters, such as temperature, and you encounter a transition to some

other type of behavior at some point.

So the temperature, let's say, in this behavior is the control parameter. And you

have to see, for example, this will be normal to superfluid transition. You have one

now [INAUDIBLE] change temperature and going through this point.

For other systems, such as magnets, you actually have two knobs. There is also the

magnetic field. And there, you have to turn two knobs in order to end at this critical

point, also in the case of the liquid gas system in the pressure temperature plane,

you have to tune two things to get this point. And the interesting thing was that in

the vicinity of his point, the singular parts of various thermodynamic quantities are

interestingly independent of the type of material.

So if we, for example, establish a coordinate at t and h describing deviations from

this critical point, we have, let's say, the singular part of free energy as a function of

t and h has a form like t to the 2 minus alpha, some scaling function ht to the delta,

and these exponents, alpha and delta, other things that are universe.

For example, we could get from that by taking two derivatives with respect to h, the

singularity and the divergence of the susceptibility. And we said that the diverging

susceptibility also immediately tells you that there is a correlation then that diverges,

and in particular, we indicated its divergence to an exponent u. WE could for that

also establish a scaling form on how the correlation then diverges on approaching

this point generally in the ht plane.
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So this was the general picture. And building on that, we made one observation last

time, which is that any point when you are away from h and t equals to 0, you have

a correlation length. And then we concluded that if you are at t and h equals to 0,

you have a form of scaling vertices.

And basically what that means is that when you are at that point, you look at your

system, it's a fluctuating system, and the fluctuations are such that you can't

associate a scale with them. The scale has already gone into the correlation length

that is infinite.

And we said that therefore, if I were to look at some kind of a correlation function,

such as a magnetization in the case of a magnet, that the only way that it became

its separation is as a power of a distance. And this clearly has a property that if we

were to rescale x and y by a certain amount, this correlation function nearly gets

multiplied by a factor that is dependent on this rescale. And this is after we do the

averaging, so it's a kind of statistical self-singularity, as opposed to some factor

such as Sierpinkski gasket, which are identically and deterministically self-similar in

that each piece, if you blow it up, looks like the entire thing.

So what we have in our system is that if we have, let's say, a box which could be

containing our liquid gas system at its critical point, or maybe a magnet at its critical

point, will have a statistical field, this m of x. And it will fluctuate across the system.

So maybe this would be a picture of the density fluctuation.

What I can do is to take a scan along some particular axis-- let's call it x-- and plot

what the fluctuations are of this magnetization. Let's say m of x. Now the average

will be 0, but it will have fluctuations around the average. And so maybe it will look

something like this-- kind of like a picture of a mountain, for example.

Now one thing that we should remember is that this object would be piece of iron or

nickle, and clearly I don't really mean that this is what is going on at the scale of a

single atom or molecule of my substance. I had to do some kind of averaging in

order to get the statistical field that I'm presenting here. So let's keep in mind that

there is, in fact, some implicit analog of lattice size or some implicit shortest
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distance, shortest wavelength that I allow for my frustrations.

Now I can sort of make this idea of scale invariance of a set of pictures, such as this

one, more precise, as follows, by going through a procedure that I will call

renormalization that has the following three steps. So the first step, what I will do is

to coarse-grain further. And by this, I mean averaging m of x over a scale ta.

So previously, I had done my averaging of whatever means, et cetera. We're giving

contribution to the overall magnetization over some number, let's 100 by 100 by 100

spins and a was my scaling distance. Why should I choose 100? Why not choose

200, some factor of what I had originally?

So coarse-graining means increasing this minimum length scale from a to ba. And

then I define a coarse-grained version of my field. So previously, I had m of x. Now I

have m tilda of x, which is obtained by averaging, let's say, over volume around the

point x that I had before. And this volume is a box of dimension ba to the d.

And then I basically average over that. I guess let's call it original distance a equals

1, so I don't really have to bother by the dimensionality of y, et cetera. OK? So if I

were to apply that to the picture that I have up there, what do I get? I will get an m

tilda as a function of x.

And essentially, let's say if I were to choose a factor of b that was like 2, I would take

the average of the fluctuations that they have over 2 of those of those intervals. And

so the picture that I would get it would be kind of a smoothened out version of what I

have before over there. I will still have some fluctuations, but kind of ironed out.

And basically, essentially, it means that if you were to imagine having taken a

photograph, previously you had the pixel size that was 1. Now your pixel size is

larger. It is factor of b. So it's this kind of detuning and averaging of the fluctuations

that has gone. And so you have here now b.

Now if I were to give you a photograph like that and a photograph like this, you

would say that they are not identical. One of them is clearly much grainier than the

other. So I say, OK, I can restore some amount of similarity between them by doing
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a rescaling.

So I call a new variable x prime to be my old variable x divided by a factor of b. So

when I do that to this picture, I will get m tilda as a function of x prime. x prime can

go in further less, because all I do is I take this and squeeze it by a factor of b. So I

will get a picture that maybe looks something like this.

Now if I were to look at this picture and this picture, you would also see a difference.

That is, there is a contrast. So here, there would be, let's say, black and white. And

as you scan the picture, you sort of see some variation of black and white.

If you look at this, you say the contrast is just too big. You have big fluctuations as

you go across compared to what I had over there. So there's another step, which is

called renormalize, which is that you define m prime to be m by a change of

contrast factor zeta. So you take a knob that corresponds to contrast and you

reduce it until you see pictures that kind of statistically look like what you started

with.

So in order to sort of generate pictures that are self-similar, you have this one knob.

Basically, scaling variance means the change of size. But there is associated with

change of size a change of contrast for whatever variable you are looking at. It turns

out that that change of contrast would eventually map to one of these exponents

that we have over there. Yes.

STUDENT: Are you using m or n tilda?

PROFESSOR: m tilda, thank you. So I guess the green is m tilda of x prime, and the pink is m

prime of x prime. So what I have done mathematically is as follows. I have defined

an m prime of x prime, which is 1 over zeta, this contrast factor b to the d because

of the averaging over a volume that involved b to the d pixels of the original field

centered at a location that was bx prime plus y.

So in principle, I can go and generate lots and lots of configurations of my

magnetization, or lots and lots of pictures of a system at the liquid gas critical point,
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or magnetic systems at their critical point. I can generate lots and lots of these

pictures and construct this transformation. And associated with this transformation is

a change of probability, because there was some probability-- let's call it P old, that

was describing my original configurations m of x. Let's forget the vector notation for

the time being. Then there will be, after this transformation, probability that

describes these configurations m prime of x prime.

Now you know that averaging is not something that you can reverse. So this

transformation going from here and here, I cannot go back. There are many

configurations over here that would correspond to the same average, like up, down

or down, up would give you the same average, right? So a number of possibilities

here have to be summed up to generate for you this object.

Now the statement of self-similarity presumably is that this weight is the same as

this weight. You can't tell apart that you generated configurations before or after

that scaling. So this is same at critical point. I've not constructed either weight, so it

really doesn't amount to much.

But Kadanoff introduced this concept of doing this and thinking of it as a kind of

group operation called renormalization group that I describe a little bit better and

evolve the description as we go along. So if I look at my original system, I said that

self-similarity occurs, let's say, exactly at this point that corresponds to t and h

equals to 0.

Now presumably, I can, in some sense, force these things, if I were to take its log,

for example. I can construct some kind of a weight that is associated with m, and

this would be a new weight that is associated with m prime. Presumably, right at the

critical point, these two would be the same weight, and it would be the same

Hamiltonian.

What happens, if I do this procedure, to a system that is initially away from the

critical point? So my initial system is characterized by deviations t and h from this

scale in variant ways, which means that over here I have a correlation length.
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Now I go through all of these transformations. I can do those transformations also

for a point that is not at the critical point. But at the end of the day, I certainly will not

get back my original weight, because I look at the picture after this transformation.

Before the transformation, I had a long correlation length, let's say a mile. When I

do this transformation, that correlation length is reduced by a factor of b.

So the new system has deviated more from the critical point. Because the further

you go away from the critical point, you have a larger correlation length. So the idea

is that right at the critical point, the two weights are the same. Deviation from the

critical point is described by these two parameters, t and h.

And if you do the renormalization procedure on a Hamiltonian that deviates, you will

get a Hamiltonian that more deviates, still describable by parameters t and h that

have changed. So again, this says that c was, in fact, b times c of t prime and h

prime, and t prime and h prime are further away.

Now the next thing that Kadanoff said was, OK, therefore there is a transformation

that tells me after I do a rescaling by a factor of b how the new t and the new h

depend on the old t and the old h. So there is a mapping in this space. So a point

that was here will go over there. Maybe a point that is here will map over there. A

point that is here will map over here. So there is a mapping that tells you how th get

transformed under this procedure.

Actually the reason this is called a renormalization group, groups we are really

thinking usually in terms of operations that are invertible. This transformation is not

invertible. But this is a mapping. So potentially this mapping is invertible. You can

say that if this point came from this point under inversion, it will go back to the

original point, and so forth.

The next part of the argument is what did we do over here? We got rid of some

short wavelength fluctuations. Now one of the things that I said right at the

beginning was that as long as you are getting rid of short scale fluctuations, you are

summing over a cube that his 100 square, 200 cube. It doesn't matter, 100 cube,

200 cube-- you are doing some analytical function.
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So the transformation that relates these to these, the old to new, should be

analytical, and hence you should be able to write a Taylor series for it. So let's try to

make a Taylor series for this. Taylor series start with a constant. But we know that

the constant has to be 0 in both cases because the starting point was the point that

was scale invariant and was mapping onto itself.

So the first thing that I can write down are linear terms. So there could be a term

that is proportional to t. There could be a term that is proportional to h. There could

be a term here that is proportional to h. There could be a term that is proportional--

well, let's call this t. Let's call this h. And then there will be terms that will be order of

t squared and higher.

So I just did an analytical expansion, justified by this summing over just finite

degrees of freedom at short scale. Now if I have a structure, such as the one that I

have over there, I also know some things on the basis of symmetry. Like if I'm on

the line that corresponds to h equals to 0, there is no difference between up and

down. Under rescaling, I still don't know the difference between up and down.

So I should not generate an h if h was originally 0 just because t deviated from 0. So

by symmetry, that has to be absent. And similarly, by symmetry, there is no

difference between h positive and h negative. As far as t is concerned, h and minus

h should behave the same. So this series should start at order of h squared and not

h, so that term should be absent. So at this level, we have a nice separation into t

prime is at and h Prime. Is dh.

Now we know something more, which is that the procedure that we are doing has

some kind of a group character, in that if I, let's say, originally transform by some

factor b1, change by a factor of 2, then change by a factor of 3, the answer is

equivalent to changing by a factor of 2 times 3, or 3 times 2. Doesn't matter in which

order I do them.

So also, I would get, if I were to do b1 first and b2 later, it would be the same thing.

So what does that imply? That if I do two of these transformation, I find that my new
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t is obtained in one case by the product, in the other case by the product of the two

a's. So that's, again, some kind of a group character.

And furthermore, if I don't change the length scale, everything should stay where it

is. So you glance at those, and you find that there is only one possibility, that a as a

function of b should be b to some power. So you know therefore that at the lowest

order under rescaling by a factor of b, t prime should be b to some y-- I called it yt--

times t plus higher orders, while h prime is b to some other power of yh times h plus

higher orders.

And you say, OK, fine. What's this good for? Well, let's take a look at what we did

over there. We said that I take some bunch of initial configurations, sum their

weights to get the weight of the new configuration.

What happens if I sum over all initial configurations? Well, if I sum over all initial

configuration, I will get the partition function. Now essentially, all the original

configurations I regrouped and put into these coarse-grained configurations that are

weighted this way.

So there could be an overall constant that emerges from this. But this really implies

that the singular part of log z, and presumably this depends on how far away I am

from the critical point, is the same as log z that singular after I do this t prime and h

prime.

Now there is one other issue, which is extensivity. Up to signs, factors of beta, et

cetera, this is b times an intensive free energy, which is a function of t and h. So this

is the same as v prime, because the volume shrunk. I took all of my scales and

shrunk it by a factor of v, v prime, f of t prime and h prime.

So now let's go this way. Note that v prime is the original v divided by b to the d

scaling factor. So you do the divisions here, and you find that f as a function of t and

h is the ratio of v prime to v, which is b to the minus d, f as a function of t prime and

h prime. But t prime we said to lowest order is b to the yt t. h prime is b to the yh h.

This is actually the more correct form of writing a homogeneous function. So

8



previously in last lecture, we assumed that the free energy had a homogeneous

form. Now subject to these conditions and assumptions of renormalization group,

we have concluded that it should have that homogeneous form.

Now you say this homogeneous form does not look like the homogeneous forms

that I had written for you before. I say, OK. Presumably this is true for any factor of

b that I want to choose. Let me choose a b, a rescaling factor such that v to the yt t

is of the order of 1. Could be 1, could be pi. I don't care. Which means that I chose

a factor of b that will scale with t as t to the minus 1 over yt.

I put this b-- this expression is true for all choices of b. If I chose that particular

value, what I get is t to the d over yt, some function. First argument has now

become 1 or some constant. Really it only depends on the second argument in the

combination h and t to the power of yh over yt.

So you can see that this is, in fact, the same as the first line that I have above. And I

have identified that 2 minus alpha would be related to this factor of yt, which is how

you would scale under renormalization, the parameters t and h. And the gap

exponent is related to the ratio of yh over yt.

Similarly, we had that the correlation length-- I have a line there. Psi of t and h is b

psi of t prime and h prime. So I have that psi as a function of t and h is b times psi

as a function of b to the yt t, b to the yh h. So that's also correct.

I can again choose this value of v, substitute it over there. What do I get? I get that

psi as a function of t and h would be t to the minus 1 over yt, some scaling function--

let's call it g psi-- of, again, h to the power of yh over yt.

So I have got an answer that nu should be 1 over yt. I can get the scaling form for

the correlation length. I identify the divergence of correlation length with inverse of

this. And by the way, I get, if I substitute nu as 1 over yt here, the Josephson

hyperscale in relation to minus alpha equals to b.

I can go further if I want. I can calculate magnetization as a function of t and h,

would correspond to basically the behaviors that we identify with exponents beta or
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delta as d log z. Yeah, let's say f by dh. If I take a derivative over there, you can

immediately see that what that gives me is b to the power of yh minus d, and then

some scaling function which is the derivative of this scaling function b the yt t, b to

the yh h.

And again, if I make this choice, then this goes over to t to the power of d minus yh

over yt, and then some scaling function of h t to the delta. So I can continue with my

table. And for example, I will have beta to be d minus yh divided by yt. I can go and

calculate delta, et cetera.

Actually I was a little bit careless with this factor zeta, which presumably is implicit in

all of these transformations that I have. And I have to do special things to figure out

what zeta is so that I will get self-similarity right at the critical point. But we can see

that already we have the analog of a rescaling for m. And so it is easy to sort of look

at those two equations and identify that my zeta should be precisely this one.

So the zeta is not independent of the relevance of the magnetic field. And if you

think about it, the field and the magnetization are conjugate variables in the sense

that in the weight here, I will have a term that is like hm-- integrated, of course. And

so hm integrated, you can see that up to a factor of b to the d from integration, the

dimensionality that I assign to h and the dimensionality that I assign to m should be

related. And not only for the magnetization, but for any pair of variables that are so

conjugate-- there's some f, and there's some x-- there will be a corresponding

relation between what would happen to this x at the critical point and this factor f

when I deviate from the critical point.

So all of this is kind of nice, but it's a little bit hand waving. I essentially traded one

set of assumptions about homogeneity and scaling of free energy correlation length

to some other set of assumptions about two parameters moving away from a scale

invariant critical point. I didn't calculate anything about what the scale invariant

probability is. I didn't show that, indeed, two parameters are sufficient, that this kind

of scaling takes place, et cetera. So we need to be much more precise if we want to

do, ultimately, calculations that give us what these numbers yt and yh are. So let's
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try to put this hand waving on a little bit more firm setting.

So let's see how we should proceed. We start with some experimental system,

critical point. So I tell you that somebody in the experiment, the liquid gas system,

they saw a diverging correlation length, critical opalescence, et cetera.

So then I associate with that some kind of a statistical field. And let's kind of stick

with the notation that we have for the magnet. Let's call it m of x.

And in general, this would be the part where one needs to put in a lot of thinking.

That is, the experimentalist comes and tells you that I see a system that undergoes

a phase transition. There are some response functions that are divergent, et cetera.

You have to put in some thinking to think about what the appropriate order

parameter is.

And based on that order parameter or statistical field, you construct the most

general weight consistent with symmetries, with not only asymmetries but the kind

of assumptions that we have been putting in play. So we put in assumptions about

locality, symmetry. Stability is, of course, paramount. But there is a list of things that

you have to think about.

So once you do that you say, OK, I associate with my configurations m of x some

set of probabilities. Probabilities are certainly positive. So I can take its log, call its

minus its log to be some kind of a weight, beta h, that governs these m of x's.

If I say that I'm obeying locality, then I would write the answer, for example, like this.

But it doesn't have to be. I have to write some particular example. But you may

construct your example depending on the system of interest.

And let's say we are looking at something like a superfluid, maybe, that we don't

even have the analog of magnetic field, and we go and construct terms that are

symmetric and made for a two component m. And I will write a few of these terms to

emphasize that this is, in principle, a long list. There's coefficient of m to the sixth.

We saw that the gradient terms could start with this k. But maybe there's a higher

order gradient, and there's essentially and infinity of terms that you can write down
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that are consistent with these assumptions that you have made so far.

So you say, OK. Now I take this, and implicit in all of these calculations is, indeed,

some kind of a short scale cutoff. To construct the statistical field, I do apply the

three steps of RG-- renormalization group, as I described before. And this will give

me a new configuration for each of the old configurations through the formula that I

gave you over there.

So in principle, this is just a transformation from one set of variables to a new set of

variables. So if I do this transformation, I can calculate the weight of the new

configurations, m prime of x prime. I can take minus the log of that.

And again, up to some constant, it will be the same as a probability. So there could

be, in this procedure, some set of constants that are generated that don't depend

on m. And then there will be a function that depends on m prime of x prime.

Now the statement is that since I wrote the most general function over here,

whatever I put here will have to have exactly the same form, because I said put

anything that you can think of that is consistent with symmetries over here. So you

put everything there. What I put here should have exactly the same functional form,

but with coefficients that have changed.

So you basically prime everything, but you have this whole thing. Now this may

seem like truly difficult thing. But we will actually do this. We will carry out this

transformation explicitly in particular cases.

And we will show that this transformation amounts to constructing a rescaling of

each one of these parameters-- t prime, u prime, v prime, k prime, l prime, and so

forth-- as functions of the old parameters. So this is, if you like, a mapping. You take

some set of parameters-- t, u, v, k, l, blah, blah, blah-- and you construct a

mapping, s prime, which is some function of the original set of parameters.

So this is a huge dimensional space. Any points that you start on the transformation

will go to another point. But the key is that we wrote the most general form that we

could, so we had to stay within this space.
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So why are you doing this? Well, I started by saying that the key to this whole thing

is have to having a handle as to what this self-similar scale invariant probability is. I

can't construct that just by guessing. But I can do what we usually do, let's say, in

constructing wave functions in quantum mechanics that have some particular

symmetry.

Maybe you start with some wave function that doesn't have the full symmetry, and

then you rotate it and rotate it again, and you average over all of them, and you end

up with some function that has the right symmetry. So we start with a weight that I

don't know whether it has the property that I want. And I apply the action of the

group, which is this scaling variance, to see what happens to it under that

transformation.

But the point that I am interested, or the behavior that I am interested, is where I

basically get the same probability back. So I'm very interested at the point where,

under the transformation, I go back to myself. And that's called a fixed point.

So S is a shorthand for this infinite vector of parameters. I want to find the point s

star in this parameter space. Actually, let me call this transformation R and indicate

that I'm renormalizing by a scale b, such that, when I renormalize by a scale b, my

original set of parameters, if I am at this fixed point, I will end up at that point.

So clearly, this is a system that has exactly these properties that I was harping in at

the beginning. This is the point that is truly scale invariant. That's the point that I

want to get at.

So again, once we have done this transformation in a specific case, we'll figure out

what this fixed point is. But for the time being, let's think a little bit away from this

and deviate from fixed point.

So I start with an initial point S that is, let's write it, S star plus a little bit away. Just

like in the picture that I have here, I started with a fixed point, and I said I go away

by an amount that I had parameterized by t and h. Now I have essentially a whole
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line of deviations forming a vector.

I act with Rb on this, and I note that if delta S goes to 0, then I should go back to S

star. But if delta S is small, maybe I can look at the delta S prime, which is a

linearized version of these transformations. So basically these transformations are

highly nonlinear just as the transformation over here, in principle, would have been

highly nonlinear. But then I expanded it around the point t and h equals to 0.

Similarly, I'm assuming that this delta S is small, and therefore delta S prime can be

related to delta S through the action of a matrix that is a linearized version. Let's call

it here RL of b. So this is a linearized transformation, which means that it's really a

matrix.

In this particular case, in principle, I started with a 2 by 2 matrix. The off diagonal

terms were 0, so it was only the diagonal terms that mattered. But in general, it

would be a matrix, which would be the square of whatever the size of the parameter

space is that I am looking at.

Now then you have a matrix, it's good always to think in terms of its eigenvalues and

eigendirection. In this problem that I had over here, symmetries had already

diagonalized the matrix. I didn't have off diagonal terms. But I don't know here. It

could be all kinds of off diagonal terms. So the properties are captured by

diagonalize, RL, which means that I find a set of vectors in this space-- let's call

them Oi-- such that under action of this, I will get lambda Oi, lambda i. Of course,

the transformation depends on the rescaling parameter, so there should be a b

here.

Now of course, you will get a totally different matrix for each b. So is it really

hopeless that for each b I have to look at a new matrix, new diagonalization, et

cetera? Well, exactly this thing that we had over here now comes into play, because

I know that if I make a transformation size b1 followed by a transformation size b2,

the answer is a transformation size b1, b2. And it doesn't matter in which order I do

it.
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AUDIENCE: Can't you just mix notation, because L used to be [INAUDIBLE]?

PROFESSOR: Sorry. So in particular, I see that these linearized matrices commute with each other

for different values of b. And again, from your quantum mechanics, you probably

know that if matrices commute then they have the same eigenvectors. So

essentially, I was correct here in putting no index b on these eigenvectors, because

it's independent of eigenvector, whereas the eigenvalues, in principle, depend on b.

And how they depend on b is also determined by this transformation, that is lambda

i of b1, lambda i of b2 should be the same thing as lambda b1, b2.

And of course, lambda i of 1 should be 1. If you don't change scale, nothing should

change. And this is exactly the same set of conditions as we have over here, which

means that we know that the eigenvalue's lambda i can be written as b to the power

of some set of yi. So we just generalized what we had done before, now to this

space that includes many parameters.

So the story is now something like this. There is this multi-dimensional space with

lots and lots of parameters-- t, u, v, blah, blah, blah, many of them. And somewhere

in this space of parameters, presumably there is a fixed point, S star. Now in the

vicinity of that S star, I have established that there are some particular directions

that I can obtain by diagonalizing this.

So let's imagine that this is one direction, this is another direction, this is a third

direction. And that if I start with a beta h-- well, actually, let's do this. That is, if I start

with an S that is S star plus whatever is a projection of my components are along

these different dimensions, so let's call them, let's say, ai along these Oi hat-- just

make sure we kind of think of them as vectors-- that under rescaling, I will go to S

prime, which is S star plus sum over i, ai b to the yi Oi.

That is, some of these directions, the component will get stretched if yi is positive. It

will get diminished if yi is negative. And so now some notation comes into play.

If yi is positive, the corresponding direction is called relevant. Eigendirection is

relevant. If yi is negative, the corresponding eigendirection is irrelevant. And very
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occasionally, we may run into the case where yi is 0. And there is a terminology.

The corresponding eigendirection is marginal.

And what that means is that I need to resort to higher order terms to see whether it

is attracted or repelled by the fixed point. So we need higher orders. After all, so far

I have only linearized the transformation.

Now the set of irrelevant directions to this particular S fixed point, S star, defines

basing of attraction of S star. So let me go back to the picture that I have over here

and be precise and use the arrow going away as an indication that the

corresponding b is positive, and I'm forced out along this direction. Let me choose

going in as an indicator that the corresponding y is negative. And as I make b larger

and larger, I shrink along this axis.

So in this three dimensional representation that I have over there, I have one

relevant direction and two irrelevant directions. The two irrelevant directions will

define the plane in this three dimensional space, which is the basing of attraction.

So basically these two define a surface, and presumably any point that is in this

surface in the three dimensional picture under looking at larger and larger things will

get attracted to the fixed point. If you are away from the surface, maybe you will

approach here, and then you will be pushed out. All right, fine.

Now let's go and look at the following. We have a formula, psi of t and h. Or quite

generally, psi under rescaling is b times the new psi. Or the new psi under any one

of these transformation, psi prime, is the old psi divided by the old correlation length

divided by a factor of b.

So if I look at the fixed point-- so if I ask what is psi at the fixed point-- then under

the transformation, I have the same parameters. So psi at the fixed point should be

the psi of the fixed point divided by b. There are only two solutions to this. Either psi

of S star is 0 or psi of S star is infinite.

Now we introduce physics. Psi being 0 means that I have units that are completely

uncorrelated to each other. Each one of them does whatever it wants.
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So this describes essentially, let's say, a system of infinite temperature. Every

degree of freedom does whatever it wants. Well, I should say this corresponds to

disordered or ordered phases. Because after all, we said that when we go to the

ordered states also, there is an overall magnetization, but fluctuations around the

overall magnetization have only a finite correlation length. And as you go further

and further into the ordered phase, that correlation length shrinks to 0.

So there is a similarity between what goes on at very high temperature and what

goes on at very low temperature as far as the correlation of fluctuations is

concerned. There is, of course, a long range order in one case that is absent in the

other. But the correlation of fluctuations in both of those cases basically becomes

finite, and under rescaling, goes all the way to 0. And clearly this is the interesting

case, where it corresponds to critical point.

So we've established that, once we found this fixed point, that those set of

parameters are what can give us the scale invariant behavioral that we want. Now

this list is hundreds of parameters. So this point corresponds to a very special point

in this hundreds of parameter space.

So let's say there is one point somewhere there which is the fixed point. And then

you take your magnet and you change your critical temperature, are we going to hit

that point? The answer is, no. Generically, you are not going to hit that point.

But that's no problem. Why? Because if this basing of attraction. Because for any

point on basing of attraction, I do rescaling, and I find that psi prime is psi over b. It

becomes smaller. So you generically tend to become smaller.

But ultimately, you end up at this point. And this point, the correlation length is

infinite. So any point on this basing of attraction, in fact, has infinite correlation

length. So every point on the basis of psi prime equals to psi, and hence psi has to

be infinite. Yes.

AUDIENCE: Question. Why should there be only one fixed point?

PROFESSOR: There is no reason.
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AUDIENCE: OK. So this is just an example?

PROFESSOR: Yeah. So locally, let's say that we found such a fixed point. Maybe globally, there is

hundreds of them. I don't know. So that will always be a question in our minds. So if

I just write down for you the most general set of transformations, who knows what's

happening?

Ultimately, we have to be guided by physics. We have to say that, if in the space of

all parametrization, there are some that have no physical correspondence, we throw

them out, we seek things that can be matched to our physical system. Yes?

AUDIENCE: If there are multiple fixed points, do the planes of the basing of attraction have to be

parallel to each other?

PROFESSOR: They may have to have some conditions on non-intersecting or whatever. These

are only linear in the vicinity of the fixed point. So in principle, they could be highly

curved surfaces with all kinds of structures and things that I don't know. Yes?

AUDIENCE: Is there any reason why you might or might not have attracting point that is actually

a more complicated structure, like say, a limit cycle or even a [INAUDIBLE]?

PROFESSOR: Yeah. So again, we are governed ultimately by physics. When I write these

equations, they are as general as equations as the people in dynamical systems

use that also includes cycles, chaotic attractors, all kinds of strange things. And we

have to hope that when we apply this procedure to an appropriate physical system,

the kind of equations that we get are such that their behavior is indicative of the

physics.

So there is one case I know where people sort of found chaotic renormalization

group trajectories for some kind of a [INAUDIBLE] system. But always, again, this is

a very general procedure. We have to limit mathematics, ultimately, by what the

physical process is. So it's good that you know that these equations can do all kinds

of strange things. But then we take a particular physical system, we have to beat on

them until they behave properly.
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So let's imagine that we have a situation, such as this, where we have three

parameters. Two of them are irrelevant. One of them is relevant.

Then presumably, I take my physical system at some temperature and it would

correspond to being on some point in this phase diagram. Some color that we don't

have. Let's say over here. And I change the temperature. And I will take some

trajectory-- in this case, three dimensional space. And this is a line in this three

dimensional space.

And experimentally, I've been told that if I take, let's say, my piece of iron and I

change temperature, at some point I go through a point that has infinite

correlations. So I have to conclude that my trajectory for iron will intersect with

surface at some point.

And I'll say, OK, I take nickel. Nickel would be something else. And I change

temperature of nickel, and I will be doing something completely different. But that

experimentalist also has a point where you have ferromagnetic transition, so it must

hit this surface. Then you do cobalt, where some other trajectory comes and hits off

the surface.

Now what we now know is that when we rescale the system sufficiently, all of them

ultimately are described at the point where they have infinite correlation length by

what is going on over here. So if I take iron, nickel, cobalt, clearly at the level of

atoms and molecules, they are very different from each other. And the difference

between ironness, nickelness, cobaltness is really in all of these irrelevant

parameters.

And as I go and look at larger and larger scale, they all diminish and go away. And

at large scale, I see the same thing, where all of the individual details has been

washed out.

So this is able to capture the idea of universality. But there is a very important

caveat to this, which is that the experimental system, whether you take iron or

cobalt or some mixture of these different elements, you change one parameter
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temperature, and you always see a transition from, let's say, paramagnetic to

ferromagnetic behavior.

Now if I have, say, a line here in three dimensional space and I draw another line

that corresponds to change in temperature, I will not intersect it. I have to do

something very special to intersect that line. So in order that genetically I have a

phase transition-- which is what my experimentalist friends tell me-- I know that I

can only have one relevant direction, because the dimensionality of the basing of

attraction is the dimensionality of the space minus however many relevant directions

I have.

And I've been told by experimentalists that they exchange one parameters, and

generically they hit the surface. So that's part of the story. I better find a theory that,

at the end of the day, when I do all of this, I find a fixed point that not only is well-

behaved and is not a limit cycle, but also a fixed point that has one and only one

relevant direction, if that's the physical system that I'm describing.

Now of course, maybe that was for the superfluid, where they could only change

temperature, and you have a situation where the magnet comes into play and they

say, oh, actually we also have the magnetic field. And we really have to go to the

space of zero field. And then if I expand my space of parameters here to include

terms that break the symmetry, in that generalized space, I should only have two

relevant directions.

So it is kind of strange story, that all we are doing here is mathematics. But at the

end of the day, we have to get the mathematics to have very specific properties that

are dictated by very rough things about experiments.

So this was kind of conceptually rich. So I'll let you digest that for a while. And next

lecture, we will start actually doing this procedure and finding these kinds of

[INAUDIBLE] relations.
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