
8.334: Statistical Mechanics II Problem Set # 5 Due: 4/28/14
 

Duality: Potts models & Percolation 

1. Energy by duality: Consider the Ising model (σi = ±1) on a square lattice with 
L

−βH = K <ij> σiσj . 

(a) Starting from the duality expression for the free energy, derive a similar relation for 

the internal energy U(K) = (βH) = −∂ lnZ/∂ lnK. 

(b) Using (a), calculate the exact value of U at the critical point Kc. 

******** 

2. (Optional) Square Ising duality: Show that the expression for for the free energy of 

the Ising model on a square lattice maps onto itself (apart from a trivial analytic function) 

after the duality transformation. 

******** 

3. Clock model duality: Consider spins si = (1, 2, · · · , q) placed on the sites of a square 

lattice, interacting via the clock model Hamiltonian 

L

βHC = − J (|(si − sj)modq|) , 
<i,j> 

(a) Change from the N site variables to the 2N bond variables bij = si − sj. Show 

that the difference in the number of variables can be accounted for by the constraint that 

around each plaquette (elementary square) the sum of the four bond variables must be 

zero modulus q. 

(b) The constraints can be implemented by adding “delta–functions” 

q � � 

L1 2πinpSp
δ [Sp]modq = exp , 

q q
np=1 

for each plaquette. Show that after summing over the bond variables, the partition function 

can be written in terms of the dual variables, as 

  

L I L L

−NZ = q λ (np − np ′ ) ≡ exp  J̃ (np − np ′ ) , 
{np} (p,p ′) {np} (p,p ′) 
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J(n)where λ(k) is the discrete Fourier transform of e . 

(c) Calculate the dual interaction parameter of a Potts model, and hence locate the critical 

point Jc(q). 

(d) Construct the dual of the anisotropic Potts model, with 

L 

−βH = Jx + Jy ;δsx,y ,sx+1,y δsx,y ,sx,y+1 

x,y 

i.e. with bonds of different strengths along the x and y directions. Find the line of self–dual 

interactions in the plane (Jx, Jy). 

******** 

4. Triangular/hexagonal lattice Ising model: For any planar network of bonds, one can 

define a geometrical dual by connecting the centers of neighboring plaquettes. Each bond 

of the dual lattice crosses a bond of the original lattice, allowing for a local mapping. 

Clearly, the dual of a triangular lattice is a hexagonal (or honeycomb) lattice, and vice 

versa. 

(a) Consider the Ising models on a hexagonal lattice with nearest neighbor interaction 

strength Kh. Note that the hexagonal lattice is bipartite, i.e. can be separated into two 

sublattices. In the partition function, do a partial sum over all spins in one sublattice. 

Show that the remaining spins form a triangular lattice with nearest neighbor interaction 

Kt(Kh). (This is called the star–triangle transformation.) 

(b) Show that the dual of a triangular Ising model is a hexagonal Ising model with the 

˜usual duality relation K(K). 

(c) By combining the previous results, obtain the critical couplings K∗ and K∗ of triangular t h 

and hexagonal lattices. 

******** 

5. Triangular/hexagonal lattice Potts model: The steps of the previous problem can be 

repeated for a general Potts model. 

(a) Consider Potts spins (si = 1, 2, · · · , q) on a hexagonal lattice with nearest neighbor 

interaction Khδsi,sj . Perform the star-triangle decimation to show that the remaining 

spins form a triangular lattice with nearest neighbor interaction Kt(Kh), and a three spin 

interaction L(Kh). Why is L absent in the Ising model? 

(b) What is the dual of the Potts model on the triangular lattice? 
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(c) (Optional) Clearly, the model is not self–dual due to the additional interaction. 

Nonetheless, obtain the critical value such that K̃t(Kc) = Kc. Then check that L(Kc) = 0, 

i.e. while the model in general is not self–dual, it is self–dual right at criticality, leading 

to the exact value of Kc(q)! 

******** 

Percolation 

Fluids do not pass through a solid with a small concentration of holes. However, 

beyond a threshold concentration, the holes overlap, and the fluid can percolate through 

a connected channel in the material. Percolation is a classical geometric phase transition, 

and has been used as a model of many breakdown or failure processes. The loss of rigidity 

in an elastic network, conductivity in resistor nets, magnetization in diluted magnets are 

but a few examples. 

In simple models of percolation, elements of a lattice (sites or bonds) are independently 

occupied with a probability p. A cluster is defined as a connected (by neighboring bonds) 

set of these occupied elements. At small p, only small clusters exist, and the probability 

that two sites, separated by a distance r, are connected to each other decays as exp (−r/ξ). 

The correlation length ξ(p) grows with increasing p, diverging at the percolation threshold 

pc as ξ(p) ∼ |pc − p|−ν . An infinite cluster first appears at this threshold, and percolates 

through the (infinite) system for all p > pc. The analog of the order parameter is the 

probability P (p) that a site belongs to this infinite cluster. On approaching pc from above, 

it vanishes as P (p) ∼ |pc − p|β . While the value of pc depends on the details of the model, 

the exponents β and ν are universal, varying only with the spatial dimension d. 

In the following problems we shall focus on bond percolation, i.e. p denotes the 

probability that a bond on the lattice is occupied. 

6. Duality has a very natural interpretation in percolation: If a bond is occupied, its dual 

is empty, and vice versa. Thus the occupation probability for dual bonds is p̃ = 1− p ≡ q. 

Since, by construction, the original and dual elements do not intersect, one or the other 

percolates through the system. 

(a) The dual of a chain in which N bonds are connected in series, has N bonds connected 

in parallel. What is the corresponding (non-) percolation probability? 

(b) The bond percolation problem on a square lattice is self-dual. What is its threshold 

pc?
 

(c) Bond percolation in three dimensions is dual to plaquette percolation. Is it possible to
 

percolate without maintaining solid integrity in d = 3?
 

******** 
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