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PROFESSOR: OK. Well, the result of which we obtained on Wednesday for spontaneous emission

for the Einstein A coefficient regarded as an accomplishment as a highlight of the

course.

We've worked hard to talk about atoms and electromagnetic fields. And ultimately,

to deal with spontaneous emission, it was not enough to put a semi-classical light

atom interaction, dipole Hamiltonian, Rabi oscillation and such to put that into the

picture.

We really needed a quantized version of the electromagnetic field. And this is a

result when an atom is excited and interact with all of the empty mods of the

vacuum. And be summed up the probability that photon is immediate in any of those

modes.

And by doing, kind of, all of the ever reaching with intensity of state, and for all the

possibility of actions we obtained. The famous result for the Einstein A coefficient,

which is also the natural aligned width of the atomic excited state. Do you have any

questions about the derivation or what we did last week?

Then I think I will just continue and interpret the result. So we go to result for an

Einstein A coefficient. And well, the question is, how big is it? Well it has a number of

constants. And if it is-- let's discuss it now in atomic units.

Well, if we assume the frequency or the energy is on the order of Rydberg-- that's

sort of the measure for an electronic excitation in the atom-- we assume the dipole

matrix element is one. That means one per radius.

Since we have pretty much set everything one and expressed everything in atomic
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units, it means that the speed of light is-- remember? The velocity of the atom in

any correspondent was alpha times smaller than the speed of light. But the velocity

of the atom is one atomic unit.

So therefore, the speed of light in atomic units is one over alpha. And that means

that if you look at the formula, there is the speed of light to the power of 3 in the

denominator. And that means that in atomic units the Einstein A coefficient is alpha

to the 3, which is 3 times 10 to the minus 7.

So that means that the ratio of this spontaneous emission rate, which is also the

inverse lifetime and, therefore, the natural alignments of the excited state. Relative

to the transition frequency, so the damping of the harmonic oscillator or the two

level system relative to the NFC spacing of the oscillator. It's small. It's actually

alpha cube.

So if you take this 3 times 10 to the minus 7 and multiply it with the atomic unit of

frequency, which is 2 Rydbergs. We obtain on the order of 10 to 9. And it's a rate of

10 to the 9 per second. And that means that the lifetime of a tubercle atomic level is

on the order of 1 nanosecond.

Well, often it's 10 200 nanosecond because many transition frequencies are smaller

by quite a factor than the atomic unit of the transition frequency. Remember, the

Rydberg frequency would be deep in the UV. But a lot of atoms have transitions in

the visible.

I highlighted already when I derived it that the spontaneous emission has this

famous omega cube dependents. And that this actually important to understand

why lower lying levels-- excited hyperfine levels-- do not radiate. So let me just, kind

of, formalize it.

If I would now estimate what is the radiative lifetime for a transition, which is not as I

just assumed in the UV or in the visible. Let me estimate what is the radiative

lifetime to emit a microwave photon at a few gigahertz? Well, the microwave

frequency of the gigahertz 10 to the nine is five orders of magnitude smaller than
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the frequency 10 to the 14 of an optical transition.

So therefore, this is 10 to the 15 times longer. And if you have, typically, one or ten

nanosecond for an electronic transition. That means that this spontaneous lifetime

for a microwave transition is seven months.

If in addition we factor in that hyperfine transitions have an operator which is a Bohr

magneton and magnetic type of operator, not an electric dipole and we discussed

that the Bohr magneton is actually when we discuss multiple transitions we discuss

that the Bohr magneton is alpha times smaller than a typical electric dipole moment.

So therefore, a magnetic dipole transition is alpha times weaker than an electronic

dipole transition. And that means now, if you multiply months, which we obtain by

the frequency scaling, again, by alpha square for the weakness of the magnetic

dipole, we find that atomic hyperfine levels have a lifetime, which is on the order of

1,000 years.

And this is why it's very safe to neglect those transition in the laboratory and

assume that all hyperfine states in the ground state manifold pretty much don't

decay and are long lived. Questions? OK, so with that we have discussed

spontaneous emission.

Let's go through a few clicker questions to discuss the subject and verify your

understanding. So the first question is can an E2 transition, which is a quadruple

transition, can you drive it by a plane wave? Or does it need a laser beam which

has an intensity gradient such as a focus laser beam. Yes or no?

OK. Well the answer is yes. You can just use your laser beam. If a quadrupole

transition would require a gradient, it would really require a gradient over the size of

the atom. And that would be extremely hard to achieve.

Fortunately, this is not the case because what happens is we actually assumed in

the derivation that we had a plane wave into the IKR. And then do the tailor

expansion. And it was these part of the tailor expansion of a plain wave, which gave

rise to the matrix element for the quadrupole transition. So a plane wave laser beam
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is sufficient to drive higher multiple transitions.

Next question. Can spontaneous emission be described as a stimulated emission

process by the zero point field.

So by the zero point field, we know the electromagnetic wave is a harmonic

oscillator. And a harmonic oscillator has a ground state. And in the ground state you

have zero point motion. So there is an electric field, even when we have the vacuum

state. And the question is, can spontaneous emission be described as simply being

stimulated emission but now do to the silver point fluctuations of the electromagnetic

field.

OK. The answer is it depends. It depends if you just want to make a qualitative hand

waving argument. Then I would say you are correct. You can say that the

electromagnetic field of the vacuum stimulates a transition. But when I said

described, I meant if you can get it quantitatively correct. And there the answer is

actually no because the energy of the electromagnetic field is n plus 1/2 h bar

omega.

Whereas, this spontaneous emission of eight is n plus 1. So you have half a photon

verse of extra energy. But this spontaneous emission is sort of like the spontaneous

emission is the rate, which would be stimulated by an extra energy of h bar omega.

So in other words, you would get the answer wrong by a factor of two. I think

decoding deeper in the electrodynamics description of spontaneous emission you

would identify two terms for spontaneous emission. One is actually the stimulation

by the vacuum field. But there is another term called radiation reaction.

So there's, sort of, two terms. Trust me. If not, there are hundreds of pages in

[INAUDIBLE], which is books written about it. And in the ground state, the two terms

destructively interfere. Therefore, you have no spontaneous emission in the current

state, which is reassuring.

But then in the excited state the two terms constructively interfere. And therefore,

you get spontaneous emission, which is twice as much as you would get if you just
4



look at the stimulation by the vacuum field. So the answer is not quantitative but half

of it, yes, can be regarded as stimulated emission by the vacuum fluctuations of the

electromagnetic field.

OK. We emphasized that spontaneous emission is proportional to omega cube. The

question is now what is the dependence in one dimension? If everything the atom

can only emit in one dimension, everything is one dimensional, put the atom into a

waveguide.

So your choices are omega cube, omega square, or omega-- well, if you press D,

none of the above. But I can already tell you it's one of those three. So everything

the same. But we are in one dimension.

The world seen by the atom and by the electromagnetic waves is one dimensional.

Yes, it's correct. As you remember, out of the omega cube dependence. Omega

square came from the density of states. And what is omega square in three

dimension becomes omega in two dimensions and constant density of state in one

dimension.

So therefore, in one dimension, we are only left with the omega dependence. OK,

so there is one factor of omega, which does not come from the density of state. And

the next question is where does the other power of omega come from?

As we discussed, it's not the density of states. So we have three choices. One is it

comes from the atomic matrix element, it comes from the dipole approximation, or it

comes from the quantization of the electromagnetic field.

OK, the majority got it right. It's a field quantization. Sort of remember when you

write down the electric dipole Hamiltonian, in the quantized version, there is a

perfecter, which is electric field of a single photon. So if you have a single photon, it

gives rise to an electric field squared, which is proportionate to h bar omega. And

this is, sort of, the normalization factor.

Two more questions. We talked a lot about the rotating wave approximation. And
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we also talked about it for a spinning system driven by magnetic field. If you have a

rotating magnetic field, we do not need the rotating wave approximation because if

you drive a spin system with a rotating magnetic field, we have only the co-rotating

term.

The question I have now for you is whether the same is correct or not for an

electronic transition. So therefore, the question is for electronic transitions do we

always get the counter rotating term. And if you want to have a simple Hamiltonian,

then we do the rotating wave approximation.

So the question is is the rotating wave approximation necessary because we always

get the counter rotating term for the electronic transition, then the answer is yes. Or

are there examples where the system is exactly described by only one term? The

core rotating term.

I will come back to that later in the class. But I thought it's a good question. OK, let

me give you the answer. I actually coincide with everybody in the class here

because I would tend to say no because there are situations where the counter

rotating term can be zero due to angular momentum selection rules.

However, if you have an electronic transition and you have a sigma plus transition to

one state, there's always a possibility for sigma minus transition. So you usually get

both. But if you apply an infinitely strong magnetic field, then the m equals minus 1

state can be moved out of the picture.

You have only, let's say, the m equals plus 1 state. And then selection holds mean

that the counter rotating term is vanishingly small. But it's an artificial situation. So

you can all claim credit for your answer.

Finally, the last question is about the Lamb shift. We are now talking about

electronic transitions. And the question is Lamb shift-- if it's due to the counter

rotating term.

In other words, if you have a situation where the counter rotating term is zero, as we

just discussed in the previous example that there may be situations. Somewhat
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artificially but you could arrange for it. The set then implies that there is no lamb

shift.

So yes or no. Is the lamb shift caused by the counter rotating term involved in

electronic transitions? OK. OK, well what else is the lamb shift? It is the AC stock

effect of the counter rotating term.

So is it due to the counter rotating term? Yes, of course. The lamb shift is the AC

stock effect caused by the vacuum fluctuations. That's what it is.

But we come to that because I want to discuss later today some aspects of the fully

quantized Hamiltonian. And we will, again, in the fully quantized picture see the

operators, which are responsible for the core rotating for the counter rotating turn.

And then I will point to the operator, which causes a lamb shift. But before I

continue, any questions about the questions? Collin.

AUDIENCE: When you derive the amplitude in the electric field due to the single photon--

PROFESSOR: Yep.

AUDIENCE: I always get the factor of two wrong. So you wrote h bar omega is 2 epsilon 0

[INAUDIBLE] squared. Now there's a contribution that comes from the electric field

and magnetic field because you have one factor of two. Then there's always that

other factor of two. Are you getting that from using one half h bar because of the

vacuum fluctuation.

PROFESSOR: I'm not going back to the formula because I run the risk that it was wrong. But all I

want to say is what I really mean is use Jackson. Put in a volume V-- an

electromagnetic field-- with h bar omega energy.

And the electric field squared of this photon, that's what I mean. And if you find a

factor of two mistakes in my E square, I can still, you know, get out of theory exit by

the rear-entrance door by saying that there is also a difference whether E square is

E square RNS or whether E square is the amplitude.
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You know I mean there are risk factors of two everywhere. But what I mean is really

the electric field caused by one photon. And of course, the argument stands. I don't

need any factors of two or any subtleties of the electromagnetic field energy. We

know that the energy is n plus 1/2 but emission is n plus 1. And these shows that

the stimulation by the vacuum field cannot quantitatively account for spontaneous

emission.

AUDIENCE: So the quantity that you set equal to is h bar omega 1/2, not the fluctuation but the

real--

PROFESSOR: OK, if you want to know, let's not compare apples with oranges. You want an

electric field. And you can pick whether it's the RMS field or whether it is the

maximum amplitude. You can pick what you want.

But now we are comparing what is the e-square for the vacuum-- for single-mode--

vacuum. And what is the e-square for single photon? The two answers differ by a

factor of 2. A single photon is twice as strong in e-square as the vacuum fluctuations

in the same mode. That's what it means. Yes?

AUDIENCE: I have a question about the quantum emission rate. The explanation that it had--

quantum mechanic derivation that we have, do people not know the formula, how to

describe spontaneous emission [INAUDIBLE]?

PROFESSOR: I think so. I have not gone deeply back into the story. But a lot of credit is given to

Einstein. And as I mentioned last week that Einstein actually had spontaneous

emission in his derivation for the Einstein A and B coefficient in this famous paper.

And so he found that there must be spontaneous emission based on a

thermodynamic argument.

It's only spontaneous emission, which brings the internal population of an atom into

equilibrium. So I think it is correct to say.

AUDIENCE: Can you derive it from that stagnant condition of getting [INAUDIBLE]?

PROFESSOR: That's what Einstein did. And the answer is, by comparison with the Planck law, you
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get an expression for the Einstein A and B coefficient. Now of course, you can go

the other way around. You can see if you just use classical physics you would

actually expect-- now it depends. If you use the Bohr model, you would expect that

the electron is radiating and it was a mystery. How can you have an atom in the

ground state, which is circling around a nucleolus, and not radiating at all?

On the other hand, in quantum mechanics, we are not assuming that the atom is

circulating. And we have an accelerated charge and then we have a time dependent

charge distribution. We use the steady state wave function.

So I'm not sure if there is maybe an argument, which would say there should be

some spontaneous emission based on a purely classic argument. But this would not

be the whole story because a classic argument would then deal with the difficulty.

Why is there difference between n equals 1, which does not radiate in n equals 2,

which radiates.

So my understanding is that it is only the physics either through the perspective of

Einstein by just using equilibration or our microscopic derivation using filed

quantization, which allows us to understand the phenomenon of a spontaneous

emission. Other questions?

OK, then before we talk about some really cute and nice aspects of the fully

quantised Hamiltonian, I want to spend a few minutes talking about degeneracy

factors. I've already given you my opinion. You should not think in almost all

situations about levels, which have a degeneracy.

Just think about states. A state is a state, and it counts as one. And if you have a

level which has triple degeneracy, well, it has three states. Just kind of count the

states and look at the states.

However, there are formula for which involves degeneracy factors. And just to

remind you, when we had the discussion of Einstein's A and B coefficient, the

Einstein A coefficient was proportionate to the B coefficient responsible for

stimulated emission from the excited to the ground state. But the Einstein B
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coefficient for absorption was related to the Einstein B coefficient for stimulated

emission by involving these degeneracy factors.

So degeneracies appear and in some formal layer that it makes a lot of sense to

use them. So I've always said for a fundamental understanding, you should just

assume all degeneracies are one. This is how you can avoid, sort of, some

baggage in deriving equations.

And I'm still standing to my statement. I want to show you now a situation where it

becomes useful to consider degeneracy factors. So let me give you an example. We

can now look at the situation where we have an excited P state and a ground state,

which is S.

Or I can look at the opposite situation where we have an S state, which can radiate

to a P state. Well by symmetry, the different p states and plus 1 and minus 1 m

equals 0 are just connected by spatial rotations.

So therefore, their lifetime of the 3 P states and the rate of spontaneous emission

are the same. But if you now assume that you have absorption, you go from the S

state to the P state. Then you find that the Einstein B coefficient there are now three

possible ways. Not just one polarization or 3 polarization.

And you will find that this is proportional to three times r. However, in this situation,

it's a reverse but let me just finish here. So here the natural align rates and the rate

of stimulated emission described by the coefficient from the excited state to the

ground state is proportionate to R.

Whereas, in the other situation, if you have absorption now, well, each of those

levels, there's only one transition, one pass way. Therefore, you will find that the

coefficient for absorption is proportionate to R. Whereas, gamma and the stimulated

emission, which is now BSP, is proportionate to three R because there are three

pathways.

So depending what the situation is, you have to be careful. And you would say-- but

if it's an S to P transition, it maybe connected by the same matrix element. And
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therefore, you would say shouldn't there be align strings, which is independent

whether you go from S to P or P to S, which just describes in a natural way what is

really the coupling between S and P state?

And yes indeed, there is in the literature some definition of line strings where the

lines strings S would be proportionate to the sum of all of the eights between an

initial and the final state. And do sum over all.

So therefore, when you use this formula for the line strings, whether you have the

situation on the left side or on the right side, you will do always the sum over the 3

possible transitions. So the lines things is the same for both situations. It's just

generic for an S to P transition.

So if you use this definition but then you have the situation that spontaneous

emission is always given by the line strings but you have to multiply now by the

multiplicity of the excited state. If you have a P state, the whole line strings is

distributed over three states. And each state has only a spontaneous emission rate,

which is a third of what the line strings gives you.

I don't want to beat it to death, because I hate degeneracy factors. But I just thought

this example with the P to S and S to P transition tells you why they necessarily

have to appear in derivations like Einstein's A and B coefficient. I hope there are no

further questions about degeneracies.

But you know, making this comment also allows me to say, well, when I derived the

Einstein A coefficient-- what we did last class-- I did not use any degeneracy factors.

Well, this is correct. Our derivation assumed that there was-- we assumed that there

is only one final state. We did not include degeneracy factors.

We also assumed that we had a dipole matrix element, which was along the z-axis.

And so by those definitions, I have implicitly picked a geometry, which can be

represented by that we have an exciting piece state in the m equals 0 state. And we

have a pie transition with linear polarization to this s state.

And by doing that, I did not have to account for any degeneracies. But in general, if
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you derive microscopically an equation for spontaneous emission, you may have to

take into account that your excited state has different transitions-- sigma plus and

sigma minus transitions-- to different states. And you have to be careful how you do

the sum over all possible finer states.

And this is where degeneracies would eventually matter? Questions? OK, so then

lets go from P counting or accounting for the number of states to something, which

is hopefully more exciting. We want to talk about the fully quantized Hamiltonian.

So what we are working towards now and it may spill over into the Wednesday class

is I want to give you the sort of paradigmatic example of cavity QED where an atom

within an excited state is in an empty cavity. And now it can emit a photon into the

mortification mode of the cavity.

But these photon can be reabsorbed. So this is a phenomenon of vacuum Rabi

oscillations. And so I want to set up the Hamiltonian and then the equation to

demonstrate to you the vacuum Rabi oscillations.

And for me, the vacuum Rabi oscillations are the demonstration, that spontaneous

emission, has no randomness, no spontaneity, so to speak because you can

observe coherent oscillation. A coherent time evolution of the whole system and

which is possible only due to spontaneous emission. So let's go there.

So just to make the connection, a few lectures ago, we had a semi classical

Hamiltonian. This is when I wanted to show you that the two level electronic system

can be mapped onto a spin one half system driven by magnetic field. So this was

when we only looked at the stimulated term when we only did perturbation theory.

And in that situation, we had the electronic excitation. And then we had the drive

field, which was assumed to be purely classical like a rotating magnetic field which

drives spin up spin down transitions magnetically.

And we concluded that, yes, if you use a laser field, it does exactly the same to a

two level atom what a magnetic field does to spin up spin down. But now we are one
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step further. We've quantized the electromagnetic field. And we have spontaneous

emission. And this is something, for reasons I just mentioned, you will never find in

spin up spin down because it will take 1,000 years for spontaneous emission to

happen.

So now we want to actually go beyond this semi classical picture, which is fully

analogous to the precession and rotation of the spin in a magnetic field. And we

want to add spontaneous emission. So what we had here is the Rabi frequency was

a matrix element-- the dipole matrix element-- times a classic electric field.

And we want to replace that now by the electric field at the position of the atom. But

we want to use the fully quantized version of the electric field. And it also becomes

useful to look at the sigma x operator, which actually has two matrix elements of

[INAUDIBLE], which connects ground excited and excited ground state.

And one of them is going from the excited to the ground state. So this is, sort of,

lowering the energy to sigma minus operator. And the other one will be a raising

operator. It raises the excitation of the atom. And we will refer to it as sigma plus.

So the electric field is replaced by the operator obtained from the fully quantized

picture. Here we have the prefactor, which is the electric field of a single photon or

half a photon, whatever. But it's factors of 2 r square over 2. We have the

polarization.

And now if you would take the previous result and would look at it. Well we want to

go to the Schrodinger picture. And I mentioned that in the Schrodinger picture the

operators are time independent. So we cancelled the e to the i omega t term.

If you would go to the result we had last week and would simply get rid of the e to

the i omega t term, you would now find operators a and dagger. But they would

have factors of i in front of it. That's a equation we had when we derived it. Well I

prefer note to use something which looks nicer. Just use a and a dagger.

And you can obtain it by shifting the origin of time. So we're not looking e to the i

omega t or t equals 0. We wait a quarter period into e to the i omega t just gives us
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factors of i, which conveniently cancel the other factors of i. So what I'm doing is just

for convenience.

And let me write down that this is in the Schrodinger picture. OK. So we want to

absorb all constant by in one constant now, which is the single photon Rabi

frequency.

We have the type or matrix element of the atom. There's a dot product with the

polarization of the light. And then we have the electric field amplitude of a single

photon. h bar omega over 2 epsilon 0 v.

So this is what appears in the coupling. And we want to write it s h bar omega 1

over 2. And this omega 1 is the single photon Rabi frequency. And with that, we

have now a Hamiltonian, which is really a classic Hamiltonian, written down in the

standard form.

It has the excitation energy times the sigma z matrix. It has the single photon Rabi

frequency. The single photon Rabi frequency appears. You know, this is the single

photon Rabi frequency. But then the operator for the electric field, after getting rid

off the i's, is simply h plus h dagger. h plus h dagger.

So this takes care of the photon field. And the operator which acts on the atoms are

the raising and lowering operator sigma plus and sigma minus. And finally, we have

the Hamiltonian, which describes the photon field which is h bar omega times a

dagger a the photon number operator. Any questions? Yes?

AUDIENCE: [INAUDIBLE]?

PROFESSOR: I mean, we are looking at the interaction with an atom, which is at rest at the origin.

Therefore, e to the ikr is 0. We will only consider the spatial dependence e to the ikr

when we allow the atom to move. As long as the atom is stationary for convenience,

we put the atom at i equals 0.

But in 8.422 when we talk about light forces and laser cooling, then it becomes

essential to allow the photon to move. And this is actually where the recoil and the
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light forces come into play. But as long as we're not interested in light forces, only in

the internal dynamics-- calm and excited state-- we can conveniently neglect our

spatial dependencies. Other questions?

So this is really a famous Hamiltonian. And you also see how natural the definition

of the single-photon Rabi frequency. So we have one half h bar omega for the

diagonal sigma z matrix. This is the atomic excitation. This is the unperturbed

Hamiltonian of the atom. This is the unperturbed Hamiltonian of the photon.

And now the two are coupled. And the coupling is a product of an operator acting on

the photon field plus minus one photon. And the other one is an operator acting on

the atoms. And it is plus, minus, and atomic excitation. So let me just remind you of

that. The sigma plus and sigma minus operator.

The sigma plus is the atomic raising operator, which takes a ground to the excited

state. And the sigma minus operator is the atomic lowering operator, which takes

the atom from the excited to the ground state. So this is our Hamiltonian. And to

hear about space on which this Hamiltonian acts is the product space of the atom.

Direct product of the states of the light. Or in other words, the basis state would be

that we use for the atoms. The states which have zero or one quantum of excitation.

So we use excited state or ground state.

And for the photon, we can just use the Fock states where the occupation number is

n. Questions about that? So it's a very-- just look at it with some enjoyment for a few

seconds. I mean, this is a Hamiltonian, which has just a few terms. But what is

behind it is, of course, a power of all the definitions. I mean, each symbol has so

much meaning. But in the end, by having this formalism of operators quantized

electromagnetic field. We can write down-- we can catch many, many aspects or we

can, pretty much, fully describe how a two level system interacts a quantized

electromagnetic field with that set of equations.

Of course, the fact is not that everything is so simple. The fact is that we have, by

understanding the physics, we have skillfully made definitions, which allow us to
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write everything down in this compact form.

So often something is simple to write down. But if there's a lot of physics insight, we

spend some time in discussing it. And the first thing I want to just point out and

discuss is this interaction term.

We have the product of sigma plus and sigma minus with a and a dagger. So what

we have here is we have an interaction term. And this interaction part has actually

four terms in a very natural way. Well, let me just write them down. It's sigma plus

with a. Sigma minus with a dagger. Sigma plus with a dagger. And sigma minus with

a.

OK, so let's discuss those. Sigma plus with a dagger. Sigma plus is actually an

absorption process. a reduces the photo number by one, and increases the atomic

excitation from the column to the excited state.

The other term looks naturally, intuitively like emission. The a dagger operator takes

us from n to n plus 1. And sigma minus takes us from the excited state to the

current state. So these are the two terms, which we would call intuitive terms

because they make sense.

The other terms are somewhat more tricky. Sigma plus and a dagger means we

create a photon and we create an excitation. So in other words, it's not that, like the

other term, quantum of excitation disappears from the field, appears in the atom,

and vice versa.

Sigma plus a dagger means we have an atom excitation takes us from the ground

to the excited state. Plus, we emit a photon at the same time. And sigma minus a

dagger means that we go from the excited to the ground state. So we have an atom

d excitation.

And I would say, well, if the atom is d excited it should emit a photon. But instead,

the photon disappears. So we have those processes. The last two are sometimes

referred to in the theoretical literature.
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They are off shell. Under shell is energy conservation. Off shell means they cannot

conserve energy. But nevertheless, these are terms which appear in the operator.

But you should be used to if you have often terms in the operator which cannot

drive a resonant transition.

When you looked at the DC stock effect or when we looked at the AC stock effect

for low frequency photons, those low frequency photons cannot excite an atom to

the excited state. So they are not causing a transition, but they led to energy shifts

in second order perturbation theory. So therefore, those terms this language now

cannot drive transitions. They can only drive transitions to virtual states, which

would mean they can only appear in second order perturbation theory that you go

up to a so-called virtual state but you immediately go down.

And those terms give only rise to shifts. No transitions because you couldn't

conserve energy in the transition. But you can do shifts in second order. And one

example, which we discussed in the clicker question is that those shifts are actually

lamb shifts. And in other places, especially in the context of microwave fields, they

are called Bloch-Siegert shifts

And let's just look at one specific state. And this is the simplest of all. We have the

vacuum no photons. And the atom is in the ground state. If you look at the four

possibilities of the interaction term, there is only one non vanishing term. The

photon is at the bottom off all possible states. The atom is at the bottom of the

possible states.

So when we act with the four terms on it, the only term which contributes is where

those is where those are raised because all the others are 0. The only non

vanishing term is where we create a virtual atomic excitation and also a virtual

excitation of the photon field. And we know that when we have an atom in the

ground state in the vacuum that the only manifestation of the electromagnetic field

is, of course, not spontaneous emission but the lamb shift.

So therefore, if you would apply this operator to the bound state of an electron in an

atom, the complicated 1s wave function of hydrogen and sum this operator over all
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modes of the electromagnetic field. Then you would have done a first principle QED

calculation of the lamb shift.

I'm not doing it but you should understand that this operator-- sigma plus a dagger--

is you operator for the Lamb shift. Questions? Yes?

AUDIENCE: [INAUDIBLE]?

PROFESSOR: Oh, no, everything is. If you have a two level system, this Hamiltonian captures

everything which appears in nature if you have a two level system interacting with

the electromagnetic field. That's it. A radiation reaction is just something we can pull

out of here. Stimulated emission we can pull out of here.

The way how vacuum fluctuations create a lamb shift or the way how vacuum

fluctuations affect an atom in the excited state, everything is included in here. The

question is just can we solve it. And the calculations can get involved. But this is the

full QED Hamiltonian for a two level system.

That's a full picture. I mean, that's why I sort of said before be proud of it. You

understand the full picture of how two level systems interact with electromagnetic

radiation. The only complication is, yes, if you put more levels into it and such and

things can get richer and richer. And-- yes, we have also made the dipole

approximation, which we're just wondering how critical it is. Well, we use the electric

field a and a dagger, but my gut feeling is it doesn't really matter what we have.

Here is the most generic term, which can create and annihilate photons, and we

have the a and a dagger term.

Actually, I don't know what would happen if you don't make the dipole

approximation. Well, if you have two levels which are coupled by magnetic dipole,

then you have the same situation. It is just your prefactor, the semi photon Rabi

frequency, is now alpha times smaller because of the smaller dipole matrix element.

So I think you can pick, pretty much, any level you want. And this is why I actually

discussed matrix elements at the beginning of the unit. For, pretty much, all of the

discussion you're going to have, it doesn't really matter what kind of transition you
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have as long as the transition creates or annihilates a photon.

And all the physics of the multiplicity of the transition, magnetic, dipole, electric,

quadrupole, or whatever just defines what this the semi photon Rabi frequency is.

You've put me on the spot, but the only thing which comes to my mind now is if you

would formulate QED not in the dipole approximation but through with the p minus a

formulation.

Then we have an a-square term. And then we have the possibility that one

transition can emit two photons. So that's not included here.

AUDIENCE: So that's higher--

PROFESSOR: This would be something higher order. On the other hand, we can shoulder the

canonical transformation that the p minus a formalization with the a-square term is

equivalent to dipole approximation. So the question whether you have a transition

which emits two photons simultaneously or two photons sequentially eventually by

going through an immediate state, this is not a fundamental distinction.

You can have one description of your quantum system via two photons automated

in one transition. You have another description of your quantum system where

photons cannot-- only one photon can be emitted. And then you have to lend an

intermediate state.

And you would say, well, either two photons at once or one photon at a time. This is

two different kinds of physics. But we can show that the two pictures are connected

with economical transformation. So therefore, you have two descriptions here.

But anyway, I'm going a little bit beyond my knowledge. I'm just telling you bits and

pieces I know. But this Hamiltonian is either generally exact. I just don't know how to

prove it. But it really captures in all of the QED aspects of the system we want to get

into.

So OK. So in many situations we may decide that the off shell terms of the

interaction just create level shifts, Lamb shifts, Bloch-Siegert shifts. And we may
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simply absorb those lamb shifts in our atomic energy levels, omega e and omega g.

So therefore, for the dynamic of the system, if you include all of those lamb shifts in

the atomic description, you do not need those off shell counter intuitive terms.

These are actually also the counter-rotating terms in the semi classical

approximation. We only keep the intuitive terms. And that's called, again, the

rotating wave approximation.

Just to remind you, we do not have rotating waves here. Everything is operators.

But the same kind of physics-- co- and counter-rotating-- appears here that we have

four terms. Two are the fully quantized version of the co-rotating terms. And the

other two-- the off shell terms-- are the quantized version of the counter rotating

term.

So therefore, if you neglect those two off shell terms, we have now the fully

quantized Hamiltonian in the rotating wave approximation. So let me just write it

down because it's also a beautiful line. We have the electronic system. We have the

interaction Hamiltonian, which has now owned the two terms.

When we raise the atomic excitation, we lower the photon excitation and vice versa.

And we have the Hamiltonian for the photon field a dagger a. And this is apart from

those lamb shift terms. The full QED description of the system.

And if we only consider one mode-- here, of course, in general, the general

Hamiltonian has to be sent over a modes. And then you'll get spontaneous emission

and everything we want. But if you have a situation where you only look at one

single mode, then you have what is called the famous chains Cummings model

And very important result of this James Cummings model are the vacuum Rabi

oscillations, which I want to discuss now. OK. So let me just-- it's called James

Cummings Model. So let me describe to you why it is a model. Well it assumes a

two level system, which we find a lot of candidates among the atoms we want.

Sure our atoms have hyperfine states. But we can always select a situation where,

essentially, we only couple two states. We can prepare initial state by optical
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pumping, and then use circularly polarized slide on a cycling transition. And this is

how we prepare in the laboratory a two level system.

So that's one assumption of this model with a two level system. But the second

assumption is that the atom only interacts with a similar mode. And that requires a

little bit of engineering because it means we need a cavity.

So let me just set up the system. So our laboratory is a big box of volume v. And this

is where we maybe quantize electromagnetic field to calculate spontaneous

emission. And our atom here may actually decay with the rate gamma, which is

given by the Einstein A coefficient.

And in order to describe this spontaneous emission, be quantized electromagnetic

field in the large volume v. But now we have a cavity with two mirrors. And those two

mirrors define one mode of the electromagnetic field, which will be in resonance on

your resonance with the atom.

Well there will be some losses out of the cavity, which eventually coupe the

electromagnetic mode inside the cavity to the other awards modes in the speaker

volume v. And this is described by a cavity damping constant kappa. What is also

important is when we use cavity to single out one mode of the electromagnetic field,

the cavity volume is v prime.

And we often make it very small by putting the atoms in the cavity where the mirror

spacing is extremely small. OK. We know, and I'm not writing it down again, what

the Einstein A coefficient is.

The Rabi frequency-- the single photon Rabi frequency-- which couples the atom to

the one mode of the cavity has this important perfecter, which was or is the electric

field of one photon in the cavity.

And importantly, it involves the electric field of the photon in the cavity value, which

is B prime. So now in addition to using, you know-- now you see what our

experimental handle is. If you make this volume very small, then we can enter this

strong coupling regime where the single photon Rabi frequency for this one mode
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selected by the cavity becomes much larger then the spontaneous emission into all

the many other modes.

So the interaction with one mode due to the cavity and the smallness of the volume

is, sort of, outperforming all these many, many modes of the surroundings. And that

would mean that an atom in an excited state is more likely to emit into the mode

between the two cavity mirrors than to any other modes to the side.

Secondly, of course, when the photon has been emitted into the cavity, the photon

can still couple to the other modes by cavity losses kappa. And now we assume that

we have such high reflectivity mirrors that kappa is smaller that the single photon

Rabi frequency.

And this is called the strong coupling regime of cavity QED. So then we can at least

observe for a limited time the interplay between a single mode of the cavity and a

two level system. And this is a James Cummings model. The James Cummings

model.

So in that situation, the Hamiltonian, the fully quantized Hamiltonian, and the QED

Hamiltonian couples only pairs of states which we label those states the manifold n.

So we have an excited state with n photons.

And it is coupled to the ground state with one more photon. Our Hamiltonian has

two coupling terms. Remember the other tool where you clicked it in the rotating

wave approximation and we can go from left to right with sigma minus a data plus.

And we can go from right to left with the operator sigma plus and the annihilation of

the [INAUDIBLE] a.

So as long as we have a detuning delta, which is relatively small. As long as

detuning is small, the rotating wave approximation is excellent. So let me just

conclude by writing down the Hamiltonian for the situation I just discussed. And then

we'll discuss the Hamiltonian on Wednesday.

So if this is energy, we have two levels. The excited state with n photons, the
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ground state with n plus 1 photons. If the photons are on resonance, the two levels

are degenerate. But if you have a detuning delta, the two levels are split by delta.

And what we are doing right now is for the [INAUDIBLE] the Hamiltonian, we shift

the origin so the zero of the energy is just halfway between those two states. That's

natural. So this avoids just off sets in our equations. So our Hamiltonian has now the

splitting of plus minus delta over two.

The coupling has the perfecter, which is the single photon Rabi frequency. And then

the a and a dagger terms depends on n square root n plus 1. So what I wrote down

now is the Hamiltonian rotating wave approximation, which interacts, which

describes only one pair of states.

But we have sort of a cause in our Hilbert space. One pair of states for each label n.

But each of them is, sort of, described by the decoupled Hamiltonian. So that's what

I wanted to present you today. And I will show you on Wednesday how this

Hamiltonian needs to Rabi oscillations not induced by an external field but induced

by the vacuum. Any questions?
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