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PROFESSOR: Good afternoon. Yes. Let's have an on time departure. The topic of last class was

the ac Stark effect. And I said what I've been saying to you, was additional

[INAUDIBLE] of the ac Stark difference from perturbation theory. But then I have

three points for discussion.

The first one was [INAUDIBLE] for the [INAUDIBLE] problem, [INAUDIBLE]. The

second one was the oscillator strength, which we almost finished. And today, I want

to say a few words about [INAUDIBLE] in [INAUDIBLE]. And eventually how the ac

Stark effect leads to the absorption coefficient, which many of you use [INAUDIBLE].

So I mentioned that the oscillator strength is actually one way to parametrize the

matrix element. We'll actually talk most of the lecture today about matrix element,

but I come to that in a few minutes. From here, the matrix element is nothing, but

you get on with [INAUDIBLE]. Sure, it's a dimension of the Bohr radius but we don't

really think in terms of lengths.

There are two ways how you want to use a matrix element. One is the matrix

elements squared, having some other effect with which to [INAUDIBLE] this

likeness, an actual likeness against a number you should know how to [INAUDIBLE].

Or another way to parametrize matrix elements is by this [INAUDIBLE] number,

which is what we will see in this class. And that's, of course, also related to semi-

classical physics. And I mentioned that in the last class, that the oscillator strength

allows us to connect the quantum mechanical treatment of an atom to the response

of a classical harmonic oscillator through the charge of an external [INAUDIBLE].

So I used this expression, it was the end of class last. I used this expression for the
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matrix element in terms of the oscillator strengths to give you a nice relationship for

strong transition as in the alkaline E lines, where the oscillator strength is close to 1.

You see that the matrix element is 1 over square of 2 times the geometric mean of

the complete wave lengths of the electron, and the wave lengths of the transition.

So that's actually important for the dipole approximation, because the concurrent

wave lengths of the electron is very, very small. So therefore if the matrix element is

the geometric mean of the two, that means that the matrix element is smaller than

the optical wave lengths. And therefore, the matrix element is the length scale, the

relevant length scale of the atom for transition. It is smaller than the optical wave

lengths.

And that means-- and we'll talk about it today-- that in the expression E to the IKR,

KR is really small. So we can do the dipole approximation. Now I have a question for

you. I did it, frankly, because we don't have many questions to discuss with.

But I mentioned that there is a sum rule for the oscillator strengths. And the sum

rule limits it to 1. And if there's a really strong transition, it kind of exhausts the sum

rule, and this is what I was talking about.

But because the thought crossed my mind after last lecture, if I don't add something

to it, you may actually use it as a proof, which would be wrong. That the matrix

element cannot be larger than what you see on the right hand side. On the other

hand, we discussed in the context of Rydberg atoms that Rydberg atoms can have

huge matrix elements. Matrix elements which [INAUDIBLE] but they can really

become huge.

So how do you reconcile the fact that Rydberg atoms in large instates, in states with

large strengths of [INAUDIBLE] numbers can have huge matrix elements. How do

you reconcile it with our discussion of oscillator strengths and sum rules? The

answer is simple but subtle.

So is it a proof that the matrix elements are impossible? Or if big matrix elements,

huge matrix elements, are possible, what property of the oscillator strengths did I
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not emphasize?

I mean, keep watching. So first, are there atoms which have huge matrix elements?

Yes. Rydberg atoms. So the left hand side can be really huge. On the right hand

side, we have the wave lengths of the transition which can get large. You have to

count the wave lengths. But then you have the oscillator strengths.

And the oscillator strengths, the sum of all oscillator strengths is 1. But you have to

be careful that not all oscillator strengths have to be possible. The definition of the

oscillator strengths involves frequency from one state to the next. And depending

whether you go up or down, the frequency has positive or negative side.

So therefore we have a sum rule. For the ground state, all frequencies are positive

because you can only go up. So therefore the sum rule is only very useful for the

ground state, because all oscillator strengths are positive. And if one oscillator

strength is 1, you know no other transition has any strength at all.

However when you have an excited state and you find an oscillator strength which is

1, you could still have a lot of other strong transitions, but their oscillator strengths

are positive and negative and they compensate for each other in the sum rule. So

just be careful about that.

For the ground state-- and this is what I've proven to you here, I think fairly

rigorously-- if you are in the ground state, the transition matrix element cannot be

larger than the geometric mean of the [INAUDIBLE] wave lengths and the

[INAUDIBLE] wave lengths. But for excited states, you have to be careful, because

the oscillator strengths can have cosines. OK.

Any questions about that? Then let's talk quickly about the third point I wanted to

discuss. And this is the relationship to the index of refraction. The polarizability here

is responsible for the index of refraction. Well, the polarizability determines

[INAUDIBLE] evaluate the constant and use whatever relation you want, but for a

common physics purpose, this is sort of the useful relation.
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This is the index of refraction. It's related to the polarizability. And assuming that the

polarizability is small, you get this, the parallel extension. So roughly saying n minus

1. The difference of the index of refraction from the vacuum is proportionate to the

atomic density times the polarizability.

OK. And we know this is what we derive from the perturbation theory, that the

polarizability depends on a matrix element squared and 1 over the cube. Now I want

to sort of show you that by just using that concept and putting in

phenomenologically dissipation, we can get a full expression what happens to a

laser beam crossing an atomic medium, like a [INAUDIBLE] condensate. How much

of the laser beam is absorbed? And what is the feature of the laser beam.

In order to get interesting or simple formula, I want to now parametrize the matrix

element by this correlated gamma. This will turn out with an actual [INAUDIBLE], but

right now, since we haven't talked about spontaneous emission, just say I replace

the matrix element by gamma. And then I can write the index of refraction in the

following way. But the matrix element squared is now parametrized by gamma.

I have also introduced the coordinate sigma 0, which will later be the lesson in

absorption for section for atoms. But again here, just use it as a parametrization. I

mean, I've not introduced any new concepts. I've just rewritten this expression in

this way, involved sigma 0, which is a cross-section, and gamma, which is an actual

light.

OK. The polarizability depended-- that was perturbation theory-- 1 over the energy

denominator, or 1 over the [INAUDIBLE]. Now we have used, with the oscillator

strengths, the analogy to a classical harmonic oscillator. And at some level, you

know that every harmonic oscillator must have little bit of damping. And so the same

applies to atomic oscillators.

And if you can account for the damping by putting into the frequency denominator of

the [INAUDIBLE], 1 over delta. Give it an imaginary part. So I'm just telling you here,

yes. Every oscillator has some damping, and I can phenomenologically accounting
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for the damping by making the resonant frequency, or the tuning, slightly complex

by adding imaginary part.

Later on I want to express all the tunings normalized to this line which is parallel to a

normalized [INAUDIBLE] imaginary part. OK. So we have the situation that this

expression, gamma over delta-- this was the expression for the polarizability-- now

acquires a small imaginary part, and that means it's a complex number. And I can

now take this expression separate it into an imaginary part and a real part.

So why do I do that? Well, the index of refraction appears in the propagation of the

plane wave. If you're a plane wave, the key vector is no longer the key vector in

vacuum. It's multiplied with the index of refraction, and that's what I do here. And

now you see that immediately, an imaginary part of the index of refraction leads to

absorption. And the real part leads to [INAUDIBLE].

OK. So what we have now is we have this expression for the plane wave after it is

propagated through the medium. And we see there is exponential absorption.

Exponential absorption. On resonance, we have an optimal density which is given

by this expression. And the second term here give us a phase shift.

And it's clear since we have one medium which has a certain thickness that the

optical density and the phase shift are related. Yes. If you're on resonance, you

have the maximum optical density and the maximum absorption. And the optical

density, of course, is 1 over the [INAUDIBLE] squared. [INAUDIBLE].

Whereas for large detuning, the phase shift goes as 1 over delta. It's the dispersive

scaling with the tuning, and this is also what we had when we started out. When we

would have started out with the polarizability and not a decaying dissipation,

because far away from resonance, you simply have a regional of dispersive effect,

and dissipation doesn't occur.

So anyway, I thought I would just show that to you because this is a full

understanding of what happens to optical views when they pass the atomic

[INAUDIBLE]. It's nothing else than the polarizability or the harmonic oscillator
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response of an atom to electromagnetic radiation.

The only thing which is non-derivative here is-- and that's what we will discuss later

in this course-- is in order to get the final result, which you may want to use in

analyzing your data, you have to set the dissipative, the damping of the harmonic

oscillator, equal with this gamma parameter. And that's something I cannot tell you

without talking about spontaneous emission.

So just to remind you, I introduce big gamma just as a parametrization of the matrix

element. Then I introduce phenomenologically little gamma as just the damping of

the harmonic oscillator of those two quantities for two levels [INAUDIBLE] are

identical. And that's something I cannot show you here, because this requires

discussion of spontaneous emission and the other modes of the electromagnetic

field. This is not covered by a discussion of the ac polarizability.

OK. Any questions? But still-- I know I'm repeating myself-- I always find it

interesting that the whole physics of absorption, the beams are absorbed, you can

pretty much pull it out of the response of a harmonic oscillator. It's only the damping

rate of the harmonic oscillator that this is simply spontaneous emission. That's the

only point where you have to go beyond the ac Stark shift and bring in the

[INAUDIBLE] nature of the electromagnetic field and all the empty modes of the

vacuum.

Any questions about waves, or in general interactions of atoms with electric and

magnetic fields? Well, then let's move on. We have talked about electric and

magnetic fields intimately for very good reasons, because low frequency fields are

either electric or magnetic in nature. But ultimately, we want to understand what

happens when atoms interact with light.

And this is our discussion for today. The outline of this chapter is as follows. Today,

all I want to discuss is the coupling matrix in an atom. In other words, when we have

a Hamiltonian between state A and B, we have an off-diagonal matrix element.

And this off-diagonal matrix element causes transitions. Or when we calculate it, the
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effect of electric field-- the ec Stark effect or the ac Stark effect, we assume there

was a quantity, state 1, state 2, and we put some operator in between.

So this was a matrix element which connects the two states. And so far, we have

always assumed using the classical multiple expansion of electromagnetic field

energy that this matrix element has the form electric field times dipole matrix

element. And therefore, the relevant matrix element was the position operator of the

electron connecting the two states.

So in a way, we have used it all the time. But in any more advanced discussion of

atomic physics, you have two states. And as long as they are coupled, you have

something which you call H1 2 or you call it matrix element N1 2, and you're not

even asking where it comes from.

When two levels are coupled, they undergo Rabi oscillations. You have transitions.

If you're in the excited state and you have a matrix element, you get spontaneous

emission.

So a lot of the things we want to discuss about atomic physics, all they require a

number which is a matrix element between state 1 and state 2. And today, I want to

talk to you about different mechanisms which can lead to matrix element. We talked

about the dipole operator, but you also talk about higher order possibilities,

magnetic dipole coupling, or electric [INAUDIBLE] coupling.

And a little bit later-- this is an outlook-- we will talk about twofold uncoupling. But in

the end, even if it's a twofold uncoupling, for a lot or phenomena, all you need is a

coupling. A coupling means a Rabi frequency. A Rabi frequency means Rabi

oscillation, and so on.

So today the focus is, what is the structure, what are the principles behind this

number, which is a relevant matrix element. OK. So that's today. Next week is

spring break, but when we resume, we then want to talk about what is the matrix

element doing?

And there are two cases which we have to consider. One is we can see it's narrow
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band and broad band. This matrix element can couple just to one move of the

electromagnetic field. Everything is coherent. We have coherent Rabi oscillation.

Or you can couple to many modes, and then you have a broad band situation,

which may be described [INAUDIBLE] and this [INAUDIBLE] unit. Very, very different

behavior. So that's what we then want to discuss. When atoms interact with light, we

have two very different limiting cases, narrow band and broad band. And eventually,

we want to go beyond the semi-classical formulation of the electromagnetic field

and we'll talk about the quantized electromagnetic field.

OK. So let's talk about the coupling between atoms and electromagnetic fields. I

want to give you very brief derivation of the canonical coupling between

electromagnetic fields and atoms. I know this is covered in many textbooks, and we

have a very deep discussion about it using the full QED formulas in A422, but I feel

this course A421 would not be complete without a discussion like that.

And secondly-- this is so important if you hear it twice from two different angles,

that's probably useful-- I just want to remind you that if you use classical

electromagnetism and the Lagrangian formalism, you find the very elegant result

that the coupling to the electromagnetic field can be introduced by modifying the

momentum. That the canonical momentum which appears in the Lagrangian

equation is no longer the mechanical momentum which gives rise to kinetic energy,

But? It is modified by the vector potential.

So therefore the Hamiltonian-- at this point it's the classical Hamiltonian, but then we

use the same expression in quantum mechanics. The Hamiltonian has kinetic

energy and potential energy. But the kinetic energy is no longer p square. Because

by p, I mean now the canonical momentum.

We have to correct for the vector potential to go from the canonical momentum to

the mechanical momentum. And if we squared it, this gives the kinetic energy. If you

worry about this sign here, I will assume now that the electron has a charge. The

charge q f the electron was minus e, so that's why we have a plus sign here and not

a minus sign.
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OK. So we will use this fact that we have to substitute the momentum operator by

the canonical momentum, which is no longer the mechanical momentum. We used

it also in our quantum mechanical Hamiltonian in the Schrodinger equation.

If you ask me, can you prove it? No. Nobody can prove it. We can never prove what

a quantum mechanical equation is. We can just use physical understanding,

physical analogies. And that's how quantum mechanics was developed in

[INAUDIBLE]. Based on the classic quantum mechanical correspondence, this

seems to be a very reasonable assumption.

And ultimately, this very reasonable assumption has now withstood the test of time

for many, many decades, over almost 100 years. So that's why we assume that

doing the same substitution in the Schrodinger equation for the momentum operator

gives the right result, but there is no way how you can rigorously derive fundamental

equations in physics. You can observe nature, postulate them, and verify them.

So therefore, this line, which was the classical Hamiltonian, by interpreting p as an

operator, is now our quantum mechanical Hamiltonian. And the one thing we have

to consider now is that once we have quantum mechanical operator, we have to be

careful about compute order. That certain quantities have to be ordered. It matters

which one we put first.

What is convenient now is to use the Coulomb gauge. In the Coulomb gauge,

diversions of A is zero. But the del operator, the deliberative operator, is the

operator of the canonical momentum. And therefore, if you use the Coulomb gauge,

then we have commutativity between the canonical momentum, p, and the vector

potential. And that's sort of nice, because if you take this square and square it out,

we get p dot A plus A dot p, but they are the same in the Coulomb gauge.

So therefore our Hamiltonian has now the following terms. We call it H naught. And

we assume that the Coulomb potential of the nucleus, which eventually gets the

electronic structure of the atom, is included here. So this is the Hamiltonian part

which describes the structure of atoms.
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And then we have two terms which couple to the electromagnetic field. So this is p

dot A or A dot p. It doesn't matter in the Coulomb gauge. We call this the interaction

Hamiltonian. And now we get a second order term, which is the A square term. Well,

since it's second order, we designate it. We use the symbol H2.

In the following, we neglect the second order term. The argument is for weak fields.

It doesn't matter. It's not so important because it's higher order.

However, in A422, we look at it more carefully and we can actually do a canonical

transformation which eliminates the A square term. So to drop it is not necessary.

You can actually show with a canonical transformation that I'm doing is actually

more exact than just saying small and delineated.

But anyway, I don't want to spend too much time on it. All I wanted to remind you,

what are the steps to obtain-- just give me one second-- to obtain the interaction

Hamiltonian, and that's what I want to use for the remainder of this class.

That we have the coupling of momentum to the vector potential. We assume that

the vector potential-- we are not quantizing the electromagnetic field. It's a semi-

classical field. It's therefore a classical vector. And we will investigate what is now

the coupling between an atom for this Hamiltonian to a plane wave of the

electromagnetic field.

So therefore we are introducing for the vector potential the expression that the

vector potential has an Hamiltonian naught. The polarization p hat, and then the

plane wave factor e to the ikr minus i omega t. So this can be divided in a much

more rigorous way, but this is now the starting point of our discussion. [INAUDIBLE].

OK. Any questions about that? Yes. Matt.

AUDIENCE: Is it a little bit weird that you're going to take the divergence of its particular A that's

not 0? Since it's divergence of e to the ik dot r, just k dot A?

PROFESSOR: Sorry. You said the divergence of A-- so you're asking what is the divergence of A, if

A is a plane wave e to the ikr?
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AUDIENCE: [INAUDIBLE] the propagation of [INAUDIBLE]?

PROFESSOR: Yeah. What happens is, the polarization is A, and if you take the divergence of the

plane wave, you get a K vector, so you get this [INAUDIBLE] product of e dot k. And

electromagnetic waves propagate. The polarizations [INAUDIBLE] propagation. So

ultimately what you find is with Coulomb gauge and the radiation field is transverse.

It is only polarization [INAUDIBLE] propagation.

OK. So we want to talk about matrix element. So the matrix element between two

states. Du to the interaction Hamiltonian for one plane wave has the e to the minus i

omega t dependence, which is trivial. I mean, in terms of we will assume that there

is a monochromatic wave.

And what you want to discuss now is this time independent factor, H ba. Let me get

the factors. Let me get the polarization. So your relevant operator which connects

the two states A and B is the momentum operator.

And now for the plane wave, we want to do an expansion in orders of kr. And the

leading term will be the dipole approximation and the next order term will give rise to

magnetic dipole and electric quadrupole transitions. So first, the fact that I can do

this expansion requires that k dot A is much smaller than 1.

So it's a long wave length approximation, which you can say is valid as long as the

atom is smaller than the wave length we are talking about. And I will show you later

when I discuss the next higher order term that for atoms in the ground state, this is

actually also an expansion alpha. So again we retrieve the fine-structure constant.

So when we do this expansion of this plane wave exponential, every term is smaller

than the previous term by the fine-structure constant alpha, which is 1 over 137.

OK. So the leading term is the 1, and this gives rise to the dipole approximation.

So what I want to show you now in one or two minutes is that this is indeed the

dipole approximation. It leads to a matrix element which is electric field times r, the

dipole moment. What we have right now is A dot p, the vector potential, times the

momentum. So in other words, I want to show you that the A dot p matrix element is
11



equivalent to an e dot r matrix element.

This can be done with a canonical transformation, which we'll do in A422, but here

let me sort of just show you the elementary discussion. We want to replace the

vector potential by the electric field. So therefore, we use the fact that the electric

field is the derivative of the vector potential.

And the derivative of the vector potential means since we have an E the minus i

omega t dependence, that we simply multiply with a factor of omega of the

frequency. And what we obtain here is then the amplitude of the electric field, E

naught. So with that, we have a matrix element which now involves the electric field.

But still the matrix element of the momentum operator.

But we can easily go from the momentum operator to the position operator by

taking the fact that the momentum operator is nothing else than the commutator of r

with the Hamiltonian H naught. The kinetic energy in H naught is p square, and the

commutator of r with p square is simply p. So this is what I'm using here. And these

are the p factors.

So therefore if you take the momentum operator between two states, we have this

relation between the momentum operator and the position operator. But we have

not the momentum operator. We have the commutator. And r H naught gives us r.

But when H naught acts on the a, it gives the energy in a.

For the other part of the commutator, which is H naught r, we can have H naught

act on the left hand side on b, and this gives us the energy ab. For dividing by H

bar, what we get is the energy difference, eb minus ea. Or in frequency units,

omega ba.

So this is now how we have implemented the commutator. So that by inserting this

into this equation, we now finally obtain our result for the matrix element in the

dipole approximation. We have e, the electric field amplitude, the polarization, the

matrix element b r a, omega ba, and here we have an 1 over omega in the

denominator, which came from the derivative of the vector potential da dt.
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This here is the matrix element of the dipole operator. So in other words, I have

derived for you that the interaction matrix element in the dipole approximation is the

dipole operator times the electric field as long as I make the approximation that this

frequency factor's on the order of [INAUDIBLE].

Now this is clearly the case in your resonance, so you should be safe. However, if

you do the more rigorous derivation of the dipole Hamiltonian using canonical

transformation, this factor of omega ba over omega does not appear.

So again, the dipole approximations is better than I presented today. The two

approximations topping the A squared term and approximating this ratio of

frequencies with 1 is not necessary if you use the other methods using canonical

transformation. Any questions about that?

Let me make one comment. I've shown you in this derivation that the A dot p term,

the A dot p interaction within the dipole approximation is identical to the e dot r

interaction. So these are the same operators, and if you would exactly calculate

them in atomic structure calculation, you would get the same coupling, the same

matrix element.

However, in practice, there are important differences. Because the E dot r operator,

the r operator, has a lot of weight where the electron is far away from the nucleus

because it's multiplied with r. Whereas the p operator emphasizes the derivative of

the wave function, and this is usually strong at close distances.

So in the end, the results have to be the same. But if you make an approximation to

your wave function, one formulation may be numerically much more accurate than

the other one. But fundamentally, the two terms are the same and they are related

the way how I derived it for you. Yes?

AUDIENCE: So when we say it's the dipole approximation, does it mean that it's a long wave

length, or be the small field or everything together. So what's the absolute

fundamental assumption of this?
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PROFESSOR: The absolute fundamental assumption of the dipole approximation is that we

assume-- let me just scroll up.

In the equation above, we had an expression for the vector potential. And the dipole

approximation means that we can neglect the position dependence of the vector

potential A of r, so we approximate A of r as being A evaluated at the origin of the

atom. And over the extent, over the size of the atom, we do not have to consider a

spacial dependence of the vector potential. So this is sufficient.

The other things that e square is small and that we're near resonance-- I have to

make those assumptions if I want to use this elementary derivation. But with a

canonical transformation, as is discussed in atom-photon interactions, you do not

need those additional assumptions. The only assumption behind the dipole

approximation is that one, and this means that the extent of the atom is much

smaller than the optical wave lengths.

OK. But there are situations where the leading approximation vanishes. For

instance, if two levels have the same parity, then the dipole operator between the

two of them is 0. And then if you want to have a transition between, or if you want to

consider a transition between those two levels, it will come from next order terms.

So let's now discuss higher order radiation processes. So the motivation why I want

to discuss higher order radiation processes is because in some basic courses, you

only need the dipole approximation. And you think the dipole coupling is the only

coupling which exists in the world.

And by going to higher order, I want to show you that this is not the case. Also I

want to sort of give you an idea what it means if you have leading order transitions

are forbidden. I want to sort of show you how other terms come in which can couple

two levels.

And also, actually, when you drive transitions within the hyper-fine structure using

radio frequency fields, you are not driving them with the electric dipole

approximation. You're driving them with a magnetic dipole, and this is actually the
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next approximation. So there's a number of reasons why I want to show you what

the next order terms are, and how they actually lead to beautiful result, magnetic

dipole, and electric quadrupole transitions.

So our coupling term-- let me just rewrite the equation. Let me now simplify the

notation by assuming that the polarization is in the z direction and the propagation is

in the x direction. So then the coupling had the dipole term. And the next order term

is ikx, and this is what we want to investigate now.

So the term kx or kr is smaller. And now I want to show you explicitly that it's smaller

by alpha. The k vector of the photon is related to the frequency H bar omega

divided by H bar z.

If I approximate for r, the relevant r when we indicate over the wave function will be

the Bohr radius. The relevant frequency, H bar omega, well, it's a Rydberg. And the

Rydberg is e square over the Bohr radius. So now if I insert it, the Bohr radius

cancels out.

And what we find is, well, kr is dimensionless. We have to find something which is

dimensionless, but expressed by the fundamental constants of atomic physics. And

the only quantity which is available for that-- it's not a surprise-- is alpha. The fine-

structure constant.

So therefore the dipole approximation is actually the result of an expansion of the

plane wave e the ikr factor in units of expansion in the fine-structure constant. OK.

We want to look now at the second term.

And well, sometimes if you deal with a term, we first make it more complicated and

then we simplify it. I want to sort of symmetrize and anti-symmetrize it in the

following way. This is p z x. So let me subtract z p x. But then, of course, I have to

add it. So now we have two terms. 1 has a minus sign, one has a plus sign.

And as will see in just a minute, is the first one is magnetic dipole transition. The

second one is electric quadrupole transition. And we see that the first one can be
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regarded as-- p z x is like p dot r. Its the y component of the vector product and is

therefore the y component of the orbital angular momentum.

OK. So let's focus for now on this part. The second term, which is the electric

quadrupole term, we'll do in a few moments. The relevant matrix element is now the

matrix element of the orbital angular momentum Ly.

The p factor-- let me just collect all of the constant imaginary unit ehr AK over 2 mc.

That looks complicated, but it immediately simplifies when we realize that this here

is the Bohr magneton. And well, we still have the vector potential. But the magnetic

field is the curl of the vector potential, and that means we will assume that we have

a vector potential propagating in x, polarized in z. That means that our magnetic

field is that.

So therefore ka, which appears in our expression for the coupling, is just the

magnetic field. So therefore we find the result that the next order term in the

coupling of the atoms to the electromagnetic field have the simple form to the

electromagnetic field. That it is the magnetic field part of the electromagnetic wave

times the Bohr magneton times the matrix element, due to the orbital angular

momentum operator.

And actually, if you take the orbital angular momentum and multiply it with the Bohr

magneton, this is actually the operator of the magnetic moment. Well, with a minus

sign because the electron is negative charged. Remember we had introduced the

operator for the magnetic moment. And the magnetic moment was the g factor

times the Bohr magneton times the orbital angular momentum. And the g factor for

the orbital motion is 1.

So therefore the interaction we are talking about is the Bohr magneton times the

magnetic field. And, of course, what we realize is the operator-- maybe I should

back up for a second and say what we actually realize is that operator which

couples to the electromagnetic field has actually the form u dot b.

This is exactly what we use for the Zeeman effect in a DC magnetic field. But now
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the same form u dot b appears for time dependent magnetic field. And time

depending magnetic fields are not only creating level shifts. They can also use

transitions through the matrix element.

So in other words, this whole exercise show you that the form u dot b, which

appeared naturally in the formulation for DC magnetic field, also applies to AC

magnetic fields.

But with that, I can say, wait a moment. There are now two sources for the magnetic

movement of the atom. One is due to orbital angular momentum, and the other one

is due to spin angular momentum. But the spin angular momentum has a g factor,

which is different.

The approximation of the [INAUDIBLE] creation is 2. So therefore I mean, we will

never get spin out of a semi-classical discussion. Remember, we started with a

classical canonical treatment of the electromagnetic field, canonical momentum.

And now we are running with it and we find that there is a coupling between the

magnetic field and the magnetic moment of the atom.

But, of course, we only get the magnetic moment to the extent that it comes from

orbital motion. But in a semi-classical way, I'm waving my hands now and say, well,

what is valid for the coupling to orbit to the magnetic moment of the orbital angular

momentum also applies to the speed. And I'm simply adding the spin here.

And with that, I've derived for you the expression for the interaction matrix element

called M1. M1 is the magnetic dipole transitions. Let me just write it down here. So

this is nothing else than u dot b. Any questions?

Let me just summarize. You may find it sort of interesting, when we discussed static

electric and static magnetic fields. For the static electric field, we had an electric field

times the dipole. And we find this now as a time independent term which can drive

transitions for interactions with time dependent electromagnetic field, but we find it

in the dipole approximation.

The magnetic part, u dot b, we find when we go to the next order. We find it as a

17



magnetic dipole term. But there are more terms, and I just want you to illustrate that

and then I'll stop with that multiple expansion.

We had the second term, the kr term, was this one. But then we sort of anti-

symmetrized it and symmetrized it. The first one here, we could relate to orbital

angular momentum and to the magnetic moment. And now I would want to discuss

the second term.

So that term uses a mixture of position and momentum operators. But we know

already how we can get rid of momentum operators, namely by expressing

momentum operators as commutators with the Hamiltonian. So this gives us the

commutator of z with H naught times x plus z times the commutator of x with H

naught.

OK. So we have two commutators. Each of them has two terms. That means a total

of four terms. And if you write them down, you see that two are opposite but equal

and cancel. So therefore we are left with two terms, which are minus H naught zx

plus zx times H naught.

So this term has now the following contribution to the coupling between the levels A

and B. So we have this coupling matrix element. We have b factor mc Am.

OK. So using the same approach we used for the dipole matrix element, the H

naught can act on the state A on the right side, and can act on the state B on the

left hand side. So this gives us simply the energy difference.

And what is left is now a matrix element which only involves position operators, but it

uses a product of 2. And now, again, we express the vector potential by the electric

field, as we had done before. And therefore we have now expressed our coupling

yes, by an electric field. And we assume that in the near resonant approximation, as

we had used for the dipole coupling, that this is the frequency omega.

OK. So what we are realizing is that we have one part of the interaction Hamiltonian

which couples levels A and B, has-- we call it E2, this electric quadrupole because it

involves elements of the quadrupole tensor, or products of coordinates x, y, y, z, x,
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z. And for this geometry, which we assume with our plane wave, it is z, x. It couples

to the electric field. And this is the p factor.

For a more general geometry of plane waves with different polarization going in

different directions, we would have obtained different products of coordinates. So let

me indicate that, that what we have picked out here is one specific component of a

tensor, which is sort of the tensor form by using the position vector r twice.

So in this derivation, we found when we go beyond the dipole approximation, when

we take the kr term in leading order, that we have two contributions. One is M1,

magnetic dipole. The other one was electric quadrupole.

We realized-- I tried to keep of all the p factors-- that the electric quadrupole matrix

element is imaginary, whereas the magnetic dipole was u dot b. There was no

imaginary unit. It's real.

That means that you will never have any interference effect between magnetic

dipole and electric quadrupole. Or in other words, when we have processes like

spontaneous emission where we take the square of the matrix element, the square

of the matrix element will be the sum of the squares of the matrix element for

magnetic dipole and electric quadrupole transitions.

So let me summarize. We have discussed three different ways how we can have

coupling matrix elements between two states, electric dipole, magnetic dipole,

electric quadrupole, E1, M1, E2. The operator was the electric dipole operator. Here

it was the operator of the magnetic movement, which is orbital angular momentum

and spin angular momentum.

And for the quadrupole, it was the quadratic expression in the spatial coordinates.

You can also ask what is the parity? The electric dipole operator connects states

with opposite parity, whereas both magnetic dipole and electric quadrupole connect

states even with the same parity.

Magnetic dipole and electric quadrupole transition are often called forbidden
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transitions. Well, you would say it's a misnomer because they are transitions, so

they are allowed, but they are weak. But this is the language we use. Weak

transitions are forbidden, which simply means they don't appear. They are

forbidden in leading order, but when you go to higher order, they are allowed.

You can, of course, say if they were completely forbidden, there would be no need

to discuss them. But since they are only forbidden at a certain level, then, of course,

it's interesting to discuss them. And a lot of narrow transitions which are relevant for

atomic clocks are highly forbidden transitions.

The strength of them, which usually scales with transitions with the square of the

matrix element, is on the order of 5 times 10 to the minus 5. So those transitions are

four or five orders of magnitude weaker Yeah than an allowed E1 transition. So

that's what they are. Questions?

AUDIENCE: When people talk about highly forbidden transitions, does this mean that's like a

optical transition, or how do we distinguish it from just regularly forbidden?

PROFESSOR: Actually I would say forbidden transitions are weaker by alpha to the power n. Here

we have situations where the matrix element is just smaller by alpha. But, yes.

Sometimes, yes. Some transitions are highly forbidden.

For instance-- I try to remember-- if you have hydrogen 1s and 2s. Because of s

states-- actually, you are asking question about the next chapter, namely about

selection rules. Let me give it in words.

The s, if you connect two s states, they have both 0 angular momentum.

AUDIENCE: Yeah.

PROFESSOR: So you cannot have a quadrupole operator connecting the two. It would violate the

triangle rule. You cannot have angular momentum of 0 and angular momentum of 2

and get angular momentum of 0.
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So therefore you have a transition between two states of the same parity. There is

no dipole operator. There is no quadrupole operator. So you soon run into a

situation where it's highly forbidden. Sometimes you have the situation that

something is forbidden in non-relativistic physics, but they're a relativistic term,

which makes it allowed.

Well, there's also that relativistic terms are fine-structure terms is also an expansion

alpha squared. So the symmetry may allow it, but only in connection with relativistic

terms. I'm not an expert on forbidden transitions, but usually you have transitions

which are multiply forbidden.

They are forbidden by spacial symmetry. For instance, in the helium atom, singular

triplet are forbidden by spin symmetry. So if you have multiple layers of being

forbidden, then you get extremely weak transitions.

And one example, actually, are the singular triplet transition in helium, or the 1s to

2s transition in hydrogen. They are not allowed by simply going to the next order in

a multiple expansion. Yes?

AUDIENCE: In ordinary situations when you do have to possibly do at least even more

[INAUDIBLE] for the other transitions?

PROFESSOR: I'm not an expert on that. I'm not sure if there is an atom which has a relevant

transition which is a [INAUDIBLE] transition. I've not heard about that. At least

relevant examples which are the fundamental atoms, helium and hydrogen.

For hydrogen, at the 2s to 1 transition, the leading order is the emission, the

simultaneous emission of two photons. So you have not just one photon, you have

two photons which, of course, requires in the perturbation expansion the immediate

step.

We discuss two photon transitions at the end of this course. So in that case, it's not

in higher order in the single photon multiple expansion, it becomes a multi-photon

transition. So this is one relevant case.
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And for helium, triplet to singlet, this involves relativistic physics. Actually, I

mentioned it in the other class on helium. I tried to look it up and I want to show

here, you have to go to this order to get a transition. But when I tried to look into the

literature, I couldn't find a clear answer.

Ultimately, it was a relativistic term in the fully relativistic formulation of the coupling

of electromagnetic fields to the atom. I'm not sure if you can put a label on it and it

would say, this is this and this order term. It may actually involve-- and we know that

this happens in the [INAUDIBLE] creation-- that spin and spacial degrees become

treated together in the [INAUDIBLE] creation, and maybe it's one of those terms.

Yes?

AUDIENCE: So what's the actual meaning of interacting with different Hamiltonians? Like, you

wrote square root of Hamiltonians and then--

PROFESSOR: No. I meant actually the square of the matrix element.

AUDIENCE: Oh. Sorry.

PROFESSOR: If you have, for instance-- actually I will talk about it in the next lecture when we

discuss Fermi's golden rule. The transition strength in Fermi's golden rule is

proportionate to the square of the matrix element. But now you would ask the

question, well, could we have some interference between the two different

processes?

And I wanted to point out at this level that we don't, because one matrix element is

imaginary, the other one is real. And if you take the complex matrix element

between two states and calculate the square, the square of the complex matrix

element is the square of the real part plus the square of the imaginary part, and

there's no interference trend between the two.

So in other words, if you have an atom which has a weak decay through M1 and a

weak decay through quadrupole, the two parts cannot destructively interfere,

because one is real, one is imaginary. They add up in quadrature, That's what I

wanted to say.
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OK. So these were examples of higher order transitions. And as the questions have

shown, this leads us to a discussion of selection rules.

Selection rules is nothing else than a classification of possible transitions according

to symmetry. And it's a way of using well, [INAUDIBLE] coefficients, angular

momentum coupling, or using, you would say, symmetry to figure out if matrix

elements are non-vanishing or vanishing.

And I gave you already one example, and I want to formalize it now. If you go

between two s states which have 0 angular momentum, you cannot have an

operator which is a quadrupole operator because-- and this is what I want to tell you

now-- the quadrupole operator is a spherical tensor with two units of angular

momentum.

And this would forbid the triangle rule. This would forbid "conservation" of angular

momentum. So that's what I want to discuss now in the next chapter, or at least get

started for the next five minutes by discussing selection rules.

So the introduction to selection rules is that we have forbidden transitions.

Forbidden transitions are suppressed because we are forced to go to higher order,

and this is usually higher order in alpha. So forbidden transitions are weaker by

some power of alpha. And that means they require higher approximations.

And, of course, the comparison is always the dipole transition. This is the dominant

transition. This is the industrial strengths transition. And from there on, it can get

weaker. So if can get weaker by multiple expansion. We've just discussed that.

It can get weaker because you have to have a cascade of dipole transitions. This

would be multi-photon processes, as we discuss later in the course. It can get

weaker because they are exactly 0 in a non-relativistic approximation and require

relativistic effects.

The example we have encountered in this course is the singlet to triplet transition in

helium. Or there are transitions which would not be allowed just for the electron, but
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if we invoke hyperfine interactions with a nucleus, then they become allowed.

So it's a rich subject, and I'm not an expert and I cannot do full justice to it. But I

want to at least give you some general rules how we discussed matrix elements. So

what is always a good quantum number, what is always a label for our atomic states

is angular momentum.

Because atoms [INAUDIBLE] through space, and there is rotation in variance. So

we always categorize our atoms with angular momentum with the quantum

numbers JM. And we are asking, are there transitions between a state JM to a state

J prime M prime?

And all other quantum numbers, we can now summarize with a label n. And now we

have an operator. I gave you examples for the operator. The magnetic moment, the

electric dipole, the quadrupole operator.

But in general, every operator can be written, can be expanded, in a sum of

spherical tensors. So what is discussed in the classification of matrix elements. Our

matrix elements involving components, the operator are components of a spherical

tensor.

So T is a spherical tensor of rank l. And if you want a simple definition of what is a

spherical tensor, you try to write an operator-- like the position operator r-- you try to

write it as a sum of terms, and each term transforms like a spherical harmonic Ylm.

So in other words, we can write every operator as a sum of spherical tensors. And a

spherical tensor is characterized that it transforms under rotations exactly as the

spherical harmonics Ylm. so every operator is now a sum of spherical tensors.

I don't want to get too much into symmetry classification, but the story is that you

know the Ylm functions are compensator functions. Every function can be expanded

and swell to harmonics. And similarly, if you have an operator, you can decompose

it into objects which transform under rotation, and it's the Ylms.

So you have a part which transforms according to an object. And Ylm is the
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classification of wave functions with angular momentum. And so therefore each

operator may not have a specific angular momentum, but can be written as the sum

of operators, each of which has the same symmetry, the same transformation

properties, as a state of angular momentum.

And I think I should stop here, but let me just give you the final message. So by

doing that, by separating the operator into a sum of spherical tensors, we are

actually now back in angular momentum.

If you have a matrix element-- and just think how you calculate it in the Schrodinger

representation. You have a wave function, operator, and a wave function we

indicate go by. So what you have is, you have the product of the objects. And now

we can classify them by angular momentum.

And this is what I will show you in the next class, is that ultimately the question

whether this matrix element is 0 or not will boil down to the question whether J

prime and M prime angular momentum can be added to l and m. And there is

overlap with angular momentum of JM. So we are back to the rules for adding

angular momentum. We get the triangle rule. We get the [INAUDIBLE] quote

unquote [INAUDIBLE].

OK. Enjoy the spring break, and we meet on Monday after the spring break.
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