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PROFESSOR: So over the last lecture, we have talked about coherence within an atom, coherence

between two levels, coherence between three levels. And today, in the last class,

we want to talk about coherence between atoms.

So this is now, I think, for the first time in this course that we really have more than

one atom. Well, maybe we discussed some collision or broadening, or we discussed

[INAUDIBLE] interaction between two atoms. But usually, atomic physics is one

atom at a time. But now we want to understand one important phenomenon which

happens when we have many atoms.

And the phenomenon is called superradiance. So I left something good for the end.

And superradiance has in common the word super with superconductivity and

superfluidity. And it really represents that the atom, many atoms act together. And

the word super also means coherence among atoms-- superfluidity and

superconductivity have macroscopic wave function where all the atoms, the meta

waves are coherent. The phenomenon of superradiance, as we will see, has not so

much to do with coherent atoms. It has more to do with coherent photons. So it's

more-- some people regard superradiance as a laser without mirrors. But you'll see

where the story leads us to.

So just to set the stage-- for many atoms, we should first talk about single atoms.

And all that is described in this landmark paper by [INAUDIBLE] in 1954, which is

posted on our website. So if you have a single atom prepared in the excited state, it

decays to the ground state, and we want to characterize the system by emission

rate as a function of time. So the emission rate initially is gamma, the natural

language of the excited state. And then, of course, the emission rate decays

because we don't have any atoms left.
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Similarly, the probability to be in the ground state is zero initially, and then with an

exponential approach, it eventually goes to unity after a while, after we have only

atoms in the gamma state. So this is rather straightforward. But now we want to

bring in a second atom. And I'm asking, what happens when we have not the one

atom, but two atoms? One is in the ground state. One is excited.

So pretty much what we have added to the original situation with one excited atom

was we've brought in one ground state atom, which naively you would think does

nothing. But that's not the case. What happens is-- and I assume just for review--

we will drop the assumption later, but we assume for now that all the atoms are

within one optical wavelength.

What we then realize is for two atoms-- and I will show you that in its full beauty--

that the initial rate of light which comes out of the system is the same. So the extra

ground state atom does not change the initial emission rate, but it goes down faster.

And if we ask what is the probability that the atom is in the ground state, we find that

it's only one half. So in other words, normalized [INAUDIBLE] system, we have a

ground and excited state atom, and what comes out is only half a photon. Half of

the atoms do not decay.

So it's not the same rate and the same decay. Something profoundly has

happened. And this is what you want to understand.

So let me give you the correct answer. The rate of emission is a function of time for

this situation. We start out with gamma, but then the emission decays, not with

gamma but with 2 gamma. And the probability that both atoms are in the ground

state-- or that the second atom, so to speak, is in the ground state-- will only

asymptotically go to 1/2. And it does so exponentially-- but again, with the time

constant, which is two times faster than for the single-atom system. So we have the

same initial emission rate, but only probability of 1/2 to emit at all.

So in order to understand it, we have to look at an atom in the excited state and

atom in the ground state. And we want to write down the wave function as a
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superposition of a symmetrized and antisymmetrized wave function. I should tell

you, I'm going very slowly for two atoms. And then once I've introduced the concept

for two atoms, with a few pen strokes, we can immediately discuss in atoms. So all

the phsyics, all the understanding what goes on in superradiance is already

displayed for two atoms.

So we want to have a superposition of symmetric and antisymmetric wave function.

The symmetric one is a normalized wave function which is ge plus eg. And we call

that the superradiant wave function, for reasons which will become clear in a

moment. And if you have a minus sign here, the antisymmetric combination, we call

this subradiant wave function.

Now, what happens is, we have to consider-- so we have symmetrized the wave

function. Well, I didn't really tell you why, but it's always good to symmetrize.

Symmetry is, if you can use it, something good. And the reason why I symmetrized

it is because I want look at the interaction Hamiltonian.

And if I look at the interaction Hamiltonian-- the one we have seen many, many

times but now for two atoms-- we will immediately realize that this interaction

Hamiltonian is symmetric. So therefore, if the Hamiltonian is symmetric, it's a really

good starting point to have the wave function for the atoms expanded in a

symmetric basis.

And since I want to emphasize that the whole story I'm telling you today has nothing

to do with the kind of second quantization-- it is about spontaneous emission, but it's

not involving any subtlety of spontaneous emission and field quantization-- I want to

write down the interaction Hamiltonian both in a classical and a quantum

mechanical way.

In the classical way, we have the dipole moment d1. We have the dipole moment

d2. And the atoms talk to the electric field at position RNT. And now you realize

where some of the assumptions are important, since the atoms are localized to

within a wavelength, they rarely talk to the same electric field. There are no phase

factors. In about 55 minutes or so, we introduce phase factors for extended
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samples. But for now, we don't.

And therefore, what the atoms couple with is with a dipole moment, which is a sum

of the two dipole moments. So this is classical or semi-classical. So what enters in

the Hamiltonian is only the sum of the operators for the two atoms. And the same

happens in the QED Hamiltonian. And actually, I will get a little bit more mileage out

of the QED Hamiltonian, as you will see in a moment.

Because with the QED Hamiltonian we describe the atomic system-- so at first atom

one-- with the raising and lowering operator with the atoms interacting with a and a

[INAUDIBLE]. And then I have to add the term where the index one and two are

exchanged. So we are introducing here-- that's convenient for two-level atom-- the

spin notation sigma plus and sigma minus are the raising and lowering operator

which flip the atom from the ground to the excited state and vice versa.

But the important part now is-- and this is where, actually, everything comes from in

superradiance-- that the coupling involves not the individual spins, little sigma plus,

sigma 1 and sigma 2-- it only involves the sum of the individuals. i equals 122, and

later we extend the sum to n. So therefore, what matters for the interaction of the

atoms with the electromagnetic field is the sum of all the atomic spin operators. And

the sum is, of course, symmetric against exchange.

So therefore, when we are asking what is the coupling of the state which I called the

superradiant state, the one where we had symmetrized eg plus ge, or we ask, what

is the coupling of the subradiant state to-- well, the state where both atoms are in

the ground state. Well, now we can use symmetry. The left-hand side is symmetric.

The operator is symmetric. And now only the symmetric state will couple. The

antisymmetric state will not couple.

So therefore, the subradiant state, eg minus ge, cannot decay. That's why we call it

subradiant. I think a better word would be non-radiant, but non is definitely

subradiant. And for the matrix element eg and ge, we find that we have actually an

enhancement of the coupling by a factor of square root 2.
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So now we pretty much know what we have to do. You want to use the symmetry

of-- let's assume we consider ground and excited state of each atom as spin 1/2.

But now we want to look at the total spin, the total pseudo angular momentum of the

two atoms, and later we extend it to n atoms. So we want to use now the power of

the angular momentum description. And that goes like follows. We have four states

of two atoms. And this is gg, ge, eg, and ee. And if I denote with ground state spin

down, excited state spin up, I'm talking about 2 spin 1/2 states. And 2 spin 1/2

states can couple to s equals 1, total s equals 1, and total spin s equals 0.

And that's what I've done here. I've arranged the states ee, the symmetric

superradiant state, the ground state, and the subradiant state. A variation energy

level diagram-- here we have 0 excitation energy, here we have 1 excitation energy,

and here we have two excitations energies of the atom. But I've also labeled now

the spin labels for the combined system. Those symmetrized states correspond to a

spin equals 1. It's a triplet letter with three different magnetic quantum numbers. m

equals plus 1 means everything is highly excited. m equals minus 1 means we are

in the total ground state. And here we have the simulate state, which is the

antisymmetric state or the subradiant state.

And our interaction Hamiltonian is the total spin plus minus. It is the raising and the

lowering operator. And you know that the raising and lowering operator for the spin

is only making transitions within a manifold of total s. It just changes the end

quantum number by plus minus 1. So the Hamiltonian cannot do anything to the

simulate state, because there is no other simulate state to couple.

But within the triplet manifold, the sigma plus sigma minus operator is creating

transitions between the different end states. And the coupling constant, which for an

individual atom was little g is now factor of square root 2 enhanced. And we will see

in a few minutes, that for n atoms, it's square root n enhanced. And if any speak,

that's where the word super in superradiance comes from.

Yeah, actually let me just quickly add the diagram for the single atom. The single

atom has only an excited state, a ground state. It corresponds to s equals 1/2. And
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we have magnetic quantum numbers off plus 1/2 and minus 1/2. And the coupling

due to the light atom interaction goes with the coupling constant g.

So the key message we have learned here is that when we have several atoms

within an optical wavelength, we should use for their description symmetrized and

antisymmetrized states. Or when we generalize to more than two atoms, we should

just add the total angular momenta by treating each atom as pseudo spin 1/2. And it

is this angular classification which tells us how the radiation proceeds. Because the

coupling to the electromagnetic field is only involving the lowering and raising

operators for the total spin. And this only acts on a manifold where the total spin s is

conserved. And what we get is transitions with delta in plus minus 1.

So the question, have those effects been observed? Yes, they have, actually. And

they're important for a lot of research. But just for two atoms, the simplest

observation is when you take two atoms-- let's say two sodium atoms-- bring them

very close, and you form a sodium 2 molecule.

And to some extent, in four states where the molecule are binding is not completely

changing the electronic structure, we can regard the sodium 2 molecule as

consisting of two sodium atoms. And indeed, if you do spectroscopy of the sodium 2

molecule, you find some molecular states which are very long lived, like the

subradiant states, which do not radiate at all, but then you find states which have a

spontaneous emission rate which is about two times faster than the spontaneous

emission rate. So you find that you can understand some radiative properties of

molecules by assuming that they are related to the sub and superradiant state of

the two atoms which form this molecule.

So an example here is sodium 2 molecule. A state where the gamma molecule is

approximately 2 times gamma sodium, or other states where it's very small. OK.

Now we understand the basic four of superradiance in two atoms. And therefore, we

can now generalize it to end particles. But before I use the spin algebra to describe

end particles, I want to glean some intuition where we just consider-- and this takes

us back to the beginning of the course-- where we consider end spins in a magnetic
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field.

And I really invite you to think now completely classically. We'll describe it quantum

mechanically in a moment. But I've often said in this course, if in doubt, if you have

a classical description and a quantum mechanical and they seem to contradict,

usually there is more truth in the classical description. It's so much easier to fool

yourself with the formalism of quantum mechanics.

So let's take end spins in a magnetic field and ask what happens. So we have end

spins. So these are now real spins. They have a real magnetic moment. These are

tiny little bar magnets. And we do pi over 2 pulse. And after we've done a pi over 2

products, the spins are aligned like this. Let's assume we had our magnetic field.

And now what happens is these spins will precess at the line of frequency. So now

you have your end spins. They precess together. And if you have a magnetic

moment which oscillates, the classical equation of electromagnetism tells you that

you have now a system which radiates.

But compared to a single atom, the dipole moment is now n times the single atom

dipole moment. So therefore, what do we expect for the radiated power? Well, if the

electromagnetic radiation by an oscillating electric or an oscillating magnetic dipole

moment scales with a dipole moment squared, therefore, we would expect that the

power radiated is proportional to n squared. And that means I have to take the

perfect of n [INAUDIBLE]. This means this is n times higher than if you assume you

have n individual particles, and each of them emits electromagnetic radiation.

what I'm telling you is if you scatter n spins through your laboratory, you excite

them. Pi over 2 pulse, they radiate. They radiate a power which is proportion to n.

But if you put them all together, localize them better than the wavelengths, their

radiated power is proportional to n square, which is an n times enhancement.

So the way how I put it for n spins-- and this is a situation of nuclear magnetic

resonance-- this is the completely natural picture. But if I would have asked you the

question-- let's take n atoms which are excited and put them close together, you

say, well, each atom does spontaneous emission, and if you have n atoms, we get n
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times c intensity you would have gotten a different result. So we are so accustomed

to look at spins in NMR as a coherent system, look that all the spins add up to one

giant antenna, to one giant oscillating dipole moment, whereas for atoms, we are so

much used to saying each atom is its own particle and thus its own thing.

So for n excited atoms, they are usually regarded as independent. However-- and

this is the message of today-- there shouldn't be a difference. All 2 level systems

are equivalent. Side remark-- for NMR in spins, it is much, much easier to observe

the effect, because the condition that all the spins are localized within one

wavelength is always fulfilled if the wavelength is meter or kilometers. But if you

have atoms which radiate at the optical wavelengths, this condition becomes

nontrivial. That is partially responsible for the misconception that you treat the two-

level system which is a spin in your head differently from the two-level system which

is an atom.

So the important difference here is lambda. And we have to compare it with a

sample size. And usually, the sample size is much larger in the optical domain, and

is much, much smaller in the NMR domain. However-- and that's what we'll see

during the remainder of this class-- some of the dramatic consequences of

superradiance will even survive under suitable conditions in the extended samples.

So when we have samples of excited atoms much, much larger than the optical

wavelengths, we can still observe superradiance.

So therefore, for pedagogical reasons, I first complete the focus on the case that

everything is tightly localized. We derive some interesting equations, and then we

see how they are modified when we go to extended samples. But I want to say, the

intuition from spin systems, the intuition from classical precession and nuclear

magnetic resonance, will help us what happens for electronically excited atoms. So

we want to use this other spin 1/2 system as a powerful analogy to guide us.

So before I start with the angular momentum formalism, I want to emphasize that

what are the ingredients here. Well, we're talking about coherence-- coherent

radiation, coherence between atoms-- and we'll talk about radiation. And the
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important part here is the following. That when we talk about radiation, we have the

situation that all atoms interact with a common radiation field.

In other words, all the spins, all the atoms have to emit their photons into the same

mode of the electromagnetic field. And therefore, you may be right in some limit that

the atoms are independent, but not the photons they emit. They go into the same

mode. And therefore, the emitted photons cannot be treated independently.

And that's why the classical picture is so powerful for that. Because in the classic

picture, we do a coherent summation of the field amplitudes. So we have

constructive interference. The superposition principle of field amplitudes build into

our equations and deeply engraved in our brains. And that's why when we use

classical arguments, we automatically account for that the photons interfere, that

the photons are emitted into the same mode of the electromagnetic field.

And eventually, this leads to the phenomenon that we have coherence and

enhancement when we look at spontaneous emission for n atoms which are

sufficiently localized.

So let me also discuss what we have assumed here. Number one is, we have

assumed we have a localization of the sample smaller than the optical wavelengths.

The other thing-- and this is really important-- we are talking here about a collective

phenomenon where n atoms act together and do something. They develop the

phenomenon of superradiance.

They decay much, much faster than any individual atom could do by itself. But

nevertheless, we have not assumed-- or we have actually excluded in our

description-- that there is any direct interaction between the atoms. The atoms have

no [INAUDIBLE] interaction. They're not forming molecules. They're not part of a

solid with shared electrons. The atoms are, in that sense, non-interacting. And

therefore, in a way, as long as they are just atoms, independent.

Finally-- and I want you to think about it-- you can think about already for two atoms

before we generalize it to n atoms. Think about it. What was really the assumption
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about the atoms? Do the atoms have to be bosons to be in this symmetric state?

Can they be fermions? Or can they be even distinguishable particles?

If the two atoms where one would be a sodium atom and one would be a rubidium

atom-- but let's just say we live in a world where sodium and rubidium atoms emit

exactly the same color of light. Would we have been sub and superradiant state for

two atoms, one of which is sodium and one of which is rubidium?

Yes?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Exactly.

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yes. And that confuses many people. It is the indistinguishability of the photons they

have emitted. It is the common mode where the photons are emitted. The atoms

can be distinguished.

Also, we've made the assumption that the atoms are localized to within an area

which is much smaller than lambda. But you could imagine you have a solid state

matrix and you have one atom here, one atom there, and you can go with a

microscope and distinguish them. So therefore, the moment you can distinguish

them because they are pinned down in a lattice-- or if you don't like a lattice, take

two microscopic ion traps a few nanometers apart, and you tightly hold onto two

ions-- it doesn't matter whether they are bosons or fermions. It only matters whether

your bosons or fermions when the atomic wave functions overlap and you have to

symmatrize it.

As long as you have two atoms which are spatially separated, it doesn't matter

whether they are bosons or fermions. And that also means they can be completely

different atoms. You can already call the Boson A, Boson B. Now you can call it

sodium and rubidium, and they can have different numbers of nucleus. They can be

different numbers of neutrons in the nucleus. It could be different isotopes of the
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same atom. The whole collective phenomenon comes when they emit a photon into

the same mode.

OK. So now we want to treat to a formula treatment for end particles. So we have

now the individual pseudo spins one half. We perform now with some overall end

particles. We get the total spin s. The total spin s quantum number has to be

smaller or equal to n over 2, because we have m spin 1/2 systems. The end

quantum number is 1/2 times the difference of the atoms which are in the excited

state minus the atoms which are in the ground state. And this is, of course, trivial.

Trivially must be smaller than s. Because m is this z component of s. And we are

now describing the system by the eigenstates s and n of the collective spin.

So that means we have the following situation. We have a manifold-- we want to

show now all the energy levels. We have a manifold which has a maximum spin n

over 2. The next manifold has n over 2 minus 1. And the last one has-- let's assume

we have an odd number of particles-- x equals 1/2. So here, we have now n energy

levels. We can go from all the n atoms excited to all the n atoms being de-excited.

In the following manifold, we have s is one less. And therefore, we have a letter of

states which is a little bit shorter. And eventually, for s equals 1/2, we have only two

components plus 1/2 and minus 1/2.

So those levels interact with the electromagnetic field. The operator of the

electromagnetic field, we have already derived that, involves the sum of all of the

little sigma pluses, sigma i pluses, and we call the sum of all of them s plus and s

minus. And the matrix element is now for spontaneous emission. You have a state

with sm. s minus is the lowering operator for the n particle system, so it goes from a

state with a certain number of atomic excitations to one excitation less, and that

means this is the act of emitting spontaneously one photon. The operator s minus

stays within the s manifold, so we state in the same letter, which is characterized by

the quantum number s. But we lower the end quantum number by one. The end

quantum number is a measure of the number of excitations.

And we know from general spin algebra that this matrix element is s minus m plus 1
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times s plus n. There are, of course, pre-factors like the dipole matrix element of a

single atom. But I always want to normalize things to a single atom. And by just

using the square root, if you have a single particle, which is in the s to m equals 1/2

state, then you see that it this square root is just 1. So therefore, for when I discuss

now the relative strengths of the transitions between those eigenstates, I've always

normalized to a single particle. For a single particle, the transition matrix element is

1.

OK. So therefore, what we want to discuss now is, we want to discuss the rate,

which is the matrix element squared, or the intensity of the observed radiation

relative to a single particle. So the intensity-- and this is what we are talking about--

is now the square root of the square root, or the square of the square root, which is

s minus 1 plus m times s plus m. Pretty much, this is the complete description of

superradiance for strongly localized atoms. It's all in this one formula. Once we

learned how to classify the states, we can just borrow all the results from angular

momentum, addition, and angular momentum operators.

So I want to use this formula for the intensity and look at which is the most

superradiant state, the state where all the particles are symmetric. And this is a

state with s equals n where the spin is n over 2. So I'm looking now at the letter of m

states, and I want to figure out what happens. So the maximum m state is m equals

s, all the atoms are excited. And now the first photon gets emitted.

So just put s equals m equals n half into the formula for the intensity, and you find

that the intensity gives us this expression is just n. So we have n excited atoms, and

they initially emit with an intensity which is n. And this is the same as for n

completely independent atoms.

So nothing really special to write home about. But now we should go further down

the ladder, and let's look at the state which has m equals zero. Well, then the

intensity of the matrix element squared for the transition, which goes to m equals

zero, has an intensity which is n over 2. I will just look. s is n over 2, and m is zero.

So we have the question whether we have odd or even number of particles, but it

12



doesn't really matter.

What dominates is always the big factor n over 2. So what we find out is that we

have an enhancement, huge enhancement over independent atom, because this

intensity goes with n squared, and this proportionality to n squared, this is a

hallmark of superradiance. So this is what is characteristic for superradiance. We

have an n times enhancement relative to the a singular atom.

So this is one important aspect. Now, in the classical picture, that should come very

naturally. If you have all the spins aligned and they start the [INAUDIBLE]

procession, there is not a lot of oscillating dipole moment. But when half of the spins

are de-excited, they are now in the XY plane. Now you have this giant antenna

which oscillates and radiates. So it's clear that at the beginning, the effect is less

pronounced, and if you're halfway down the Bloch sphere, then you would expect

this n times enhancement.

But now let's go further down the ladder and ask what happens when we arrive at

the end. So I'm asking now, what is the intensity when the last photon gets emitted.

There is only one excitation in the system. And the answer is, it's not one like an

independent atom. If you inspect the square root expression, you find it's n. So we

have one excitation in the system, but it's completely symmetrized.

And therefore, we have an n times enhancement. And I want to show you where it

comes about. So there's only one particle excited. And here, we have an n times

enhancement.

By the way, the states with the classification s and m are called the [INAUDIBLE]

state. And this state here, which has a single excitation but it radiates n times faster

than a single atom, is a very special [INAUDIBLE] state. And there is currently an

effort in Professor [INAUDIBLE] lab to realize in a very well-controlled way this

special [INAUDIBLE] state in the laboratory. There are non-classical states, because

they're not behaving as you would maybe naturally assume a system with a single

excitation to behave.
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So let's maybe try to shed some light on it. One way how you can intuitively

understand superradiance is really with a classical antenna picture that you have n

spins which form a microscopic dipole moment which oscillates. And this is a very

nice picture to understand the n times enhancement when we have half of the

atoms excited and the other half de-excited. Let me now give you a nice argument

which explains why a single excitation in this system now leads to an n times

enhanced decay.

The situation is that the initial state for this last photon is, we have an excited atom,

and all the atoms are in the ground state. However, we could also have in this

nomenclature the second atom excited. Or we could have the third one excited, and

so on. So therefore, what we have is-- because we are in the left-most [INAUDIBLE]

which has the maximum s spin quantum number of n over 2, that means everything

is fully symmetrized. So therefore, we have to fully symmetrize by summing over the

n possibilities.

And our final state is, of course, the fully symmetrized [INAUDIBLE] state. And now

you realize that you have a coherent summation over-- you have n contributions. So

therefore, the matrix element has n contributions compared to single atom. The

normalization is only square root n. So therefore, the matrix element is square root

n times larger than for an individual atom.

So by simply having one atom excited and n minus 1 atom not excited, but if you

now have the fully symmetrized state, you don't know for fundamental reasons

which atom is excited. You have a superposition state where the excitation can be

with either of the atom. This state, which has a similar quantum of excitation,

radiates n times faster than a single atom would.

Let me make a side remark. Maybe some of you remember when we went to

[INAUDIBLE] QED, we had just proudly quantized the electromagnetic field, and we

discussed the vacuum Rabi splitting. And I told you that the vacuum Rabi splitting is

if the cavity is not empty but is filled with n atoms, because of the matrix element of

the a dagger operator, you get an enhancement of the vacuum Rabi splitting, which
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is square root n, then photon number.

But then I showed you the important first observation, the pioneering research at

Cal Tech by JF Kimball and Gerhard Rempe, and they didn't vary the photon

number. They varied the atom number. And when they had more flux in the atomic

beam, the Rabi splitting became larger and larger.

Well, we've just learned that when we have n atoms, that the matrix element for

emitting the photon is square root n times enhanced. So if you put n atoms in a

cavity filled with little n photons, the Rabi splitting between the two modes has

square root n plus 1 in the photon number and square root big n in the atom

number. So the effect I've shown you in the demonstration of the vacuum Rabi

splitting is this scaling with the atom number. This actually can be understood as a

superradiant effect.

OK. So that's pretty much what I wanted to tell you about the basic phenomenon of

superradiance. Now I want to discuss two more things. One is superradiance in an

extended sample. Ad we have time for that. But I also want to discuss with you the

question. Let's assume we have the same system, and we just convinced ourselves,

yes, it's superradiant. Photons are emitted n times faster.

Now, what would you think will happen when we are not looking for spontaneous

emission, but we shine a laser light on it, and we are asking for induced emission?

Or the other way around-- we ask-- and you know that from Einstein's treatment, it's

completely recipocal-- where we are asking the question, what happens to the

absorption process? So is a stimulated emission process or an absorption process,

are they also enhanced n times?

I don't know. Do you have any opinions about that?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yes. It's a subtle way of counting. I've shown you that certain matrix element--

especially the matrix element when the spin is in the middle, is at 90 degrees-- that

we have matrix elements which are n times enhanced. And of course, if you ask for
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absorption or stimulated emission, we are talking to a system which has an n times

enhanced matrix element. And you would say, things go n times faster. Why don't

you hold this thought for a moment?

Now let me just wear another hat and let me say that we have assumed that we

have n independent spins that are closely next to each other, but they're not

interacting. And now I take these n spins, and for stimulated emission and

absorption, we can just use a picture of Rabi oscillation. On the first Rabi cycle, we

emit. On the next Rabi cycle, we absorb. So if I take now-- and why don't you think

not about these pseudo spins electronically, atoms with [INAUDIBLE] excitation--

just think of real spins which have a magnetic moment, and you drive them to the

magnetic field.

So now you have your n little spins. You apply a magnetic field to them, time-

dependent magnetic field, and the time-dependent magnetic field is now driving the

spin in Rabi oscillations. And the external drive field talks to one spin, talks to the

next, talks to all of them. But each of the spins does exactly the same Rabi

oscillation it would do if all the other atoms where not present.

So the picture is, you have an external field. All the atoms couple to the external

field. But the coupling of each atom to this external field is exactly the same as of a

single atom coupling to the external field. And the Rabi frequency for each atom is

exactly the Rabi frequency you would get for a single atom. So therefore, based on

this picture, I would expect that I have my end spins, and these can now be real

spins with a magnetic moment, or can be atoms in the electronically excited state. I

coherently drive them with a drive field, and they will do Rabi oscillations. But the

frequency or Rabi oscillations will be the same as for a single atom.

OK. We've just held the thought that their matrix elements in the Dickey states,

which are square root n times larger, and the Dickey state seem to suggest

something to us which would say there should be an enhancement, whereas the

analysis in independent atoms, which are driven by an external field, also seems

compelling. So now we have to reconcile the two approaches.
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Is the question clear? We want to figure out-- we have matrix elements in the Dickey

state which suggest enhancement, but the simple picture of n independent atoms

driven by an external field would say there is no enhancement.

OK. So let me just write down more formally what I explained. When we have an

initial state, which is all the atoms are in the ground state to the power n, and the

state n would evolve when it is driven in a state phi of t, so now the exact wave

function for our n particles is nothing else than the time-dependent solution of

Schrodinger's equation for the single particle. So this is single particle to the power

n.

So therefore, this is pretty much a mathematical proof unless I've made a mistake,

which I haven't. So it takes exactly half a single atom Rabi period to completely

invert the population exactly s for a single atom. So that's the result.

However, if you describe the system by Dickie states, you have matrix element

which are matrix elements which are proportional to n. However, if you want to-- I've

described it just as a two-level system. Each atom does Rabi oscillation. I've said,

OK, the system of n atoms is just n individual systems. But if you insist to describe it

as a collective spin, then we have the Dickie states. Then we have the n times

enhancement of the matrix element. But then we also have to go through n states.

So we have n steps in the Dickie letter ladder. And one can say now-- and this is the

exact argument-- you have n steps. You take each step n times faster, but the total

time is the same. So n times 1 over n is 1. OK. But now when we talk about

spontaneous emission, we are not driving the system with an external field. It's

really driven by the system itself, which emits photons into the empty mode.

Spontaneous emission, each step is proportional to the matrix element squared,

because we're talking about [INAUDIBLE] spontaneous emission. So this is

proportional to n square. And if you say that we have n steps, well, then we have n

squared over n. Then we have a speed up. Each step is n squared faster. We divide

by n, and we get the superradiant speed of which is n.
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So superradiance is something that you observe in spontaneous emission, but you

cannot absorb it in a driven system. Because in a driven system, you can say you

have a classical external field. And this external talks to one atom, to n atoms

exactly in the same way. It is really the interference of spontaneously emitted

photons which is at the heart of superradiance.

As a side remark, we are talking here about coherent effect, which is n times

enhanced. And you can actually regard that as a kind of bosonic enhancement in

the emission of photons, because the photons are bosons. When Bose-Einstein

condensation was discovered and people were thinking about basic experiments, of

course, one thing which was on our mind is, we wanted to show that there are

processes in the Bose-Einstein condensate we are n times enhanced. For fermions,

they would be suppressed. This is the flip side. Big enhancements for bosons,

complete suppression for fermions.

And we found that, for instance, the formation of the condensate had an n times

enhancement. There was a stimulation factor. But we also thought you should

actually-- there may be ways where you can observe suppression of light scattering

or enhancement of light scattering. But we thought about it with two laser beam

[INAUDIBLE] scattering, and the idea seemed compelling.

And then we said, no, wait a moment. If you use laser beams, everything is

stimulated. You can observe bosonic enhancement and fermeonic suppression only

when you have spontaneous events. If you drive it in a unitary time evolution, you

will not be able to see quantum statistical suppression or enhancement.

And the same thing as we have seen here-- when you have a stimulated system,

everything is undergoing a unitary time evolution, and the unitary time evolution for

n atoms is the same as for a single atom. You need the element of spontaneous

emission.

So I'm not proving it to you, but I'm just making as a remark-- what we have seen

here, that the superradiance only shows up in spontaneous emission and not when

we drive the system-- a driven system is a unitary evolution. And the same
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conclusion which we just got for superradiance also applies if you want to observe

fermionic suppression or pulsonic enhancement in quantum gases. It needs an

element of spontaneous scattering or spontaneous emission. Yes?

AUDIENCE: If we think of it in terms of interference of photons, how does that tie in here?

Because if the stimulated [INAUDIBLE] photons are still interfering, then you can get

emission [INAUDIBLE].

PROFFESOR: The quick answer is, you have a classical field which you use for-- you have a laser

field for stimulate emission for absorption. There are so many photons in the laser

field that the few photons which your system emits do not matter. They are really

talking to a classical field, and it doesn't matter whether the other n minus 1 atoms

have emitted a photon, because you have zillions of photons in your laser field, and

they determine the dynamics of the system.

OK. Super radiance would not be as important as it is if it could not observed in

extended samples. So now I want to use the last 10 minutes to show you what is

kept and what has to be dropped when we talk about extended samples. So let's-- it

doesn't really matter, but for pedagogical reasons, let's assume we have an

extended sample which is much, much longer than the optical wavelengths along

the long axis of the cigar and smaller along the short axis. The second condition

that the cigar is smaller than along the long axis does not really matter.

No, I'm not making this assumption. So it's a cigar, and let's just assume that

everything is-- just saw a contradiction in my notes. So anyway, we have now a

system which is-- let's have a Cuban cigar, a really thick cigar. And this is now our

extended sample. And what I need is, I need the cross section of the sample A. And

let's assume the length is l. This is diameter d. It's a cigar much, much larger than

here.

And yes, we are talking about superradiance, we are talking about spontaneous

emission. But if you see a long cigar with excited atoms, you think immediately

about lasing action. The photon is emitted is amplified along the path. And of

course, the preferred direction where you would expect the maximum effect to
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happen is when the light is emitted along the long axis of the cigar. So you want to

consider now preferential modes along the x-axis.

So if you now assume that you have many atoms, and they emit light, if an atom

here and here would emit light in this direction, it may constructively interfere. But in

another direction, it will destructively interfere. But let us now consider what is the

solid angle into which all of the atoms can coherently emit.

Well, you know that from classical optics, the emission into a solid angle of lambda

square over a can be coherent. Sort of similar to when you have a double slit and

you ask, over what angle do the two slits emit inface. You get a bright fringe, and

you get a dark fringe, you get the next bright fringe. The coherence, the angle over

which the pass lengths differences do not add up to more than lambda. It's the

deflection-limited angle which for a beam of size d is lambda over d. And if you take

it to the second dimension, the solid angle is lambda squared over d squared. So

that's what I'm talking about.

So if you would give all the atoms in your assemble just the right phase that they are

coherent to emit into the x-axis, they will also coherently emit into a small, solid

angle, and the solid angle is given by this number.

So the just of it is-- and I will not completely prove it to you, but I just want to give

you a taste-- is that therefore, we still have a superradiant enhancement. We know

the superradiant enhancement previously when we had the localized system was n.

But now we have the n atoms act together, but they're not acting together for

emission into 4 pi. They are acting together for emission into the solid angle.

And if I write the big n as density n times l times a squared, the a squared cancels

out and I get n lambda square l. And if you remember that the cross section of an

atom was lambda square for absorption, if the atom is excited, the cross section for

amplification of light for stimulated emission is also lambda squared. So lambda

squared is the gain cross section.

And what we find now as a superradiant enhancement factor is nothing else like
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something which reminds us of a laser, which reminds us of optical gain. And

actually, the lasing phenomenon in superradiance in extended samples has a lot of

analogies. In some limits, it's even identical. When we are talking about

spontaneous emission, we are not talking about stimulated emission. But if you

have a system which is in some excited state superradiant Dickey states, and we

are asking what are the spontaneously emitted photons coming out, to say different

atoms emit into the same mode, and now you have to add up the feeds coherently,

this is a language we have used so far.

Or if you use a language atom emits a photon and this photon gets amplified on its

way out, those two language strongly overlap or in some limits are even identical.

So the amplification of a photon on its way out, this is behind superradiance. But

when the localize the atoms to lessen the wavelengths, well, the atoms pretty much

emit as a whole and there is no pass lengths of the size of the optical wavelengths

where you can say the photon propagates, gets amplified. So we have looked at

just what comes out of it.

But in extended sample, you could even address this situation. How do the photons

get amplified, magnified, augmented when they travel from the center to the edge?

So you could actually ask, what is the light intensity as a function of the position

within the cigar? For localized samples, you can't.

So let me just write that down. So this is analogous to optical amplification in an

elongated, inverted medium. OK. So you can formally describe that. You can now

define new Dickey states with respect to the preferred mode. And the preferred

mode is the mode in the x direction.

So what I've done is-- remember, we have those atoms. Those atoms are now

sitting at different positions, x1 and x2. And if I define Dickey states which have

phase factors into the ik x1, into the ik x2, if now this atom emits a photon and this

atom emits a photon, well, the second photon is x2 minus x1 ahead of this photon if

you think of those atoms sitting aligned in a string. But the phase vector is exactly

canceling the propagation phase for the first atom in such a way that if you are now
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coupling these states to the electromagnetic field, the phase factors of the

electromagnetic field in the mode cancel with those phase factors, and you again

have the situation that each state here has an equal amplitude for emission. So now

you have n possible contributions, and the normalization is 1 over square root n,

and everything falls into place.

And you can define that for two excited atoms with two phase factors and so on. So

you can use immediately the same formalism. And what happens is those phase

factors for the interaction Hamiltonian-- and our interaction Hamiltonian is now

different. It is di. And now in an extended sample, we have to keep track of the

precision of the atom.

So for the coupling to the mode in the x direction, we have those phase factors. So

all the phase factors cancel. And actually, I'm not telling you whether this is plus or

minus in order to cancel. You pick the sign that they all cancel, and then you have

superradiance. You have fully constructive interference.

Yes. So all this looks now the same as superradiance, but there are also things

which are different, and this is the following. If the atom would emit now photons,

not in the preferred mode, then-- remember, we had the Dickey ladder. We had the

most superradiant ladder, little bit less superradiant ladder, and eventually we had

the subradiant ladder in order of smaller and smaller total quantum number s.

Emission in the preferred mode stays in each letter, and we have the superradiant

cascade. But emission into other modes is now coupling different s states. Because

the operator or the phase factor into the IKR has broken to complete permutation

symmetry between the sides. We have changed the symmetry. We have not the

completely symmetric sum. We have a symmetric summation with phase factors.

So therefore, the phenomenon is somewhat different. But we still have superradiant

cascade for the preferred mode. And the result is that we have an enhancement for

the most symmetric for the superradiant states, which is given by that. And this is

nothing else than the resonant optical density of your center.
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So in experiments-- many of them go on in [INAUDIBLE] lab, where he uses

collective spin and the storage of single photons in n atoms, the figure of

[INAUDIBLE] of his samples is always the optical density, the number of atoms

times lambda squared times the lengths.

Finally-- and sorry for keeping you three more minutes-- the form of superradiance

which is very important is Raman superradiance. We don't have an excited state

where we put a lot of excitations on, because the excited state would be very short

lived. So what we instead do is, we have Rabi frequency omega 1.

We have a large [INAUDIBLE] delta. And then the spontaneous emission with the

coupling constant g takes us down to the excited state. In the case that the Rabi

frequency is much, much smaller than delta, we can eliminate the excited state from

the description. And what we obtain is now a system which has an excited state.

The widths of this excited state-- this is pretty much the virtual state here-- is the

scattering rate which is the probability to excite the atom is Rabi frequencied over

detuning squared. That's just perturbation theory. And then we multiply with gamma

or gamma over 2. So this is the rate of spontaneous emission out of the virtual

state.

And from this virtual state, we go now to the ground state. And the Rabi frequency,

or the coupling for this virtual state, is the original coupling g between ground and

excited state, but now pro-rated by the amplitude that we have mixed the excited

state into the virtual state. So therefore, we have now obtained a superradiant

system.

And for instance, we did experiments which became classic now because they are

conceptually so clear-- we took a Bose-Einstein condensate, we switched on one

strong of resonant laser beam, and then we had a system which was 100%

inverted, because we had no atoms into the final state. The final state is a Bose-

Einstein condensate but with a recoil kick. So by just having a Bose-Einstein

condensation and shining this laser light on it, we had now in this picture a 100%

inverted system, which is the ideal realization of a fully inverted Dicky state.
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Everything is completely symmetric, and then we observed superradiant emission of

light pulses. OK. So this has been the important realize-- so important experiments

have been done via BECs in my group and with cold atoms in with laser code

samples in [INAUDIBLE].

So why is superradiance so important? And this my last statement for this class and

for the semester. So if you have extended sample superradiance, those samples

are no longer coupling to the electromagnetic field with the coupling constant g. The

coupling constant g is now multiplied by the optical density of your sample. And

there is a lot of interest for current research for quantum computation, manipulation

of photon states, and all that, to do cavity QED. And in cavity QED, we try to have

very good mirrors, very small mode volume to have a very, very large g.

But this large g which we achieve in a cavity, if you put many atoms in it, gets

enhanced by the optical density. So the cavity enhancement and the superradiant

enhancement is multiplicative. And often, it's very favorable for single photon

manipulation if you do Bose. You getting enhancement form the cavity and

enhancement due to superradiance. And the person who has really pioneered work

along this direction is [INAUDIBLE] here at MIT.

Anyway, yes, with five minutes delay, I finish the chapter on superradiance. Well,

that's the end of this course. Let me thank you for your active participation.

Sometimes as a lecturer, you learn as much as the students. And I think partially

based on your questions and discussions, this is really true. I've learned a few new

aspects of atomic physics. I hope you have learned something, too. And good luck

in the future.
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