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PROFESSOR: Good afternoon. We are on the finish line. Two more weeks to go. Our last chapter

is coherence, and I can promise you this chapter of coherence has some highlights,

so we are not going to and more boring subject. Actually, some of the best subjects,

some of the most exciting topics are still to come.

So today, we continue our discussion of coherence. As I pointed out last week, we

first talk about coherence in single atoms and then coherence between atoms. In

the first part on coherence, I want to come back to this topic of spontaneous

emission, because many of us have deep rooted misconceptions about what

spontaneous emission is. We discussed on Wednesday that spontaneous emission

is not so spontaneous as many of us assume because it's a unitary time evolution

with an operator with a term in the Hamiltonian. It is exactly this operator which

takes the wave function of the total system, the atoms and the light, to whatever it is

later on. There is no random phase, there is no random variable in this time

evolution, exclamation mark.

But there are certain aspects associated with spontaneous emission, and I want to

address them. On the other hand, if you think about spontaneous emission in the

most fundamental way, the first thing you should think about it, vacuum Rabi

oscillation. Here you see in the simplest possible system what spontaneous

emission can do for you.

The way we want to discuss an important aspect of spontaneous emission, we want

to go beyond the vacuum Rabi oscillation, is the following. We start with an atom in

the ground state and the cavity is in the vacuum state, but now we take a short

pulse of a laser and we prepare the atom. And because the laser outputs a

coherent state, the coherent state has a well defined phase, and this phase appears
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in the superposition between ground and excited state because this superposition is

created with the matrix element which has the electric field of the laser.

But then we allow spontaneous emission to happen, and spontaneous emission to

happen means we take our operator which I just showed you, we propagate forward

in time in such a way that we just go through half a cycle of a vacuum Rabi

oscillation, which means everything which was in the excited state is now in the

ground state.

And by just exactly propagating this system forward in time, we obtain this state,

and that's something I hope very, very insightful which we arrived at the end of the

last lecture, that the quantum state of the atom has been perfectly mapped onto the

photon field. So all the information which was in the atom before spontaneous

emission is now available in the photon field. So the next thing to address is the

phase phi. What is the phase of the spontaneously emitted photon, and this is what

we want to understand now.

So how well can we measure the phase phi? You should first assume the phase phi

is perfectly determined with extremely high accuracy if you use a laser beam which

has a macroscopic electric field. The phase phi is a classical variable and can be

determined with arbitrary precision. And therefore the phase phi, which we have

imprinted first into the atomic wave function and then in the photon field, is an exact

number. It comes from the laser beam.

What I'm showing here is phase space plots for the photon field. I know we talk

about photons and two dimensional phase-space distribution mainly in 8-422, but I

think the pictures speak for themselves. A lot of you have seen the harmonic

oscillator and harmonic oscillator, if you start to prepare the system here, this is

position, this is momentum, the system evolves in a circle.

A lot of you have seen, if we regard photon states as states of a harmonic oscillator,

which they are, that you have flux states, which are just circles, or the vacuum state

is just a tiny circle at the center. And if you have a coherent state, a coherent state

is maybe a little blob out there, and for the coherent state, you can determine the
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phase because the angle of this little blob relative to the origin is well determined. I

think you all have seen a version of that.

So anyway, what is done here is I show you this phase-space plot for the photon

field, and what happens is if initially, the excited state was zero, this is just the

ground state of the harmonic oscillator. It's a circle. If the excited state was occupied

with unity probability, it's a flux state with n equals 1, and here you see the phase-

space plot of a flux state with n equals 1. And of course, you realize if you have

exactly one photon or one atom in an excited state.

There is no phase information left because the phase is actually the relative phase

in the superposition between ground and excited state. If you have an excited state,

only an excited state with a phase factor, you know if a phase factor can simply be

factored out of the total wave function, it's never measurable. What is measurable

are phases which are relative phases between two amplitudes which are populated.

And of course, not surprisingly, if we now vary the excited state fraction of the atom,

that's a probability to have a photon in the photon field from zero or one in between,

we sort of see that this phase-space distribution, it points along the 45 degree axis

and we can measure the phase. And the most accurate phase measurement can

be done if the superposition between ground and excited state is 50-50, or, talking

about the photon field, we have a 50-50 superposition state between no photon and

one photon.

But the phase here is indetermined and the phase here has quite a bit of variance

because if you have a single photon, there's only so much accuracy for the phase. It

would require more discussion, but sometimes you talk even about an uncertainty

relation, delta n delta phi equals 1. So if you have one photon, you can only

measure the phase with precision on the order of unity. If you had millions of

photons, then you can do very accurate phase measurements.

So what we have is-- let me just summarize the conclusion. So the phase phi is best

defined in the atom, and therefore also in the photon field, when we have an equal

superposition of spin up and spin down, of ground and excited state. And you also
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get that from the Bloch vector picture, if you have a Bloch vector which is pointing

like that, it doesn't have a phase, it's just pointing up. If it's pointing down, there is

no phase. But if it's a 50% superposition state, it points in the xy plane and you have

the best definition of the relative phase of the amplitude between ground and

excited state.

So I mentioned this Heisenberg uncertainty relation. The fact is just looking at these

phase-space plots, you realize the angle which we can determine here for the

photon distribution will have quite a variance, but now I want to discuss with you

how would we actually go about it, how would we measure the phase of the photon

field? And this requires a homodyne experiment, a beat experiment where we

interfere the emitted photon with a local oscillator, which is the laser beam which

was used in the first place to excite the atom.

And what we will find out, and it's clear that we cannot obtain a sharp value of the

phase, but these fluctuations in the phase do not come from any partial trace, do

not come from any fluctuations in the Hamiltonian. Just to address that, when we

write down the term in the Hamiltonian, the e dot d term, yes, depending on the

basis set, depending how you define spin up, spin down, and what phase factors

you put into your basis set, you may have a phase popping up in the Hamiltonian,

but this phase is purely definitional. The phase I'm talking about is really a relative

phase between two amplitudes, and it is independent of a phase which may be your

choice by choosing the basis set in which you formulate the Hamiltonian. Therefore,

when we measure the phase, and we find that there are fluctuations, they actually

come form the quantum nature of the states involved.

Let's talk about the measurement and let me set it up genetically. Here is our atom,

here is the laser beam, and we want to create a Mach-Zehnder interferometer. Let

me just use another color for the laser beam. Why don't we take sodium today,

which has emission in the orange?

The idea is the following. We have a laser beam which is used to excite the atom,

and here we have a switch. And what we let through is only a certain pulse. Let's
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say if we want to have a coherent superposition between ground and excited state,

it would be pi over 2 pulse.

Then, after the atom has absorbed the pulse, we switch off the light pass. So then in

the second stage, the atom can emit, and the emitted light interferes with the local

oscillator, which is the laser beam, and we can measure the beat node on the

detector. This is the scheme how we do a homodyne measurement.

And so we assume we have a very short pulse which excites the atom. Then we

switch off the laser in the upper pass and the light which reaches the detector for

homodyne is only the light which has been emitted by the atom maybe a

nanosecond later. So we do a homodyne measurement of the phase of the wave or

the wave train emitted by the atom. And the distribution of measurements for the

phase, I don't want to give you mathematical expressions, but it's pretty much what

you can read from the drawing I've shown you.

So for a pi over 2 pulse, we retrieve the phase phi, but with fluctuations. Let's now

come to the interesting case that we have a pi pulse. The pi pulse prepares the

atom in an excited state, and at t equals 0 after the excitation, there's absolutely no

coherence. The density operator for the atom has just one in the column and row

for the excited state. There's no off diagonal matrix element. There is no phase

information. So at t equals 0, no coherence, no phase.

So now we have excited the atom with a pi pulse, but there is no phase information

in the atomic system, and that would also mean that when we now start mapping

the quantum state of the atom onto the quantum state of the light, there won't be

any specific phase for the light. We could say after the spontaneous emission is

over before we do any measurement process, we have mapped a flux state of the

atom onto a flux state, n equals 1, of the photon field, and there is no phase

associated with a number state.

But let's be a little bit more specific here. Let's assume we can have an ensemble of

atoms, we can repeat the measurement many times, and let's ask the question,

what happens after the atom which was originally in the excited state has decayed
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to 50%? Well, then we have a wave function which is a superposition of ground and

excited state, and there is a phase phi now, but this phase phi is completely

random.

So for those of you who are concerned that I call it a wave function, you can be

more specific in the sense of quantum Monte Carlo, that at any quantum Monte

Carlo wave function, at any given moment you have a wave function, but the

ensemble of your atom is now an ensemble of all those wave functions with a

random phase phi. This is a way how you can decompose the statistical operator of

the system, but the result is the phase is random.

If the phase is random, that means no coherence. The statistical operator does not

have an off diagonal matrix element. It also means that, if you would ask what is the

ensemble average of the dipole moment, the dipole moment is given by the Bloch

vector. Well, if all phases are equally populated in your ensemble, the dipole

moment average is 2-0. But, of course, you have a d squared value, a value of the

dipole moment, which is not zero.

So here we have now a situation where the photon field has a random phase

because we lost the phase information of the laser beam when we put the atom into

an excited state, and you may now ask, what is the origin of this phase uncertainty?

And at least the qualitative answer is it's vacuum fluctuations. You can take the

concept of vacuum fluctuations a little bit further. I'm just mentioning it, but I will not

work it out.

The fact that the phase of this photon which is random is somewhat associated with

vacuum fluctuations, you can address this question when you talk about two atoms.

So we have two atoms. We excite them both with our pi pulse into an excited state,

and then, as time goes by, we will have atoms which create photons. And at least as

long as the atoms are well localized within optical wavelengths, you could play with

the idea that if they're vacuum fluctuations, maybe the two atoms will see the same

vacuum fluctuations.

And therefore, indeed, you will actually observe correlations in the relative phase.
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So if you measure the phase of the light emitted spontaneously by the two atoms,

you will find a correlation which is due to the fact that-- I'm waving my hands here,

but that the spontaneous emission was triggered by the same random vacuum

fluctuations. So the absolute phase will be completely random from time to time, but

the relative phase will be correlated.

But what we are talking about here is correlations between two atoms. We will talk

later about superradiance, and maybe this will make it much clearer what it means if

several atoms emit spontaneously together. Any questions? Yes, Colin?

AUDIENCE: Are there any requirements on these two atoms being located within an optical

wavelength of each other?

PROFESSOR: Yes and no. In the simplest example of superradiance, we want to put them to

within one optical wavelength, and then we do not have any phase vectors, but we

will talk about it next week, that we also have superradiance in extended samples,

and then we only get the superradiance, the coherence between atoms, into a

smaller solid angle where the are different phases are very well defined. If you

would now average the spontaneous emission over different directions, you would

get propagation phases and the atoms would only be coherent in one solid angle

but not be coherent in another solid angle. Other questions?

That's, to the best off my knowledge at the most fundamental limit, what

spontaneous emission is, how accurately a spontaneously emitted photon carries

forward the phase of the laser beam which excited the atom, and then eventually

when we have completely lost the phase because we excited the atom to an excited

state. Everything that we discussed will be actually carried to the next level when we

discuss superradiance because then we have n atoms-- n can be a big number--

which excite together, and if they emit photons, the phase of this n photon field can

be very precisely measured.

So some of the uncertainties we have here simply come from the fact that, if you

have only one photon or one atom, there are naturally quantum fluctuations of any

phase measurement. But that part will go away when we go to ensembles of atoms
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where we have many atoms, and superradiance is then the way how we can revisit

the subject, how well can you retrieve the phase of the laser field from the

spontaneously emitted photons. Other questions? Nancy?

AUDIENCE: [INAUDIBLE] single atom? So pi over 2, I can see that we do a homodyne

measurement and get the phase out. Do we need dipole moments for pi

[INAUDIBLE], or this is just a science that we're going to use for many other things?

PROFESSOR: What's the question? We have pi over--

AUDIENCE: What measurements do we need if we have just one atom? Do we make any

measurements, or no phase information?

PROFESSOR: I think the measurement is, in a way, what I indicated here. We excite the atom,

then we switch off this pulse, and then we take this short pulse of light. It's a wave

train which has a duration on the order of the natural lifetime of the atom, and this

wave train is interfered with a local oscillator, and the interference term allows us to

retrieve the phase. And if you use a strong local oscillator, then we pretty much

retrieve the quantum limit of the measurement, and the quantum limit of the

measurement is what I showed you in these cartoon drawings of the phase-space

distribution.

AUDIENCE: So essentially, we can [? read a ?] flux state like this?

PROFESSOR: If you have a flux state and you repeat the measurement many times, we will

measure random phase. So what happens here is-- let me put it this way. The

homodyne detection is a way how we want to measure the phase, and whenever

you want to measure the phase, you get a phase because the number you get from

a phase measurement is a phase. But if you have a flux state which has not a

specific phase but an equal probability for all phases between zero and 2 pi, then, if

you repeat a phase measurement many, many times, you will get a random result

for the phase.

AUDIENCE: I think that's what my question originally was. What measurement would you

perform for this [? pi phase? ?] Would you still do a phase measurement?
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PROFESSOR: It's your choice. If you want to do a phase measurement, that's a way to do it, and

then for flux state, you will get a random phase. But maybe for the flux state, of

course, you can say in hindsight, the flux state doesn't have a phase so maybe you

shouldn't bother measuring the phase. The special thing about the flux state that it

has exactly one photon, and so maybe you want to have a measurement which is

measuring the special character of the flux state, namely that you have sub-

Poissonian distribution of the photons.

Of course, this aspect of just having one photon gets completely lost when you have

a beam splitter and you have zillions of photons in your laser beam with all the

Poissonian fluctuations in the coherent state and you superimpose it. But this is

nothing else than complementarity. You can either measure the phase or you can

measure the photon number, and the question is, what are you interested in?

This is one aspect of coherence in a two level system, namely that we have a phase

in the two level system and the question is, how can we measure it? And the answer

is we can map it on the photon field and then perform a quantum measurement on

the photon field.

I want to continue with some other aspect of coherence in single atom. Let me just

point out one important aspect about coherence in a two level system, and this is

related to something very mundane, the precession of spin-- when it's a two level

system, it's spin 1/2-- in a magnetic field. In other words, I just want to quickly

remind you in a few minutes that for any two level system, we can always map it on

spin 1/2. I was really emphasizing this message throughout the whole course.

But for spin 1/2, if you think of spin up or down in a magnetic field, there is a very

clear visualization of the coherence. If you have a coherence of position of spin up

and down, the phase of the superposition decides whether the spin points in x or y.

So the precession of a spin in the transverse xy plane is actually the manifestation

of coherence, and it's not just the special coherence of spin 1/2 in a magnetic field

because all two level systems are isomorphic to that. You can always use it as an

intuitive visualization of what coherences are. So what I just want to point out is the
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relation to the quantum mechanical or classical precession of spin in a magnetic

field, that it is simply an effect of coherence within one atom, coherence between

two levels in an atom.

So if spin points in the x direction, it is a coherent superposition of plus z and minus

z, spin up and spin down, but this is a situation at time t equals 0. If we let time

evolve, spin up and spin down evolve with the Larmor frequency, actually effect of

1/2, but with opposite phases because one has plus the Larmor, h bar omega

Larmor over 2. The other has minus h bar omega Larmor over 2 as energy.

In other words, if you look at the relative phase, it's a beat node with the same

unsplitting between spin up and spin down. But that means now, due to this

coherent time evolution of the two amplitudes, that the spin precesses in the xy

plane. The statistical operator for the spin 1/2, we have 50-50 population in spin up

and spin down, but now, the phase here precesses as e to the minus and e to the

plus i omega lt, which means, if you use the statistical operator and find the

expectation value for the x spin. It means we take the statistical operator describing

the pure state of a two level system, we multiply with a Pauli matrix in x, and this is a

prescription to get the expectation value for sigma x, and we find it's cosine omega

lt. So the spin is precessing the x component changes cosinusoidally. That would

mean the y component changes sinusoidally.

Let me just contrast it to the case of no coherence, and this would mean off

diagonal matrix elements are 0. then if you have a statistical operator where the off

diagonal matrix elements are zero, in one minute, you can show that then any

expectation value for the x or y component of the spin vanishes. In that case, if you

have a statistical mixer between spin up and down, of course there is no phase

determined, and it is the phase of the superposition state which tells you where

between 0 and 2 pi the spin is pointing in the xy plane.

I want to come back later on when I discuss an example of coherent spectroscopy,

that if you excite coherently a superposition of spin up and spin down, you can

perform some form of coherent spectroscopy, which I want to explain first in general
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and then come back to the spin as an example. When we talk about coherent

spectroscopy, I want to just in 10 minutes or 15 minutes show you some

spectroscopic techniques which exploit the coherence between several quantum

states. I do it for a number of reasons.

One is coherent spectroscopy actually allows us to obtain information about the

level structure even if this level structure is much narrower than the Doppler width.

So it is a sub-Doppler technique to exploit coherence. And before people had

lasers, before people invented sub-Doppler laser spectroscopy, often, coherent

spectroscopy was the only way how you could obtain detailed structure of the atom.

The reason why I explain coherent spectroscopy is to just give you a little bit idea

about that you appreciate how smart people were before lasers were developed,

but also, it illustrates what coherence can do for us. It's a nice example for the

concept of coherence. When I was a graduate student, textbooks had dozens of

pages, 50 pages on coherent spectroscopy, the Hanle effect, quantum beat

measurements. It's all old fashioned because with a laser, and especially cold

atoms and the laser, we have such wonderful tools to go to the ultimate

fundamental precision of quantum measurements. But still, coherence is important.

Let me talk about one method, which is called quantum beat spectroscopy. The

selling point about quantum beat spectroscopy is that it allows the measurement of

narrow level spacings-- just think about Zeeman splitting in a magnetic field--

without any form of narrow band excitation. You can also put it like this. If you don't

have any way to selectively excite levels, but you're interested what is the level

spacing, but you cannot have a narrow band laser, have atoms which stand still and

scan and get peak, peak, peak, what you can still do is you can just excite all of the

levels at once. In other words, you hit the atom with a board laser like with a

sledgehammer, and then you see a beat node, you see some blinking, a quantum

beat between the excitation of the levels. That's the idea.

We assume we have a ground state and then we have an excited state manifold,

and in this excited state manifold, we have several levels distributed over an energy
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interval delta. Yes, we don't have a narrow band source. We may just have a classic

light source, but if we use a short pulse that the pulse duration is much smaller than

the splitting between energy levels, then we create a coherent superposition of

those levels.

So therefore, what we create at time t equals 0 is a coherent superposition of

energy eigenlevels. And the important thing is that this is at time t equals 0, but now,

when time goes on, each amplitude, each part of the wave function, evolves with its

frequency omega i, and if we would then look at, let's say, the emission spectrum as

a function of time, we will find that-- I will give you a little bit more details later-- that

yes, there is a decay approximately with the natural spontaneous emission time with

the inverse of the natural line widths. But we observe some oscillations which is the

interference term of the different terms in the wave function.

So therefore, if we would take this spectrum and perform a Fourier transform, we

will actually observe different peaks. This is frequency, and the frequency peaks are

at discrete frequencies corresponding to frequency differences between the excited

state. And ideally, the widths of these is determined by the natural line widths.

So in other words, what we have actually done is we have done a version of the

double slit experiment. We have ground state, we had our excited states, e sub i,

and our broad band source was creating a coherent excitation, and then we were

observing the light which came out. We were performing a multi-slit experiment. We

had a laser pulse and then we see photons coming out, but it is fundamentally not

observable which intermediate state was responsible for the scattering.

So therefore, we have in the Feynman sense several indistinguishable paths going

through different internal states. And therefore, we get an interference effect. Some

of what I'm saying we will retrieve later on when we talk about three level systems.

We will also have situations that sometimes we go through two possibilities for the

intermediate state, and if we have no way, even in principle, to figure out which

intermediate state was involved, we have to sum up the amplitudes, and that's when

we get a beat node.
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This technique is a Doppler free technique because, even if you take a single pulse

from a light source, you have a Doppler broadening, which is k dot v, v, the thermal

velocity, and this can be much, much broader. You will still see the quantum beats,

maybe I should say in principle, because the beat happens at the much smaller

frequency delta. Or maybe I should say that the Doppler shift is reduced by the

splitting of the excited states over the frequency of the exciting laser. Of course, if

you have your different atoms emitting at different frequencies, you have a Doppler

shift, but since you measure the difference frequency, you only get the Doppler shift

associated with the difference frequency.

Now let me come back to the previous example I had about the spin 1/2 system. If

you assume you have a spin 1/2 system, spin up and spin down, which is excited

with a laser, which is linear polarization, you would then create a superposition of up

and down which, let's say, is now a dipole moment which points in the x direction. A

dipole moment which points in the x direction will not emit light along the axis of the

dipole moment because of the dipolar emission pattern. It will only emit to the side.

But I mentioned to you that the dipole moment or the spin, which is originally in x,

will now oscillate with a Larmor frequency in the xy plane. So the picture you can

actually have of such a quantum beat and quantum superposition is like the

lighthouse. You have a searchlight at the lighthouse, and the searchlight is just

rotating at the Larmor frequency. For instance, you wouldn't see light right now, now

you don't see light, now you don't see light. It's really like a classical lighthouse

which is emitting light at the Larmor frequency.

So if you have a fluorescence detector which looks at the atoms from a certain

direction, you will pretty much see the lighthouse effect that the fluorescence of this

coherent superposition of atoms goes on and off, on and off, on and off. This is sort

of a very nice visualization how you obtain what I showed here, a beat node in your

detected signal.

Let me talk about another aspect of coherence. And of course, they are all related.

Coherence is always related to the phase, to beat nodes, to superposition. Let me
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now talk about one aspect which is related to delayed detection.

When I was a graduate student and I learned about spectroscopic techniques,

somehow I was so fascinated by techniques which could measure spectroscopically

transitions better than the natural line widths. I don't know. Maybe from what I had

read before, what I learned as an undergraduate, the natural line widths appeared

to be the natural fundamental limit. So the topic I'm teaching right now has always

had a certain fascination for me, but you will, of course, also realize that in the end,

the answer is rather simple. Once you know the answer, most answers are very

simple.

So we want to talk about delayed detection. Let's say we excite the system. You can

think about a quantum beat experiment. You have a short pulse and then your

quantum beats happen. And now the question is, normally, when you do a

measurement on a decaying system, you're always limited by the natural line

widths, by the inverse of the lifetime.

But now, maybe you want to be smart and you say, well, I start the detection, I only

detect atoms after a time t0, which is much, much larger than the natural line

widths. And the question I have is, can you obtain, with such a measurement, a

spectral resolution which is narrower than the natural line widths? Well, we can give

two possible answers.

One is yes, because you're looking at atoms which have survived for a long time, so

to speak. These atoms are longer lived. We have just selected atoms which

happened to survive for several lifetimes. But then there should some lingering

doubts.

If you have a sample which undergoes radioactive decay, and you would go to your

favorite supplier and buy uranium, which has already decayed for a billion years, it's

the same uranium which existed a billion years ago. You will not be able to perform

any measurement on your well aged uranium, which has a higher resolution than if

you had lived a billion years ago and had done your measurement with younger

uranium. So in other words, the exponential decay is self similar. It starts at any
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moment and it looks exponential no matter where you start.

I didn't bring clickers today, but with which answer would you side? Is it possible or

it's not possible? Maybe just hints of who thinks it is possible by taking advantage of

the longtime survivors? OK. Who thinks it's impossible? A few. Good.

The answer is actually depends. If you would go and just look at the longtime

survivors, you would not be able to do a more precise measurement. You need a

little bit of information from the earlier time. So in that sense, the question is a little

bit deliberately confusing, and I want to show you how the mathematics work.

It's just five minutes to show the mathematics of a Fourier transform, and the result

will be if you have information about something at t equals 0, and then you look at

the long time survivors, you in essence have a longer integration period for your

measurement, and then the Fourier transform of that measurement can be very

narrow. But if you do the dumb thing, you just go to the store and buy very well

aged uranium or very well aged atoms, and you then start your measurement, you

have no chance. You are always back to the spontaneous decay to the natural line

widths.

All I have to do is actually just a few lines of mathematics and Fourier transform. Let

us assume we have the situation we discussed earlier. We have a quantum beat

where we have a beat frequency omega 0. Just think about the searchlight, the

atoms which oscillate with a Larmor frequency, and you have some cosine omega

Larmor t factor in the intensity of the light you observe.

But now, because the atom in the excited state is decaying, everything will decay

with the natural line width. This is sort of what we observe, and the question is, if

you observe that in real time, can we then retrieve spectral information from it which

is more accurate than gamma? All I want to do is I want to discuss the Fourier

transform of this function, s of t.

Let me use dimensionless variables. We measure frequencies in units of gamma.

We use a Lorentzian, which is just 1 plus x squared. We just said we want to start
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the measurement at time t0.

So the question is, if you start later and later and later, do we get higher accuracy

because we're talking to the survivors? So let's perform the Fourier transform, and

let's use complex notation, e to the i omega t. I will measure times in units of the

inverse line widths. So we performed the Fourier transform, and by doing e to the i

omega t, I actually performed the Fourier transform for the cosine and for the sine

by using the real part and the imaginary part of the complex number. So we will

actually be able to look at the real and imaginary part.

The Fourier transform has a real and imaginary part, so let me call the real part F of

x and the imaginary part G of x. You can do the math. It's a straightforward integral.

In both cases, will we find that if you do our measurement, well, the longer we wait,

the more signal we lose. This is common to all delayed measurements. You're really

now talking to an exponentially smaller and smaller signal. Also, because of the

exponential decay, we get an envelope which is a Lorentzian.

But then, and this is the interesting part, we have cosine xT minus x sine xT. So now

we have factors which depend on capital T, and t is larger the longer we wait. It is

actually those parts with sine and cosine which determine whether we can get

resolution below the natural line widths.

What is important is-- and this should be sort of an eye opener for you-- if you

simply measure intensity, if you look at the power spectrum, you take the real part

plus imaginary part and just look at the absolute value, then, because of cosine

squared plus sine squared equals 1, all the cosine and sine part, the last part of the

expression above cancels out and you find that you have an exponential loss of

signal but your spectral distribution is always a Lorentzian. So you always have a

Lorentzian line shape completely independent of the delay time, capital T. And this

is what some of you maybe thought. If I start the measurement later and all I can do

is look at the power of the emitted light, I have no advantage. I cannot go sub-

natural.

However, if you look at the function F of x for large values of x, you find oscillations.
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So if you look at the sine or cosine Fourier transform, the real or imaginary part

separately, you find oscillations, and those oscillations, similar to Ramsey fringes,

have a central peak. The central peak is narrow and the width is now given by not

the inverse of the natural lifetime but the inverse of the delay time you wait for your

measurement.

So the fact is now we had a signal s of t which we assumed was a quantum beat

with a well defined phase, and then it was exponentially decaying. If we would now

perform a Fourier transform where we do a Fourier transform with cosine omega t

plus phi, we can get a narrow signal, but we have no idea what phi is or if, in

repetitions of the experiment, phi would be random, then this is sort of what the

math does. If phi is random, it is the same as if we simply measure the power

spectrum because we cannot distinguish between the cosine and sine Fourier

transform. So if the phase phi is random, that means you only measure what was F

plus IG before.

In other words, the situation is extremely in the end very simple. If you have

quantum beats which start with a well defined phase, and you know the phase was,

let's say, zero here, and now you have the decaying function, and now you look at

the quantum beat over there, well, in a way, you had n beats between t equals 0

and your measurement, and then your resolution goes with 1 over n, but you have

to know what the phase was at t equals 0, and then, by looking at delayed

detection, you can do spectroscopy below the natural line widths. So therefore, what

is crucial here is knowledge, or at least reproducibility, of the phase phi, and then

you can get narrow lines.

Examples for techniques where you excite the system at t equals 0 and then you

can do delayed detection of quantum beats. I mentioned earlier in the course the

Ramsey spectroscopy where you have one Ramsey zone where you prepare your

Bloch vector. Then the Bloch vector oscillates, and if you simply look at the phase

angle of the Bloch vector after a very long time, you have very high precision but

you're dealing with an exponentially small signal. Another example are heterodyne

or homodyne techniques, but you need something which is phase sensitive in order
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to obtain sub-natural line widths.

A final comment is if you want to get higher resolution with delayed detection, yes,

you can get it, but you was exponentially in signal. And what does it mean in

practice? Well, if you know your line shape, you know it's well described by a

Lorentzian, it is better to take your full signal and use then an excellent signal to

noise to find the line center and split the line. However, if there's any ambiguity,

there may be different, not fully resourced lines under the Lorentzian and you don't

know how to split the line, then it may be better to do delayed detection and clearly

see the structure of the lines with sub-natural resolution. Any questions?

This was coherence with two levels, coherent excitation, coherent observation,

some spectroscopic techniques. Now we are ready to do the next step, namely, to

talk about coherence in three level systems. If we have three levels, we could think

about it, we have terms which connect level one to two, level two to three, and level

three to one in all possible ways, but that's not what we want to assume here. The

situation where we can discuss some fundamentally new effects is when we have

two states connected through a third state.

In other words, if we have two levels, we are not allowing any transition matrix

element connecting the two. They are only connected through a third state. This is

for obvious reasons called the lambda type system. You can turn it upside down

and you have the V type system or, if the intermediate state is between the first and

the second state, you have a ladder type system.

But once you start driving it, it may not really matter. There may be a dressed atom

description where, if you drive two states coherently in the dressed atom picture,

you have degeneracy between this level and one more photon and this level. And

then in the dressed atom picture, which includes a number of photons, the two

levels have become degenerate. So therefore, it's very important for practical

applications or how to implement it in an atom what kind of system you have, but for

the description of those systems, some of the differences may simply disappear if

you formulate it in the dressed atom basis.
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Of course, there's an important practical reason. Usually the lower states are

ground states, the upper states are excited states. And here you have the

opportunity, and that's why the lambda type system is the most important one, to

have some coherent superposition mediated by the third state, and the coherent

superposition is stable because it's a coherent superposition of ground states. If any

form of coherent superposition involves an excited state, then you have short lived

states, and they are often not so useful for certain phenomena.

So if you think you know already everything about how atoms interact with light from

two level atoms, I have to tell you that's not the case because a three level system

has many new effects. One, of course, is that atoms can now interact with two

electromagnetic fields, and those two electromagnetic fields can affect each other,

and this can happen through coherent or incoherent mechanisms.

In other words, you can say it simply. If you hit an atom with light and you have a

two level system, there is no way how the atom can hide. It's always excited by the

laser. But if you have a three level system, you may have a situation where you

have destructive interference between what the two lasers can do to the atom, and

suddenly, there may be a state where the atom is in the dark where the atom can

hide from the laser beam. This is something which is fundamentally new and has no

counterpart in a two level system.

I've already pointed out that the lambda system is the most important one because

it has two ground states which can be in a long lived superposition state. What we

want to discuss as possible consequences is that in a three level system, you can

realize a lasing operation without having inversion of the population of the ground

and excited state. So if you always thought, if I want to build a laser, the first thing I

have to do is make sure I have more atoms in the excited than in the ground state,

yes, this is valid for two level system, but it is no longer valid for a three level

system.

The reason why you want to invert a two level system is you want to have

stimulated emission from the excited state which is stronger than absorption from
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the ground state. But if you take advantage of quantum coherence, you may have a

situation where two possibilities for stimulated emission add up coherently, but the

two possibilities for absorption add up destructively. And therefore, you can avoid

destruction. You have only stimulated emission, but you have not achieved that

through inversion. You have achieved that through quantum coherence, a

fundamentally new effect.

So we have lasing without inversion, we have the phenomenon I mentioned already

that atoms can hide in the dark if the two laser beams in the excitation mechanism

destructively interfere. This is called electromagnetically induced transparency.

Systems which have sharp resonances in three level systems are used for reducing

the group velocity of light, which goes under the name slowing light, or even

bringing light to a standstill, stopping light. And three level systems are also used for

quantum mechanical memories for quantum computation. Any questions? This is an

introduction.

Let me connect special effects in a three level system to something which is very

basic and you've heard about it, and this is optical pumping. If we set up a system

which has two ground states, g and f, you may just think about two hyperfine states

in your favorite atom, and then they are only coupled through an excited state, you

can now drive the system with laser fields omega 1 and omega 2.

Let me also use that example of optical pumping to introduce some notation which I

will need to describe the system with a few equations. We will use energy level

diagrams, and the energy is referred to the lowest ground state. So here, we have

an energy splitting which is by omega gf, and the excited state has a splitting of eg.

We will call the photons in one laser the photons created and annihilated with the

operator a and a dagger, and for the photons for the other laser beam, we use c or

c dagger.

Now, there is a very simple solution for this situation, a very simple equilibrium

situation, if you have only one laser beam. If you have only one laser beam, omega

1 or omega 2, it's clear what happens. If you have only one laser beam, let's say
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omega 1, it doesn't talk at all to the atoms in the state f. They are left alone.

But the atoms in the state g are excited to the excited state, and then there may be

a certain branching ratio for spontaneous emission, but let's rather call it

fluorescence, two photon scattering. So there be a branching ratio to go back to that

state or to go to the state f. If the latter happens, the atom doesn't interact with the

laser light anymore. If it goes back to the original state, the atom will try again and

again until after a while, all the atoms have been optically pumped into the state f.

And the same would happen if you have a laser, omega 2, then you would pump all

the atoms into the state g. So if you have only one laser beam, omega 1 and omega

2, then in equilibrium, the equilibrium population is 100% of the atoms are in state f

or g respectively, and this is nothing else than the phenomenon of optical pumping.

We have a very simple solution. We pump all the atoms into one quantum state if

we have only one of the laser beams. But the question is now, can we have a

similar situation when both laser beams are on? And what I mean by that is, is it

possible now to pump all the atoms into a state which does not scatter any light,

which does not react with the light, which is never excited to the excited state?

The answer is yes, and this is what we want to derive right now. Before I go into any

equation, the result is pretty clear. If you have, say, g and f and they are both

excited, if the amplitude which you put into the excited state is the same but has

opposite sign, the two amplitudes which are added in a time delta t destructively

interfere and you have not put any amplitude into the excited state. And that means,

if you have this initial superposition state where this complete destructive

interference happened, this state will be dark all the time.

But we want to assume-- also it doesn't matter-- that the two states, the two lasers

have two different frequencies. So you cannot say, this is just the two lasers have a

certain phase and then the laser field interferes and they reach a space which is

dark. We assume that the atom is sitting at the origin. Again, we're not putting in

motion effects, so it's an atom with infinite mass.

Then we shine two laser lights on it and the atom is not in the dark. It's not at a dark
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fringe of the interference of the two laser beams because if you have two laser

beams with two different frequencies, there will not be any place in space which is

dark all the time. You create maybe interference fringes, but the interference fringes

are rapidly running with a beat node, omega 1 minus omega 2. So the atom is not in

the dark, but nevertheless, it will not scatter light if it is prepared in a suitable

coherent superposition state.

We describe this situation with a dipole Hamiltonian, and we make the rotating wave

approximation. The Hamiltonian has three lines, three parts. One is we describe

each of the laser fields as a single mode. I call the frequency now omega a and

omega c, just to connect it with the operator c dagger, c.

For the atom, we use the matrix, two by two matrices, so this is the matrix if the

atom is in the ground state. Coherences are described by that. And of course,

without any interaction with the laser field, the atomic Hamiltonian is atoms are in

the ground state. the state f has zero energy. We use that as the origin of the

energy. The state g has an eigenenergy of omega gf, and the excited state e has

an eigenenergy of omega ef.

But now the important part is that we want to have the coupling. And actually, I

realized I was not saying it correctly. Omega 1 and omega 2, these are the Rabi

frequencies of the two fields, and the two fields are at frequency omega a and

omega c.

So now we have the coupling between the excited state and the ground state via

photons a and a dagger. And the coupling happens at the Rabi frequency omega 1.

And then we have the second laser field, which is at Rabi frequency omega 2. We

have the atomic raising and lowering operator, and we have the photon c and c

dagger.

That's a nice Hamiltonian. It has three lines. The important part here, which we

have explicitly assumed is that each of the lasers, a and a dagger, c and c dagger,

are only driving one transition. One field is responsible for connecting the state f to

the excited state. The other field is responsible for connecting the state g to the
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excited state.

In practice, this can be accomplished by you have maybe polarization. This is a plus

one state, this is a minus one state, and the excited state is m equals 0. Then one

laser beam is sigma plus, the other one is sigma minus, so it can be polarized and

the two laser beams can only talk to one of the ground states. Or you can have a

situation that you have a huge energy separation. Let's say you have a large

hyperfine splitting and the two lasers are separated by frequency.

I think I've set the stage, but I think I should stop here and on Wednesday, I'll show

you in the first few minutes of the class that this Hamiltonian has a simple solution,

which is a dark state, which is a superposition state of g and f. Any questions? See

you on Wednesday. A few people haven't picked up their midterm quizzes. If you

want them, I have them here.
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