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PROFESSOR: Good afternoon. We have talked in the last class about magnetic trapping. Today, I

want to finish our discussion on magnetic traps with two demonstrations of classical

forms of magnetic trapping. But I told you that magnetic trapping is a purely

classical phenomenon. The only quantum mechanical aspect is that this angle at

which the magnetic dipole is oriented with the magnetic field is quantized.

I also mentioned to you, and this was Wilks' Theorem, that the total magnetic field

can have only local minima, not maxima. And therefore, we you can do magnetic

trapping only for weak field seeking states. These are states which lower their

energy with photomagnetic fields. And as a result, since the spin is up, the magnetic

moment is anti-parallel to the magnetic field, those states can always lower their

energy by flipping the spin.

I know it's a simple demonstration, but, well, I can't bring a real magnetic trap into

the classroom. So what I have here, this is just two little ring magnets, refrigerator

magnets. And there is a tube. So I just want to demonstrate the one dimensional

form of magnetic trapping to you.

And this is our atom. It's in strong magnet, elongated, and it can be spin up or it can

be spin down. So what you're seeing is now you're seeing the two magnets. And

you're seeing our dipole, our atom, which is in a stable trapping configuration.

And you can-- am I blocking it? You can see that it's stable by-- I just move it. And

you see how it always comes back. So that's one position.

I pull it over. Here, you have a second position where our magnet is trapped. Here

is a third one. And here's a fourth one. So there are four positions where we have

one dimensional trapping. Well, this is one for one orientation.
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Now I take the magnet and flip it over. So we are changing now in the laboratory

frame. The sign of the magnetic moment. And there is actually a very nice

minimum. You see how clearly it is trapped.

There is one here in the middle. I can also just show you, it really stays put. There's

a weak restoring force. And then here's number three.

So it seems very, very rich. I've shown you seven different minima where trapping

has happened. And well, just to fill you in, if this is our magnet, these are ring

magnets, the magnetic field is about something like that. And if I plot the magnetic

field for this configuration, I find indeed that for one orientation, there are four

maxima.

So for one orientation-- just give me one second. Yeah, there are four maxima of

the magnetic field for this orientation. And therefore, there are four minima of the

trapping potential.

So maybe I should have shown it like this. There are one, two, three, four minima.

And for the opposite configuration, there are one, two, three trapping minima. But

now if you look, there are one, two, three, four, five, six ones marked in red, which

are for strong field seekers, because these are maxima at the magnetic field. And

there is only one where the magnetic field has a local minimum.

So in the last part, I have shown you the absolute value of the magnetic field. And

you realize there are one, two, three, four, five, six maxima. And this is responsible

for six trapping configurations. And the seventh one was a minimum of the magnetic

field.

So in one dimension, there is no problem. In one dimension, I can get a restoring

force for the strong and for the weak field seeker for any orientation of the magnetic

dipole. But if we want to have a three dimensional trap, we have to look at the three

dimensional stability.

And it would be only this one configuration, which can be stabilised in x and y. What
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I've shown you are symmetric fields. So all these minima and maxima only settle

points.

They trap in one dimension. But with suitable radial magnetic field, you could turn

this one here into a real three dimensional trap. But the other ones you cannot,

because this would violate Wilks' Theorem.

I find it amazing that this demonstration has seven different magnetic trapping

configurations. That's just how it turns out to be. Questions? Collin.

AUDIENCE: So if you look at the clover leaf coil, the parts of the field that sort of axial

[INAUDIBLE] provided by [INAUDIBLE], those are the inner coils?

PROFESSOR: Yeah, so if you look at a clover leaf trap, the pinch coils create such a minimum,

which provides confinement in the z direction. But then you add a field, a radially

outward quadrupole field, and that overcomes-- in this demonstration, everything is

actually symmetric.

So this is a minimum for this direction. But if you would now plot it as a function of x

and y and z, it would be a saddle point. So this configuration is trapping along z, but

anti-trapping along x and y. But if you add a quadrupole field, a linear field which

points outward with these clover leaves or the [INAUDIBLE] bars, then they would

provide confinement, which is stronger than the anti-confinement of the saddle

point.

If you look at some equations I showed you in the last class, you will actually see

that in one of the slides, I had the expression for the magnetic field, where you see

how the [INAUDIBLE] bars, the radially linear confinement overcomes the anti-

trapping feature of the settle point. Other question?

Then finally, let me give you a demonstration for the following effect. I mentioned to

you that magnetic traps become unstable when the magnetic field is very low. And I

told you, well, at very low magnetic field, the energy difference between spin up and

spin down is very small. At zero magnetic field, it becomes zero. And then, the atom

cannot adiabatically stay in its MF state, because we can violate the adiabaticity
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condition.

So let me now show you an example of purely classical trapping. And I think a

number of you now have seen the levitron toy. Actually, a few years ago when my

group was one of the first to use magnetic trapping, in every single talk I explained

how magnetic trap worked. And I even showed this demonstration live.

But in order to demonstrate it really well, I was building my own levitron. I used

machine parts. I used the motor drive. So I hope I can show you one aspect of the

levitron demonstration, which is usually not known.

So let me first give you the punchline. Magnetic trapping happens with an

orientation of the magnetic dipole which could always lower its energy by flipping

over. The reason why it doesn't flip over-- well, quantum mechanically, it

adiabatically stays in a quantum state-- but classically, if we have angular

momentum, it is gyroscopically stabilized.

The dipole cannot flip over, because it's a gyroscope. It has angular momentum.

And actually, it also has angular momentum in quantum physics. So the two

explanations sounded different when I said stays in a quantum state, is

gyroscopically stabilized. But if you think about it more deeply, they have much

more in common than my language suggests.

So I think you know how the levitron works. You spin up the magnet. And I had this

nice motor tool to spin it up. And when you have prepared the system. Your atom

has now-- atom in quotes-- angular momentum in the magnetic moment. And you

bring it to the position where the three dimensional magnetic field fulfills the stability

condition. And you can now enjoy magnetic trapping.

This is exactly what your atoms do in your magnetic trap. It is gyroscopically

stabilized magnetic levitation. The only difference is that gravity has to be

compensated. Gravity is a major player. So the stability point in the three

dimensional magnetic field configuration includes the compensation for gravity.

But I have to say, my group was also at some point trapping a Bose-Einstein
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condensate in a few hertz weak trap, where gravity was the strongest force of all.

So what you have seen is an exact demonstration of the principle for magnetic

trapping.

But now comes my question. What would you expect, what would happen to our

magnetic trap when we spin the levitron faster? Does it help or does it hurt to spin

up the levitron, to spin up the gyroscope, to higher angular velocities?

So three possibility. Nothing happens. It doesn't matter as long as it spins. The

second one, the trap becomes more stable. The third possibility, the trap becomes

unstable. Do you want to offer any opinion? Collin.

AUDIENCE: Well, we have an angular momentum, right, of the really large omega. When you

apply torque, it's going to get torque [INAUDIBLE], right. It's going to be the

prefactor of omega. So we have a giant omega, we imagine that [INAUDIBLE] small,

[INAUDIBLE] torques. No, no, no wait a second. I did this the other way. It was [?

healing. ?] Never mind.

PROFESSOR: So do we have to do the experiment? Maybe. So now I put the motor controller to

full speed. And I speed it up much faster. You can hear the sound.

I really want to do a careful experiment. So we wait until everything is quiet and has

died out. And now, we want to try if we can can do magnetic trapping. And you see

it's impossible. The system, when it reaches the point where magnetic trapping

would occur, it's unstable.

But then, well, just to prove that it is only the speed of rotation which has caused the

instability, I just wait until friction has slowed down the angular velocity. And now

again, it works perfectly.

So you see, if you rotate the gyroscope too fast, it's bad. It makes the magnetic trap

unstable. Convinced? How would you explain that?

If we have a gyro-- Collin?
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AUDIENCE: Why aren't we working in the limit where we assume that the magnetic field

generated by our magnet is sort of weak compared to the trap. So the magnet's

really modifying [INAUDIBLE].

PROFESSOR: No, we assume here-- and I can give you the analysis-- but yes. No, these are

permanent magnets. So the floating magnet is just, you can say, a probe, a test

object which is put into the permanent magnetic field of the stronger magnets of the

stationary magnet.

AUDIENCE: Get an additional torque to-- because it gets an additional force into the upper state.

So it gets an additional torque in towards the center.

PROFESSOR: It's not necessarily the additional torque. Let's put two things together, it's really

fascinating, from different principles. The first thing is magnetic trapping requires-- if

you have a magnetic trap and you have an inhomogeneous magnetic field. And of

course, you need an inhomogeneous magnetic field, the angle cosine theta

between the spinning dipole and the magnetic field should stay the same.

And this means quantum mechanically, we stay in the same quantum state. So

therefore, a magnetic trap only works because the rapidly precessing spin, when

the magnetic field always precesses around the magnetic field. And when the

magnetic field tips, the precession keeps the dipole, the magnetic moment, aligned

with the magnetic field.

Now, what happens in a gyroscope with a precession frequency when you spin the

gyroscope faster? We've seen that in your classical mechanical demonstration, if

you had the spinning gyroscope, which was only [INAUDIBLE] suspended with one

rope. And then it was precessing in the Earth magnetic field. Does this precession

frequency get faster or slower when you spin the gyroscope faster?

Pardon? When the gyroscope spins faster, what happens to the precession

frequency?

AUDIENCE: Slower.
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PROFESSOR: Slower. Because the torque per unit time adds some angular momentum. This

angular momentum adds to the existing angular momentum. But the more angular

momentum exists, the smaller is the change. And this lowers the precession.

I can give you another example. If you rotate a coin. When does the coin really

wobble very, very quickly? Just when it has slowed down and is about to fall. And

this rapid wobbling is the precession frequency.

So the lower the gyroscopic angular momentum is, angular velocity is, the faster is

the precession frequency. And fast precession is important for adiabatic following.

So in other words, what you saw here in this demonstration was a classical analogy

for Majorana Flops.

Now, if we would translate from our classical demonstration to a real atom, what

feature, what parameter characterizing the atom, are we changing? So when I spin

the magnet faster, what would that correspond to in atomic properties?

AUDIENCE: Higher mu.

PROFESSOR: Higher mu? I'm not changing the permanent magnetic moment of the magnet by

spinning it faster-- higher angular momentum. But in this the equation, what

corresponds to higher angular momentum?

AUDIENCE: [INAUDIBLE] omega alpha, the precession frequency around the static beam field?

PROFESSOR: Yes. But what I mean-- so the Larmor frequency, this is a precision frequency,

becomes lower. So what becomes lower in the atomic property?

AUDIENCE: Sort of the external magnetic--

PROFESSOR: Pardon?

AUDIENCE: h bar?

PROFESSOR: No, let's not mess around with h bar here. h bar is given by nature. We can't change

that.
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But, I mean, OK. Multiple choice. B, no, no, no, no. It's g. Yeah, it's g. So what you

have seen is, you've seen a demonstration where in front of your eyes, I've

changed the atomic g factor. And now you sort of see, let me put it together.

What happens is, the mechanical magnet has a given magnetic moment. And if I

put much more angular momentum into it, it can sort of-- it has, quantum

mechanically, speaking more intermediate states. Because it can change its angular

momentum in steps of one.

So if I spin it faster, it has many more intermediate states. And each energy

separation has become smaller. And smaller energy separation means I'm getting

closer to degeneracy where adiabaticity breaks down.

Anyway, think about it. The analogy is really deep. Questions? OK.

So that's all I wanted to tell you about magnetic trapping. Collin.

AUDIENCE: When you increase the angular momentum, you don't necessarily change the

spacing between the levels, though.

PROFESSOR: No. The energy levels is when the magnet is aligned, it has an energy absolute

value of mu times b. Here, it has minus absolute value of mu times b. And mu is

simply the magnetic moment of the permanent magnet. So I go from here to there.

And the number of energy levels in between is the total angular momentum divided

by h bar.

So when I give it more angular momentum, in one energy level, in one transition,

there is less energy which will be released. And it is actually, you can say, the big

note between energy levels, or the difference between energy levels, which is a

Larmor frequency.

So therefore, the precession, quantum mechanically, is the energy difference

between adjacent energy levels. And if you give it more angular momentum, this

energy difference becomes smaller. And this low precession frequency, this small

energy difference, is bad for adiabaticity. Yes.
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AUDIENCE: Does that have much of an effect on f equals 1 and f equals 2? Do you get more

[INAUDIBLE] if f equals 2?

PROFESSOR: Yes. In f equals 2, we have twice the magnetic movement than in f equals 1. But in f

equals 2, we have five levels. In f equals 1, we have three levels. So the--

AUDIENCE: Is it that significant of a difference?

PROFESSOR: So I think it just cancels out. The g factor-- I showed you the formula. What matters

really is the g factor. And the g factor on f equals 2 is 1/2. In f equals minus 1, it's

minus 1/2.

What happens is the magnetic moment in f equals 2 is larger, because everything is

stretched. All angular momenta are aligned. But the multiplicity-- you have five

levels versus three levels-- and the two effects just cancel. Other questions? Yes.

AUDIENCE: What breaks the system when the magnet spinning gets slower and slower. Now we

know why it destabilizes when you spin it too fast. But if you don't spin it at all, it also

floats, right?

PROFESSOR: OK, what happens is yes. If I stop spinning it, it will no longer work. So what we have

is we have a hierarchy of frequencies. The fastest frequency has to be the spinning

frequency. Then we have the trapping frequency. And the precession frequency is

one over the spinning frequency.

So you want that the precession frequency is between spinning and one over

spinning, because this is the precession. And if you would take the spinning to lower

and lower values, you would violate that hierarchy. Yes.

OK, evaporative cooling. Evaporative cooling is a powerful cooling scheme to reach

nanokelvin. Actually, I forgot to update this slide. I wanted to say, this is the only

technique so far to reach quantum degeneracy for bosons and fermions.

Very recently, people have demonstrated laser cooling of atomic strontium to

quantum degeneracy. But if you read the paper, it was laser cooling aided not by
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evaporative cooling, but by collisional distribution of atoms. It's likely evaporation

where you evaporate into-- and you keep-- read the paper. It's--

[LAUGHTER]

The scheme only worked because collisions-- how to say-- you cooled one region

and another region was cooled by collisions. And this brings you pretty much back

to further [INAUDIBLE] evaporation. Anyway, what I want to say is there is a small

footnote. The field is evolving.

You can find now paper's laser cooling to be easy. But if you read the paper

carefully, or if you talk to me, I will tell you that there were still collisions necessary,

the same kind of collisions which drive the reparative cooling.

But before we go into an expert discussion about variants of evaporate cooling, I

should first tell you what evaporative cooling is. But somebody raised his hand.

AUDIENCE: Oh, no I just [INAUDIBLE].

AUDIENCE: You wrote the paper on [INAUDIBLE], for example, that if your quantum degeneracy

[INAUDIBLE]. And that would be just purely laser cooling, right?

PROFESSOR: Sub-recoil cooling has not-- any form of laser cooling to sub-recoil temperatures

was not compatible with high atomic densities. It only worked at such low densities

that they stayed far away from quantum degeneracy. So nanokelvin, yes.

Temperature in the nanokelvin range his been reached by laser cooling, but not at

sufficiently high densities.

The densities, high density, causes collisions. Those collisions are screwing up laser

cooling that it doesn't work anymore. And the only technique which can reach

nanokelvin temperatures at sufficiently high density is evaporative cooling. And that

applies to strontium. Strontium was laser cooled at low density, and then the low

temperature was collisionally transferred to high density region.

So you can say, in a way, it's an oddity of nature that we are now using quantum
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gases to reveal new features of quantum physics using ultra-cold atoms. But the

cooling techniques which gets us into the quantum degenerate regime is pretty

much classical.

So this is a cartoon picture how you could think evaporative cooling works. You

have a thermal distribution. You remove the high energy tail of the thermal

distribution.

And then, you allow the distribution to relax. And it will relax to a Boltzmann

distribution, which is a little bit shifted towards the cold, or the low energy, side

compared to the original dash distribution. And if you do it again and again and

again, you wind up with a distribution of atoms which is colder and colder, because

every time you axe away the high energy tail, you remove atoms which have, on

average, more than the average energy.

And therefore, the average energy per atom drops and drops and drops. Of course,

the atom number also drops rapidly. And I was only able to draw it in this way

because I've been on-- I think I-- actually, did I. I forget what the normalization here

is in the plot.

AUDIENCE: What is n?

PROFESSOR: n is a number of steps. So after 25 removals of the high energy tail, I'm here. And

after 50, I have a very, very narrow distribution. So it tells you already something

very powerful, which people were not fully aware before evaporative cooling of

atoms was invented, that it doesn't take so long. It doesn't take so many steps.

It takes 50 rethermalization steps. And each rethermalization takes two or three

elastic collisions. So what this already demonstrates, if you can keep your atoms

and evaporatively cool by removing the high energy atom, after a time which

corresponds to a few hundred elastic collision times, just a few hundred collisions,

you can go way down in temperature.

So if you have this, I actually used this cartoon picture to write one of the-- to

develop a mathematical model for evaporative cooling, which is still the simplest
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model for evaporative cooling which you can find in the literature. So in any event,

but if you think in that way, every time you remove a few percent of the atoms, you

realize that you should think in a logarithmic way. Every time you lose a certain

percentage of your atoms, you decrease the temperature by a certain percentage.

So in the end, if you think either in discrete steps or continuously as a function of

time, things should happen exponentially.

So if you want to characterize what happens into this system, we should correlate

the percentage of temperature change to the percentage of the change in number.

And here we have a coefficient. And this coefficient would give us an exponential--

would give us the power law, how temperature and number are related. Or

mathematically alpha, which characterizes how much cooling do you get for which

loss in the atom number is the logarithmic derivative of number with temperature.

All other quantities also scale as power loss of the number. Let me just assume we

are in a potential. We have T dimensions.

So if you have an harmonic oscillator, it's r square. If you have a linear trap, it's r to

the one. And for reasons for simplicity, I took d, the number of dimensions, out. So

you choose delta to get the 1d, 2d, or whatever to get a harmonic oscillator or linear

potential.

OK, Because of equal partition, the temperature, which is a measure for kinetic

energy, is equal to the potential energy. And the potential energy is r to the power d

over delta. So therefore, the size of the atoms in the trap scales with temperature

with the power law. But if the temperature scales with the power law over the

number, then the volume of the atoms, the temperature, everything scales with the

number of atoms to some exponent. So everything is sort of exponential according

to power laws.

So I mentioned already, the volume and what I've shown here is just the three

parameters which determine-- or the two parameters-- which determine all

exponential. The volume goes with the product of delta alpha. The density goes with

something.
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The phase space density is density over temperature to the 3/2. The collision rate is

n sigma v. So everything scales with n to the alpha. And all the coefficients are

given here.

So the question is, what is alpha? So it seems delta is our trapping potential. Once

we know alpha, we have a clear prediction what evaporative cooling can do for us.

Well, alpha was, remember, it told us how much we lower temperature or energy

when we lose a number of atoms. So therefore, all we have to figure out is, when

we evaporate an atom, how much energy does it take with it? And therefore, alpha

will be determined by some people call it the knife edge.

If you truncate the trap at eta kt-- I showed you a cartoon where I used the x to

chop off the tail of the Maxwell-Boltzmann distribution at 4kt. So eta would have

been 4. So this is what we control experimentally. At what energy do we allow atoms

to leak out of the trap.

All right. So if you set a threshold of, let's say, 4kt, 4kt is the minimum energy for

atoms to leak out. But some will be a little bit faster. In other words, they are not

creeping over the edge. They are jumping, they are zipping over the edge.

But because everything is thermal, this extra energy is on the order of kt, or 1/2 kt.

And in the first analysis, we can neglect it. So in other words, we can say that each

atom, when it escapes, takes away the energy eta kt. And eta is the famous eta

parameter, which we determine experimentally when we evaporate. Any questions

so far?

Right now, I've pretty much gone through definitions. And now, I simply look at

energy conservation. So now let's look at what is the change of energy during

evaporation.

Well, for n atoms, this is the kinetic energy. And the extra potential energy for

harmonic oscillator, it would be the same. Equal partition for another power law

potential that we have to introduce as delta parameter, which defines the power law
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of the trapping potential.

So that means the following, that originally, this describes the number of the total

energy. After an evaporation step, delta N is negative. I've lost some atoms and

delta T is negative. I am now at a lower temperature and a lower atom number. And

the difference is simply the energy taken away by the number of atoms TN which

have evaporated.

So with that, by just rewriting that, I get a result for the alpha coefficient. The alpha

coefficient, which tells us what is the percentage in temperature which-- how many

percent is the temperature lowered when I lose a certain percentage of the number

of atoms. Actually, 1% drop of the number of atoms gives alpha percent in change

in temperature. And this is the alpha coefficient.

So I have an analytic expression for that. And sure, you realize if you put your cut

eta not at high energy, if you cut at lower energy, than your alpha coefficient can

even turn negative. Because then, the atoms which evaporate do not have more

than the average energy. But actually, then the model breaks down.

OK. So alpha characterizes how much more than the average energy is removed by

escaping atoms. So [INAUDIBLE] are very simple once we know what is the

threshold of the trap, eta kt. At what energy do we leak out atoms?

We have a complete description what is the energy, the phase space density, and

such and such after we've lost a number of atoms. But you realize, at least for all of

you who do the experiment, something is missing here that sounds almost too ideal.

We just evaporate.

And we can freely peek what is the energy, or what is the energy threshold and

such. The experiment is more constrained. And we have to work harder to get into

this good regime of evaporation.

But let me introduce the experimental constraint which is very important by asking

the question how efficient can evaporative cooling be? So based on the idealistic

model, which I've presented to you so far, what is the highest efficiency of
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evaporation you can imagine? Collin.

AUDIENCE: I guess in principle, you could remove just one atom. Then you'd save [INAUDIBLE].

PROFESSOR: Yes. You remove one atom. You wait until you have one atom, which has pretty

much all the energy of the system. One atom evaporates and your whole system is

as cold as you want to have it. Of course, you are all laughing because this will take

much longer than the dwell time of a graduate student at MIT. In other words, what

you realize, time is a premium.

And it's not just the dwell time of a graduate student. It's not your patience. What

happens is in a real experiment, there are losses. There is some form of technical

heating.

Since you don't have a perfect vacuum, residual gas coalitions cause losses. And its

clear you have a time budget which is set by losses. And either you evaporate in

this time budget, or you've lost your atoms for other reasons.

So that's now what we want to bring in. We can't make a realistic model of

evaporative cooling without putting in the constraint of time. And the time constraint

is usually determined by losses, by unavoidable atom losses. So now we want to

understand what is the speed of evaporation.

So we assume. We truncate. We remove an amount dT dN of atoms above this

threshold. And then the question is, how fast can we do it again? How long does it

take for collisions to replace the tail of the Maxwell-Boltzmann distribution? But now,

you can make an analytic model. I was very pleased when I saw that it is so easy to

actually get a precise analytic model of that.

If either in the asymptotic limit that eta is very high, the number of collisions, there is

a certain number of collisions which replenish the tail. And you want to know how

fast does it happen. But now you can use detail balance. In an equilibrium situation,

those atoms will collide live with the bulk of the distribution. And because they are in

a highly improbable state, most of the outcomes of the collision will put those

energetic atoms back into the bulk of the Maxwell-Boltzmann distribution.
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So therefore, the number of particles which arrive in this tail in equilibrium is

identical to the number of particles which will leave this tail. And so all we have to do

is we have to calculate how many such collisions happen. This is an expression for

the fraction of atoms, with the exponential Boltzmann factor, which you can find in

this tail.

And those atoms collide with a velocity, which is not the thermal velocity. The

velocity is larger by square root eta, because those are fast. So by simply

multiplying the fraction of the atoms with the collision rate, we find how many atoms

per unit time are removed from this tail.

And in detail balance, it means the same number of atoms is replenished into the

tail. So if you now switch to a continuous model of evaporation, where we constantly

evaporate the atoms which are produced through elastic collisions with an energy

larger than eta kt, then this here is our rate of evaporation.

Since we want to think in terms of time constant, this rate of evaporation is

described by a time constant for evaporation. And this time constant is now

expressed here by our experimental control parameter eta. Nancy.

AUDIENCE: So when we are saying that the collisions are putting atoms back into the lower

velocity states, are we saying that the collisions are more defined than Maxwell-

Boltzmann distribution? So when you let the system [INAUDIBLE], it automatically

goes into a new Maxwell-Boltzmann distribution, and that's what determines the tail.

But then we are saying that the collisions are putting the atoms on the table back

into the lower velocities. So the collisions are not [INAUDIBLE] Maxwell-Boltzmann

distribution?

PROFESSOR: No. We assume here that the truncation is only weakly perturbing the Maxwell-

Boltzmann distribution. And at least the easiest way to figure out how many atoms

are produced per unit time, if atoms in this truncated Maxwell-Boltzmann distribution

collide, they produce, with a certain time constant, atoms which will populate the tail.
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And I can estimate what is this number of atoms which are per unit time fed into the

tail by assuming I do not have a truncated Boltzmann distribution. I have a full

Boltzmann distribution. And I simply calculate what is the total elastic collision rate of

the atoms in this tail.

So in other words, I want to know how many atoms are fed into the tail. I get this

number of collisions by saying in detail balance, this number of collisions is the

same as the number of collisions in the full Boltzmann distribution which goes

backward.

And with that argument, I can immediately write down an expression for what is the

collision rate which produces high energy atoms. Think about it. It's subtle, but it's

fairly straightforward.

I make the assumption here that eta is sufficiently large, that I can use properties of

the equilibrium Maxwell-Boltzmann distribution to estimate those eight constants.

And actually, when I found the analytic expression, I could compare to theory, which

was much more complicated and used truncated Boltzmann distribution. And in the

asymptotic limit of large eta, I was in full agreement with the other results.

So yes, we have an expression now for the time constant of evaporation, how fast

evaporation happens because of elastic collisions which populate the high energy

tail. But usually, when you have a time constant, you want to express it by another

physical time. And the physical time which characterizes a gas is the rate of elastic

collisions per atom in a gas.

So therefore, I want to express the rate for evaporation. The rate at which atoms

are produced in the high energy tail is a ratio lambda with the time between elastic

collisions. And so we realize, of course, that the atoms which have enough energy

to evaporate are not produced in every elastic collisions. Actually, there is an

exponential factor e to the eta, because it's only a small part of those elastic

collisions which happen which produces an high energy atom which can escape.

OK, so with that, we know how many atoms we can lose by evaporation. And this is
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our expression. But now we have a complete pretty realistic but wonderful toy model

to discuss all aspects of evaporative cooling. We have our control parameter eta,

which sets the threshold at which atoms can evaporate. And this factor eta

determines the two relevant parameters-- alpha, which is the efficiency of

evaporation, and lambda, which is the speed of evaporation.

If we set eta very high, following Collin's suggestion, we can put it so high that one

lost atom, one evaporated atom, can cool all the other atoms to very low

temperature. But we know that this would take too much time.

So in other words, we have a compromise. If you set eta very high, each atom

which evaporates provides a lot of cooling power. But high eta means we have

exponential slow down in the evaporation rate.

And we have to wait longer and longer, or we never get into evaporation because

inelastic collisions and losses has taken its effect. So therefore, it seems clear that

this interplay between efficiency and speed is asking for compromise. And this is

what we have to realize in the experimental realization.

OK, there is one addition we have to make to the model. And this is the following.

We have to introduce losses, losses which do not come from evaporation. It can be

losses due to background gas collisions, or losses due to inelastic collisions. So let

me just show you how I introduce that.

I mean, I told you that everything is the logarithmic derivative. The logarithmic

change of any quantity goes with the logarithmic change in the atom number times

the coefficient. And for reasons which become clear in a moment, I'm now not

looking at the temperature, or the density, or the phase space density.

I'm really interested in the collision rate, because the collisions rate is what drives

evaporative cooling. As long as we have collisions, the cooling can go on. So I want

to focus now on how does the collision rate change during evaporation. And during

evaporation, what we are changing is the number of atoms, because we

evaporated.
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So by just putting everything we have said together, I have this expression. I

assume that the number of atoms changes as a function of time with the rate at

which high energy atoms are produced. The time constant for this was lambda, the

ratio between the evaporation time and the elastic collision time times the elastic

collision time.

So this is just re-writing what we have discussed so far. But now I introduce that

there is another loss rate due to inelastic collision, technical problems and such,

which has a time constant of tau loss. And if I now do introduce the famous ratio of

good to bad collisions, good collisions are elastic collisions which drive evaporation.

Bad collisions are collisions where atoms are just lost due to technical reasons and

inelastic collisions. So if I define this ratio of good to bad collisions, I have now this

equation here which tells me how the collision rate changes with time. Just

wondering, is a dT missing here or not?

Yes. So there should be a dT. So this tells me how the relative or how the collision

rate changes with the function of time.

But now remember, since this is not the derivative of the collision rate, it's the

derivative of the collision rate over the collision rate. It's a logarithmic derivative.

What we are talking here about it, please add dT to it, we're talking about is the

collision rate exponentially growing when this coefficient is positive.

Or is it exponentially decaying when this coefficient is negative? So you realize that

we obtain a threshold condition when this coefficient is larger or smaller than zero.

And this is called the threshold for runaway evaporation.

So let me just summarize the physics of power loss. The physics of exponential

increase and decrease actually means that the experimental situation is often

talking about a threshold. If you're above threshold and you get evaporative cooling

going, you have a positive exponent.

And it will go faster, and faster, and faster. If this exponent is negative, you have

slowed down evaporation, you can evaporate a little bit. But it will pretty much come
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to a stand still.

So this is why quite often, the experimental realization of evaporative cooling

requires to put enough atoms from the laser cooling stage at sufficiently low

temperature into a magnetic trap that you fulfill the threshold condition for runaway

evaporation. Any questions about that?

So in other words, what we have found out, we have found here an expression for

the threshold of runaway evaporation. And it tells us that we need a minimum ratio

of good to bad collisions. We may need 100 elastic collision until we have one

inelastic collision. And then our ratio is 100. And we will see in a minute if this ratio is

100, if then we can make right hand side in such a way that we run away

evaporation.

OK, so the left hand side is the ratio of good to bad collisions is maybe determined

how good our vacuum is. What determines the right hand side? Well, we talked

about it. Delta is our trapping potential, linear or quadratic. Alpha and lambda

depend on the threshold eta. How aggressive are we in setting a threshold in

energy for the evaporating atoms?

And what I'm showing you here is the condition. I'm varying the threshold eta. And

now I'm figuring out what is the-- if I vary the ratio eta, I call this expression R min.

And my ratio of good to bad collision has to be better than that.

So if you just look at the solid curve for parabolic trap, this shows you that you have

to pick your parameter eta between five and seven. If you pick eta too fast,

evaporation is too slow. And you need a much better ratio of good to bad collisions.

In other words, you need a better vacuum, for instance. But if you put eta too low,

you're not cooling enough, because you're cutting too deep into the distribution.

You also realize that if you take a linear power law, like a quadrupole trap, you get

the dashed line. And the dashed line has a much lower ratio, has a much lower

value of R min. In other words, if your vacuum is not good enough and you have

losses, in a linear trap, you can still overcome it by picking your eta in this regime,
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whereas for a parabolic trap, you need at least two or three times better vacuum to

get into the runaway regime.

Anyway, this is how you can look at those equations and figure out what is needed

to get into evaporative cooling. Collin.

AUDIENCE: Do you need to be in the runway regime to get PEC?

PROFESSOR: Not necessarily. Some early experiments have done, I think, the first experiment of

Eric Cornell, I think they never saw this speed up. They had sort of constant

evaporation. Maybe the cooling rate was even slightly going down.

So you don't necessarily need the exponential speedup. But you have to be in a

regime where at least, if you're not gaining speed, you're not losing too much

speed. But, yeah. I mean, you can just take the equations and analyze them and

figure out if you're in a favorable regime.

And ultimately, it's fairly easy to integrate those equations as a function of time and

have completely realistic models. But what I presented to you here is a simple

analytic model. And I used the criterion for runaway evaporation to discuss how do

you have to pick your truncation parameter, and what happens if you have a

different trapping potential.

So based on those models, you will find out that if you truncated an eta parameter

of six, every truncation of the Maxwell-Boltzmann distribution means about 1% loss

in the atom number. And after 600 collisions, after 600 elastic collision times, you

have lowered the atom number by 100. But your phase space density has

increased by six orders of magnitude.

And that means if you have two orders of magnitude in the number and get six

orders of magnitude in the phase space density, then your gamma factor, which I

haven't really defined it here, but it's the factor which tells you how the phase space

density increase. Every order of magnitude in the number boosts the phase space

density by three orders of magnitude. And that's regarded as very favorable.
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So in other words, we've talked a lot about laser cooling. In laser cooling, the

standard laser cooling schemes, you're typically six orders of magnitude away form

quantum degeneracy. And this tells you how evaporative cooling can get you there.

You should expect to lose approximately a number of 100 in the number of atoms.

And that's what it takes you to go from laser cooling to quantum degeneracy.

And you can estimate what your time is by asking what is the elastic collision rate

right after laser cooling. If your elastic collision rate is two seconds, and you take

600 collisions to get to PEC, you know that it would take you 20 minutes. And you

better work on a vacuum which has 20 minutes lifetime.

Or alternatively, you improve your laser cooling. Or you do some adiabatic

compression in your magnetic trap to make sure that your elastic collision time is

faster, that you can afford 600 collisions within the lifetime given by other

parameters. Any questions?

OK, so evaporative cooling happens in the everyday world. If you have water and

you blow at the water, the water evaporates. And by evaporation, the water gets

colder. So the water gets colder.

And it has, of course, this process has a lot of common to the evaporative cooling of

atoms in an atom trap. But I want to ask you now why is evaporative cooling more

dramatic with atoms? We can get the atoms really cold. But I don't think you've ever

seen that you can blow at water and the water freezes.

So what is the difference? What is different in evaporation how you encounter it in

every day life, and evaporation in the way how I just described it, how we apply it to

atoms?

AUDIENCE: Your control of eta. Well, in atoms we can really control eta. But by blowing on it, it's

just one level we evaporate.

PROFESSOR: That's very close. We can pick our eta. But even more so, what is constant? Or

what is the parameter which describes evaporation in water?
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AUDIENCE: Surface tension.

PROFESSOR: Pardon?

AUDIENCE: The surface tension?

PROFESSOR: Some surface tension. But the surface tension always turns into a work function. It

tells us if we have water, what is the energy, the work function, for a water molecule

to escape?

And this work function, it's an energy, would correspond to eta kt. If the water

evaporates, well, the work function stays the same sort. It's sort of electron,

whatever fraction of an electron volt or whatever it is. But the temperature gets

lower.

And therefore, the number of molecules which, water molecules, which can

evaporate, becomes exponentially smaller. I mean, I've sort of lured you into

thinking that keeping eta constant is the most natural thing in the world. Yes, it's the

most natural world for us who want to-- efficient evaporation of atoms.

But for normal substances, it's the work function which is constant. So therefore, as

the system cools, your eta becomes larger and larger. And everything turns into a

standstill. So we are actively tuning the work function of our system to sustain a high

rate of evaporation.

How do we define eta? How do we select the energy threshold for evaporation?

Well, for many, many years, Bose-Einstein condensation was mainly done in

magnetic traps. And there were two methods.

One is just lower the magnetic fields. But lowering the magnetic fields is pretty bad,

because it weakens the magnetic trap. And if you weaken the trap, you lower the

density. And therefore, just because of that, the elastic collision rate slows down.

So what turned out to be by far the superior choice is to remove atoms with our F

induced evaporation. So if you have a magnetic trap, you can tune in our F spin flip

transition to a certain frequency. But the frequency depends on magnetic field. The
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magnetic field in a trap depends on position.

So what you're doing is, you're selecting with your RF frequency a certain point in

space where the atoms can leave the trap and are transferred by a spin flip RF

transition to an anti-trap state, and are then rejected from the trap.

I mean, this is very flexible. You can change the depths of your magnetic trap by

just using an RF synthesizer. And you can change the trap depths. You can lower

the trap depths without weakening the confinement potential.

I don't have time to go into details, but what I'm showing here is that there is two

regimes when you have this magnetic trap. Red is spin up, blue is spin down. And

this is your RF transition.

There is a regime where you have strong RF, you should now use dressed energy

levels. We've discussed dressed energy levels in the optical domain. These are now

dressed energy levels in the RF domain. And there's a wonderful chapter about it in

atom photon interaction.

So it really means in the dressed energy levels become something like this. So you

have a potential which looks like an inverted W. And you really realize this potential.

But when the RF is weak, you have a certain probability when the atoms go back

and forth through the transition region that sometimes they will fall down to the

lower state. And this looks more like this. The diabatic picture looks more like that

you have a little leak and atoms are trickling down to the non-confining state.

Anyway, there are two regimes. And the experiment is usually somewhere in

between. It is not necessary to go to the fully adiabatic. It doesn't pay off to go to the

fully adiabatic limit.

So this is how RF evaporation is implemented. But I should say in these days, a lot

of evaporation is now done in optical traps. And in optical traps, the method of

choice is you just ramp down the optical trapping potential.
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Now, when you ramp down the optical trapping potential, addressing Collin's

question, you usually do not go into the runaway regime. Because I haven't included

that my model assumed we have a constant trap. But if you now add to the model

that you are continuously opening up, weakening the trap, you have another effect

which makes the exponent for runaway evaporation more and more negative. And I

think ultimately, you don't get any runaway evaporation anymore.

On the other hand, optical traps are often more tightly confining than magnetic

traps. And you have sufficiently high density to begin with. So therefore, you can

tolerate a slow down of evaporation and still reach the destination.

But anyway, I'm now getting more and more into technical aspects. I think I've given

you the concepts. But let me just flash you one picture.

This of course, assumes an idealized model where we have only two levels, spin up

and spin down. You all know that atoms have hyperfine structure. Sodium or barium

has n equals 2.

And if you draw now the stress levels for five hyperfine levels in RF transition, it

looks fairly complicated. But the result is fairly beautiful. When an atom in F equals 2

reaches this point, and in the dressed atom picture, the point of evaporation, the

point where the atom is in resonance with the RF is the point where this potential

bends down.

The atom is adiabatically transferred in a dressed state from MF plus 2 to MF minus

2. So when you evaporate at this point, without maybe you noticing it, you actually

do a four photon transition in the dressed atom picture. Again, it's an example

where when we teach about the schemes, we can completely neglect about

hyperfine structure. And it's just wonderful to see that the actual implementation

works as well for complicated atoms then it does for our idealized two level atom.

Final remark. What is the cooling limit for evaporative cooling? When we talked

about laser cooling, I derived for you the Doppler limit. And we talked about even

improved cooling limits when we discussed sub-Doppler and sub-recoil cooling.
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So what is the cooling limit for evaporative cooling? Well, the answer is there is no

fundamental limit. There is no h bar or quantized limit there. There is a practical

limit, which usually depends on residual heating, on inelastic collisions, and all that.

But we have reached an evaporative cooling temperatures as low as 400 picokelvin.

And the limit was not set by anything fundamental. It was more set by our patience.

The lower the temperature, the slower the process becomes. And also, by the

sensitivity to technical noise and technical perturbations.

Of course, just a final comment which is a segue to what we hopefully do on Friday.

For evaporative cooling, I've always assumed that the energy in the trap is

continuous. In other words, if you have an harmonic oscillator trapping potential, I've

neglected the discrete level structure.

And this is an excellent approximation, because many, many atom traps have

dressed frequencies of a few hertz or kilohertz. And at very low temperature, even

at nanokelvin temperatures, you populate many levels.

When it comes to the discrete nature of trapping levels, we should use a quantum

description of the motion of atoms in the trap. And this is the regime of sideband

cooling. Sideband cooling is much more important for ions, charged particles, and

for neutral atoms. So therefore, we will discuss sideband cooling on Friday when we

discuss ion traps.

Any questions about evaporative cooling?

AUDIENCE: So may be technical, but once you get to the temperatures of picokelvins, how do

you maintain-- do you keep cooling to maintain that temperature?

PROFESSOR: Yeah, usually when we reach very low temperature, there is some form of technical

heating. And we've often seen when we prepare cloud at nanokelvin temperature,

we can only keep it when we allow a little bit of building evaporation.

We've sometimes seen that when we just keep the atoms in an atom trap, they just

slowly heat up. But if you keep on evaporating them at a very slow rate, we can
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maintain low temperatures for much longer. Other questions? OK.

So already pretty late. We just have 10 or 15 minutes left. I was hoping that I could

already start earlier today to talk about Bose gasses. Today, I was hoping to talk

mainly about Bose gasses, on Wednesday on Fermi gasses, on Friday on ion traps.

We are sort of half an hour behind schedule, and I have to figure out how I make up

for it. But let me just start now with Bose gasses. I've taught about this subject

several times at summer schools. And what I give you here is a compressed version

on it.

I will not talk too much about the ideal Bose gas, because most of you have seen

that in statistical mechanics. And I will also omit superfluid hydrodynamics, because

well, it's interesting, but it's more special than the other topics.

So what I want to cover here is to give you the main ingredients for the description

of weekly interacting homogeneous and inhomogeneous Bose gases. And then as a

second part, talk about the superfluid Mott-insulator transition. But well, for those of

you who are not working with ultra-cold Bose gasses, maybe some of it sounds like

jargon to you.

But there is one sort of overarching concept, which I want to emphasize in the

theoretical description. And this is some form of mean field approximation. When we

go through the weakly interacting Bose gas, then we go through superfluid Fermi

gasses, and we discuss the superfluid Mott-insulator transition.

One theme will be if you have a product of four operators, and that's what you get

when you have interacting atoms, you cannot solve anything. And you need a

method to go from the product of four operators to the product of two operators.

And then you solve a quadratic equation.

And the step to go from four to two is called a mean field approximation. And I want

to show you three kinds of mean field approximation, for the one you have often

seen for the weakly interacting Bose-Einstein condensate. But then I want to show

you mean field approximation for fermions, where it is a pairing field which is a
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mean field, not your usual mean field energy. And then I want to talk about before

that even, I want to talk about the superfluid Mott-insulator transition, where we do a

very different mean field approximation.

So maybe you'll realize a little bit by repeating that scheme how theory is done and

how you can deal with simple Hamiltonians, but your can't solve them because they

contain products of four operators. So there is sort of a [INAUDIBLE] through those

three chapters and sort of showing you how you can do interesting many body

physics by doing the right approximation.

It also teaches you how many body physics is done. You have an Hamiltonian which

you can't solve. And you have to guess the solution and put half of it in an

approximation. And once you've done the right approximation, the rest becomes

[INAUDIBLE]. So with that spirit, I want to go with you through the Bogoliubov

approximation for weakly interacting Bose gas.

I don't think I have to say too much about the ideal Bose-Einstein condensate,

because it's dealt in pretty much all undergraduate or graduate text books. There

are just two things to remember in terms of a system description. First, whether

Bose-Einstein condensation occurs or not depends on the density of states.

And that depends on dimension and confinement. So the fact that you are in a trap,

it changes the density of states. And it changes the criterion for Bose-Einstein

condensation.

But then in terms of a system description, if you want to describe your Bose gas and

its properties, there are aspects of Bose-Einstein condensation which are pretty

close to the ideal gas, and others which require many body physics.

What is always close to the ideal gas is the transition temperature and the

condensate fraction, because what happens is in almost all experiments, when you

reach Bose-Einstein condensation, your gas is to a good approximation non-

interacting. Because kt, the transition temperature, is much larger than the

interaction energy in the gas.
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So before condensation, or at the onset of condensation, your gas is like an ideal

gas. And you will only find a few percent corrections to the formula for the ideal gas.

So therefore, if you want to know at what temperature do you reach the transition

point, or if you're below the transition point, if you're 50% below the transition

temperature, what is your condensate fraction, you can simply look up the original

formula by Einstein. And it gives you a reasonably accurate answer.

However, for the condensed gas, for the fraction of atoms which are both

condensed, those are atoms in one quantum state. For them, there is no other

scale than the energy between the atoms. So therefore, for the uncondensed gas,

you can get away with an ideal gas approximation. For the condensate itself, we

have to put in the many body physics of the interaction.

Well, this slide shows here shadow images of expanding Bose-Einstein

condensates. We do evaporative cooling in a magnetic trap. You see the shadow

picture of the thermal cloud. And you see the onset of Bose-Einstein condensation

as the sudden appearance of, it looks like, a pit in a cherry.

There is a cool down more confined distribution of atoms in the Bose condensed

state. I think it should play again. So this gas is pretty much described by an ideal

gas where you can put in the g2 function, the onset of quantum degeneracy.

But it looks almost like an ideal gas, whereas in an ideal gas, the Bose-Einstein

condensate should be in the lowest energy state of the trap. And I will show you in

the next few minutes on Wednesday that we are far away from that. So interactions

are negligible for the normal component, for the thermal cloud, but are very

important for the Bose condensed gas.

So when you take cross sections through this cloud, or 2-D pictures, you see how

the broad thermal distribution turns into a Bose-Einstein condensate. And if you look

at such a profile, you can clearly see the normal component.

The normal component can be, with good accuracy, be fitted by a non-interacting

model, whereas central peak is a Bose-Einstein condensate, which requires the
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description I want to show you now. The condensate fraction is shown here. And

again, with fairly good accuracy, it follows the description of Einstein, because the

condensate fraction is not a property of the condensate. 1 minus the condensate

fraction is a property of the thermal gas.

In the spirit of Einstein, Einstein calculated how many atoms can be in the thermal

component at a given temperature. So Einstein called it the saturated gas. At a

given temperature, you can only keep in thermal equilibrium a certain number of

atoms in your gas.

If you have more atoms, they condense into the ground state. This is sort of the

statistical description. So therefore, what I'm plotting here is the condensate fraction

is actually a property of the normal gas. It shows that the normal gas is saturated,

can only hold a certain number of atoms, and the remainder of the number of atoms

has to be in the condensate.

AUDIENCE: I thought in the three dimensional gas, it was three halves.

PROFESSOR: Yes, but this is an harmonic trap. And the harmonic trap changes the density of

states. Let's talk about the homogeneous Bose-Einstein condensate and weak

interactions.

If you write down the Hamiltonian for the interactions, it will appear many, many

times. The general way to write down interactions between two particles is you

annihilate particles in momentum k and p. And then, they reappear at different

momenta.

So one momentum gets upshifted by q. And one momentum gets downshifted by q.

This guarantees momentum conservation.

So what I'm showing you here is the elementary process of scattering two particles

with momentum k and p scatter, disappear. That's why we have the annihilation

operator. And then they reappear to a new momenta.

That's the most general form of a binary interaction. And now we have to make
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approximations. Nobody can solve this Hamiltonian in the most general way.

So one approximation we make is that since the range of the atomic interactions is

much smaller than the distance between atoms or the thermal [INAUDIBLE]

wavelengths, we approximate the potential by a short range potential, or delta

function.

Well, the Fourier of a delta function is constant. And that would mean in momentum

space, this momentum dependent matrix element squared-- yeah, matrix element--

is just constant. So therefore, we can approximate the Hamiltonian by a constant

interaction parameter. And then we have the sum over all these creation

annihilation operators.

I don't want to go into details of low energy scattering physics, but it is most

convenient to describe this parameter by u knot, which is the Fourier transform of

the interaction potential. Or very often we parametrize it with the s wave scattering

lengths, which is the only relevant parameter for elastic collisions at low

temperature.

So with that, we have now a Hamiltonian which has kinetic energy. And here is the

potential energy due to the interaction between the atoms. And we have taken this

constant Fourier transform u knot out of the summation.

Now, I mentioned already to you that a product of four operators cannot be solved.

You need an approximation where you reduce the number of operators from four to

two. And then you solve a quadratic equation. And the solution is Bogoliubov

solution.

So how do we reduce now this product of four operators to two? Well, when we

have a condensate where many, many, atoms are in one quantum state, we can

make the Bogoliubov approximation. The Bogoliubov approximation is, well, if the

creation annihilation operator in the zero momentum state for the condensate has

the following matrix element.

And now you can see, if N knot, the number of atoms in the condensate is large,
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well, we can neglect the difference between N knot, N knot plus 1, and N knot minus

1. And we simply make the approximation that the operator a knot and a knot

dagger is replaced by the square root of N knot.

And then, in this sum of [? our quartic ?] terms, we only keep those terms which

have at least two occurrences of the index zero, because the terms which are for

instance new occurrence of the index zero don't get this multiplier N knot. So we

sort of do an expansion in powers of N knot, and we stop here.

So therefore, now if we make sure that any combination of those two involves the

index zero, we factor out N knot. And then we have products of k minus k with

dagger, dagger k minus k annihilation operator, or we have mixed term a dagger k,

a of k, a minus k dagger, a minus k. But this is what we get.

The next step is purely technical. We want to get rid of N knot and replace it by N.

So N is N knot plus the sum of the population or other momentum states. And that's

now our Hamiltonian, which still looks complicated. But it can immediately be solved,

because all it involves is a quadratic product of operators.

Let me finish this derivation. It takes four to five minutes. I don't think people come

in on Mondays. They always come in after us on Wednesday. Is that correct? So let

me just continue. I would like to reach the final result with the Bogoliubov

transformation.

So what I want to show you is that the moment you have bilinear operators, all you

have to do is in essence you have to solve a quadratic equation. And because with

all the indices and constant, it looks a little bit complicated. But so let me just say

that the structure of this Hamiltonian involves sums which are a of k and a of minus

k. k minus k is of course important, because that's important for momentum

conservation.

So let me now call a of k a, and a of minus k b. Then this Hamiltonian has the

following structure. It has terms a dagger a, b dagger b, b dagger b. But then it has

other terms a dagger b dagger plus ba.
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Now, let me put it this way. If that wouldn't exist, we would be done. Because an

Hamiltonian which has e knot a dagger a is an harmonic oscillator Hamiltonian. It is

diagonalized. a and a dagger are just eigenoperators, which create quasi-particles

with energy e knot.

So if you could eliminate this term, we would be done. So therefore, let's follow

Bogoliubov and say that we introduce new operators, alpha beta. And the alpha

beta operators are linear combinations of a and b. Or vice versa, a and b are linear

combinations of the new operators, alpha beta.

And since we have a bosonic system, and we think it's a good idea to keep the

system bosonic, we require that those new operators fulfill bosonic commutation

relations. Those bosonic commutation relations are fulfilled if u square minus v

square, u and v are the linear coefficient which express ab in terms of alpha and

beta if that is 1.

So in other words, u and v are now two new parameters. One condition for u and v

is used up to ensure the bosonic character of alpha and beta. But now, we have a

second condition.

We can have two conditions for two parameters. So what we do is we just rewrite

this Hamiltonian in terms of alpha beta. And that's what we get. It's a bilinear

Hamiltonian where the linear transformation stays bilinear. But now, our second

condition which we can impose on u and v is that the prefactor of this cross product

is zero.

So then, by using those two conditions for u and v-- and you find the equations in

many textbooks. I'm not discussing them in great detail here. We have obtained an

Hamiltonian of this kind. And this is diagonalized. We know now that alpha beta

create quasi-particles at a certain energy.

So now, by going back, I'm in alpha beta where expressed by a and b. A was a of k.

b was a of minus k. I just go back to the original nomenclature. But we have

diagonalized the Hamiltonian. So what we have achieved now is our Hamiltonian is
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written in this following way.

Actually, I've recycled a now. a is no longer a particle in a given momentum state.

It's now a quasi-particle. So we have now diagonalized the Hamiltonian for the

weakly interacting Bose gas.

And what we have obtained is, well, we have the full solution. Everything you want

to know about this system we know. And in particular, we know what are the

characteristic excitation energies for quasi-particle.

And this quasi-particle energy gives us the energy as a function of momentum by

replacing the parameter u knot by c. c is the speed of sound. I can be rewrite it like

this. And you see that it makes sense immediately, because we have now a

dispersion relation, which in the limit of high momenta is just the normal kinetic

energy.

So the quasi-particle are free particles, whereas at low momentum, when this term

dominates, the dispersion relation is linear. And linear means sound and phonons.

Bose-Einstein condensation is a low energy phenomena. So you should not expect

that you change any characteristics of high energy quasi-particles.

If you wreck a particle in the Bose-Einstein condensate with high energy, it flies out

at a high energy particle. But a low energy excitation creates sound waves. So this

is what we have found now. And I will show you on Wednesday how it is observed.
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