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PROFESSOR: OK, good afternoon. So this week we talk about quantum gases, ultra-cold atomic

gases. And sure, they're ideal Bose gases, ideal Fermi gases, but I will spend one

or two minutes on each, because that's exactly solvable. It's in all the textbooks.

That's simple.

Quantum gases become interesting because of interactions. And in my lecture

today and my last lecture I want to introduce you to Bose gases and Fermi gases

with inter actions. And they both turn superfluid, and the superfluid properties are

determined by the interactions between the atoms.

So the purpose of those lectures is number one, to acquaint to you with important

phenomena in cold gases-- superfluidity, superfluidity in lattices, superfluidity just in

free gas, in a normal gas without lattice, and superfluidity of fermions.

But at the same time, I also want to have sort of a theme for you how we deal with

interactions. And that kind of theme is how theoretically we reduce unsolvable

Hamiltonians to Hamiltonians which can be solved. And you will see that actually

appearing in different situations with similarities, but important differences.

So just to remind you, we started out with the interacting Bose gas in a

homogeneous system. We have a very general way to describe scattering two

particles with initial momentum disappear and two particles with momenta appear.

This is a scattering event.

Now this means we have products of four operators, which is very difficult to solve.

And the Bogoliubov approximation which we discussed on Monday replaces the

operator for the condensate for the zero momentum state with a Z number, saying

that N 0, N 0 plus 1 is the same-- a little bit waving your hands. But it's also you can
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say the macroscopic limit when we have a photon field with many, many photons,

we can use a Z number in our Hamiltonian to describe the electric field. So that's

the same spirit.

So maybe I should emphasize it. This is for atoms. What you're used to do with

photons for your whole life. OK.

With that we have transformed the Hamiltonian into a bilinear expression. And so at

the moment your bilinear expression-- you do a Bogoliubov transformation. You

simply diagonalize it by finding a new set operators where the cross term between a

and b or between a of k and a of minus k disappear. And then you've solved it.

And this is what we arrived at at the end of the last lecture. With those

approximations, we have diagonalized the Hamiltonian. Our Hamiltonian is now, you

can say harmonic oscillator Hamiltonian, or you can see it has become a gas of

non-interacting quasi particles. Each of those operators creates a quasi particle,

and the quasi particle energy is U of k.

And I explained to you that as expected, the quasi particle energy is simply particles

with momentum h-bar k for high momenta, because in high excitation of Bose

quantums it is a free particle. But a low-lying excitation is affected in a major way by

all of these interactions with the Bose-Einstein condensate. And that turns the

quadratic dispersion relation into a linear one, or you can say that turns the free

particle into a photon or something.

So that's my review of the last class. Are there any questions before we go further?

Colin.

AUDIENCE: Does this require low density and [INAUDIBLE], or one or the other?

PROFESSOR: We come a little bit later to that, but in the end, there is a small parameter. The

small parameter will be N a cubed-- the gas parameter-- N, the density, a cubed,

the scattering length. It's usually the dimensionless combination of the two which

decides whether we are in the weakly or strongly interacting limit.
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There is another assumption which we have made here, but it's related to that-- as

you will see a few moments-- that most of the are in the condensate. We assumed

N0 is peak. The condensate depletion-- the number of atoms which are not in the

condensate, t equals 0 is small.

But let me just first show you-- I want to mix in theory and experiment how sound

can be observed. I should actually say this experiment is sort of dear to my heart,

because at some point it clicked to me how the new world of atomic physics

connects with condensed matter physics. Soon after we had realized Bose-Einstein

condensates, a famous condensed matter theorist said hey, Wolfgang, you should

now observe sound. Sound is important.

Yeah, OK, but how do you observe sound? You know, use a piezo and just kick the

system and create a sound wave. And I said, oh, gosh, this guy doesn't know with

that if you put anything in contact with the quantum gases-- a piezo-- the gases will

just stick to it. He has no idea what our system is.

But then I said wait a moment-- we have to translate. He says use a piezo. Well, I

have to translate. In atomic physics how do we kick atoms? With a laser beam.

And in that moment, I had the idea that we can take a Bose-Einstein condensate,

suddenly switch on a blue de-tuned repulsive laser beam. This will do exactly as a

piezo-- create a density perturbation, and then the density perturbation will

propagate with the speed of sound.

And that worked. That was just when Bose-Einstein condensations were very fresh.

One of the first scientific experiments done-- we switch on the laser and you see

color-coded in red the density perturbation which propagates out of it.

And the slope of this line is the speed of sound. And here we determined the speed

of sound as a function of density. So that's how phonons-- or at least how the speed

of sound and wave packets which propagate with the speed of sound can be

prepared. I come back to phonons and collective excitations in a few moments. But

let me first say when we have diagonalized the Hamiltonian we know everything we
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want to know.

I just focused on the quasi particle energies, but you also know the ground-state

energy. And actually here Colin, you see that the corrections to the ground-state

energy scale with N a cubed, so this is really the small parameter in this system.

But we can also find out what is the ground state wave function. And let me use it to

introduce an important concept to you called the quantum depletion. When you

have two atoms in the condensator at zero momentum and you switch on the

interactions, the delta function interaction couples zero momentum state to higher

momentum states.

So therefore, the effect of interactions is that the condensate is not just at zero

momentum. It has some probability, or some admixture, of finite momentum states.

This is the ground state. This is how the Hamiltonian is diagonalized.

So from the Bogoliubov approximation, where we introduced this V and U

parameter to transfer from one set of Bose operators to another set of Bose

operators, those coefficients give us the population of those momentum states in

the [INAUDIBLE] of the condensate.

So if I now ask, what is the condensate fraction? What is the number of atoms in the

zero momentum states? It's all atoms, but those who have finite momentum. And

we find again the small parameter N a cubed.

Now this quantum depletion allows me now to make a distinction between the cold

atomic gas condensates and superfluid helium form. In cold atomic gas

condensates, this correction is about 1%. So therefore, I can say with 99%

probability, or with 99% weight, the condensate, the many-body wave function of the

condensate is just the zero momentum state to the power N.

And this very complicated admixture of correlation into the ideal gas wave function

is only 1% for alkali gases. But for liquid helium, the condensate fraction-- even at

zero temperature-- is only 10%. So when people use neutron scattering-- it would

be a long story in itself how this is done-- but when they use neutron scattering to
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analyze the liquid helium at low temperature, and figure out what is the fraction of

atoms which have zero momentum, they found 10%. The quantum depletion is

90%.

But that's just the difference between a quantum gas and a quantum liquid. And in

the quantum liquid-- in liquid helium-- N a cubed is on the order of unity.

OK, I mentioned this dispersion relation. These are sort of quasi particles. And I at

least showed you how you can measure the slope of the quasi particle dispersion

relation by propagating sound waves. But let me now tell you how we can observe

quasi particles' elementary excitations directly. And this is actually simply done by

light scattering.

If you scatter a photon, and the scattered photon loses energy h-bar U. And it is

scattered at an angle. Therefore, it transfers momentum q. These forces can only

happen if there is an elementary excitation with momentum q and energy h U.

So in other words, on a photon basis, you can see photon by photon, if you scatter

a photon, the photon transfers momentum and energy. The process can only

happen if you can form a quasiparticle with this momentum and energy.

So since this is sort of the direct way of mapping out whether the system has the

possibility to absorb momentum q and energy h nu, this has sort of a name. The

scattering probability is called the dynamic structure factor. And the dynamic

structure factor is just an integral over all the possibilities that a many-body system

can absorb momentum and energy.

Now there is one nice feature which was introduced by us at MIT, and that is if

you're going to measure the dynamic structure factor, often you do it with neutron

scattering. You scatter neutrons or x-rays and they scatter spontaneously at an

angle, and you need a detector to detect the scattered particles.

But in our case, because the gas is so dilute, the distance between atoms is on the

order of the optical wavelengths. We don't want neutrons. We don't want x-rays. We

want photons, because the wavelengths of photons is perfectly matched to the
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properties, to momentum transfer and such we need for our system.

But photons-- we have photon lasers. So instead of in a painstakingly way analyzing

the frequency and the momentum of scattered photons, we don't do the

spontaneous scattering process. We do a stimulated process. We use two laser

beams, and we stimulate a photon to be scattered into the other laser beam.

And by having the two laser beams at frequency difference delta omega, we're

really asking the system, are you ready to absorb delta omega energy? If yes, then

you have a quasiparticle. So this is how we do quasiparticle spectroscopy.

And a few years later, this method was defined by the [INAUDIBLE] Institute. And

what you see here is they varied the angles between the two laser beams, realized

different momentum transfer, and what you see is the low dispersion, the linear

dispersion relation for low momenta, and then the quadratic part at high

momentum.

So this is called BEC spectroscopy. It's a variant, you can see, of Raman

spectroscopy where you go from a zero quasiparticle state to a one quasiparticle

state through a simulated Raman process, and this is how the dispersion relation is

determined.

OK so I've so far dealt with aspects of a homogeneous Bose-Einstein condensate

where, of course, if you're a homogeneous system, you formulate everything in

momentum space. But now we want to deal with the situation that our condensates

are finite in size. And in addition, they're usually in a harmonic oscillator potential,

and therefore their density is inhomogeneous.

Let me start the discussion with the inhomogeneous Bose-Einstein condensate by

showing again a picture which brings in some memories of '90, '96. It was the first

time that we could see the Bose-Einstein condensate in the trap. Before people

have just seen it by time of flight when it was pretty much already destroyed or it

was just flying out.
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But here we see the trapped Bose-Einstein condensate and we could even take

multiple pictures of the same condensate. So you can see that this was the first time

that a condensate was seen alive.

What you see here is actually the bimodal distribution. You see the condensate and

then due to speckled pattern, the Fermi cloud looks fragmented, but this is just a

speckled pattern due to the signal to noise. But here you really see now-- not in

ballistic expansion as I showed you on Monday-- but really insight to the size and

shape of the condensate.

OK, how do we describe it? Well, the message is pretty much exactly the same way

as we did with the Bogoliubov approximation and such, but instead of in momentum

space, we do it now in position space.

Actually, I have to say this week, I go through a lot of material. But what I'm trying is

to give you sort of a spirited and animated overview that you really know what is

important. Where is the same concept appearing again in a different way.

The details-- I've posted, actually, the original articles, references. Some of are

school notes, some of them written by myself on the backside. So yes, it's a little bit

different character than other lectures. I want to show you a lot of things, and put a

special emphasis on the ideas.

OK, so in second quantization, we are now using field operators which create and

annihilate particles at position R. This is the single particle Hamiltonian-- kinetic

energy and potential energy. And our interaction term has now, again, four

operators-- two interrelation operators, two creation operators, but they're now

formulated in position space.

We do exactly the same as we did in the homogeneous gas. We assume the

potential is short range. That means delta function. And that means we can get rid

of one of the integrations in r and r prime. But we still have product of four

operators.

We can formally solve the equation by writing down Heisenberg's situation for the
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equation of motion for those field operators, but of course this cannot be solved.

Remember products are four operators are hard. We have to reduce it to two

operators.

And this is actually done by the Bogoliubov approximation again. But it's done here

in the following way. Remember, in the momentum space we replaced a0 and a0

dagger by the square root of a0.

What we do here is we say this is sort of a quantum field. And when we have a

superfluid, this field operator has an average value. It's actually the macroscopic

superfluid order parameter.

So we replace the operator by an average value which we assume is large,

because many, many particles are in the superfluid state. And then we have

fluctuations which are small. And what we will do is-- it's pretty clear-- when it comes

to the fluctuations, we will neglect higher products-- products of four fluctuation

operators. And we are down to C numbers and, as you will see, two operators.

We can-- and this is even more dramatic-- it wouldn't make sense in momentum

space, but it does make sense in position space-- we can even do a first

approximation where we completely neglect those fluctuations. And then what we

have is when we simply insert a [? Z ?] number into this Hamiltonian. We have then

an equation for this number, for this function psi.

And this is the nonlinear Schrodinger equation, or it's also called Gross-Pitaevskii

equation, which is now the analogy to Schrodinger's equation, but now for the

macroscopic wave function which is occupied by many, many particles. And in

addition to the kinetic energy and the trapping potential in the external potential, it

has a term which is proportional to the density. And this is just mean field repulsion

which one atom feels exerted by the other atoms.

I should say-- just to connect it to what I've said earlier about the quantum

depletion-- that you can regard the function psi as the best approximation to an

ideal Bose-Einstein condensate. So if you want to write your many-body wave
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function as a function psi to the power N, all particles are in the same quantum

state, then a variational calculation would say that this function psi should obey this

equation.

If you want to read up what I've said, I've posted a recent paper, which I found very

pedagogical, where they derive the Gross-Pitaevskii equation without even using an

operator psi dagger, without using any second quantization. They just say we have

an Hamiltonian for an interaction system, and we try to write the complicated, many-

body wave function as a wave function to the power N. And then you put this ansatz

into your Hamiltonian and do a variation optimization which single-particle wave

function psi, if taken to the power N, minimizes the total energy of N particles,

including interactions.

And the answer is this equation. So there are many ways this equation is sort of

very natural.

Now you all know about single-particle physics-- kinetic energy in an external

potential. Let's now learn what this density-dependent term does. Well, it's pretty

clear. There is a price to be paid for density.

And while the total integrated density, of course, is given by the total number of

particles. That means if you lower the density somewhere, you have to increase the

density. But because this is a non-linear term, if you have an average density and

you lower it here and increase it here, you have actually more repulsive energy than

if the density is flat. So this term has only one goal. It wants to flatten out densities.

So therefore if we have a box potential and you know the ground state in a box is

just half a period of a sine function. This is a non-interacting condensate. This would

be the macroscopic wave function in a box potential. But if you now put in strong

interactions, the strong interaction's going to flatten out the potential.

They flatten out the potential, and only at the very last moment-- all right, now it's

time to go down because we have to meet our boundary condition. And the length

scale where you eventually go down-- it has a famous name, the healing length-- is
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the length scale where the kinetic energy due to the curvature of the wave function

is now comparable to the interaction energy.

If the system would curve down earlier, it would cause too much repulsive energy,

because the density is not kept flat. If it would curve down too late, the enormous

curvature would mean a lot of kinetic energy. And this is just the best compromise

between those two criteria.

So that's how you derive the healing length. The healing length is now the length

scale over which the system is willing to meet boundary conditions, and not stay flat,

as flat as possible. Yes.

AUDIENCE: Just curious-- in that equation, the atom has the mass of each individual--

PROFESSOR: The mass is the mass of a single atom.

AUDIENCE: Single atom, it's not-- sorry, I wasn't here last time. But the quasiparticles are the

same mass [INAUDIBLE].

PROFESSOR: In a Bose-Einstein condensate they are. We haven't changed the mass. But we're

not talking actually about quasiparticle. We're actually really talking about here

qualitative features of the solution of the Gross-Pitaevskii equation.

And the Gross-Pitaevskii equation is sort of a single particle equation for particles of

mass, of the original bare mass M. It's a macroscopic wave function, but I

sometimes say it describes the wave function of a single particle where all the other

particles are included at the mean field level. So therefore, it is really this, the atomic

mass, and not any form of collective mass here.

Well, if you would now ask how do interactions transform the first excited state in the

box potential? Well, then it's again flat this as much as possible. But then if you want

to maintain the parity of the wave function, then it's only close to the zero crossing

within a healing length that the system says OK, now I change sign.

So that's sort of what is inside the Gross-Pitaevskii equation. Now once we realize

that, we can take it to the next level and say, well, if you neglect-- let's say we're
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interested in the ground state and we neglect this boundary region where the kinetic

energy becomes important-- maybe we can simplify the Gross-Pitaevskii equation

by neglecting the kinetic energy.

If potential energy dominates by far, we can neglect that. And then we should get a

good description which will not be valid in the wings of the wave function but in most

of space. But now if you look at this equation, it's no longer a differential equation. It

has no derivatives. It's just something which applies to the wave function psi itself.

And we can simply solve that. The solution of that is that psi squared-- the density--

is nothing else than there is a constant minus the inverted trapping potential.

So therefore in this Thomas-Fermi approximation where we neglect the kinetic

energy completely, you just take your trapping potential, turn it upside down, and

then you fill it up with density until you have accommodated the number of atoms

you want to accommodate. And this is, of course-- the constraint in the number of

atoms is determined by the chemical potential.

Or if you have a more complicated W-shaped potential, the same construction. Flip

it over, fill it up, gives you the condensate wave function, the density distribution of

the condensate in this potential.

I don't want to belabor it, but coming back to the question of the small parameter, if

you look at those equations, you can identify a parameter-- this is now the small

parameter, or the parameter in the system which is the important dimensionless

parameter. It depends on the number of atoms, and it depends now on the ratio of

the scattering length-- which characterizes the interaction-- and the harmonic

oscillator length.

You can say the harmonic oscillator length is the ideal wave function harmonic

oscillator. So this parametrizes the importance of kinetic energy, whereas the

scattering length parametrizes the importance of interactions. And all those

solutions can be nicely written as what you would have in an ideal gas, and then this

parameter X. So in typical experiments, N a, N is a million. The scattering length is
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smaller than the oscillator length, but N is a million, and this parameter X is usually

large.

So therefore-- and I'm simply just talking about this solution-- we have the situation

that the chemical potential is larger by a power of X than the ideal gas solution,

which would just be the ground state with its zero point energy in the harmonic

oscillator potential, or the width-- the size-- of the wave function is larger than the

ground state of the harmonic oscillator, but only with an exponent, which is one-fifth.

Well, we can see that. These are now, again, somewhat improved pictures of

condensates inside the trap. For the expert, the previous picture was dark-ground

imaging. This is now phase-contrast imaging.

And if you take a profile, we clearly see the condensate wave function and we see

the thermal wings. When we look at the size of the condensate wave function, you

realize what I just meant-- that the ground-state wave function, the harmonic

oscillator length is 7 micron in the axial direction, but here you have 300 micron. So

this condensate is completely dominated by interactions. And it fulfils very nice, and

pretty much the whole shape, except maybe some details in the wings, are

quantitatively described by the simple approximation I have explained to you.

So just a little bit show and tell. We have this Gross-Pitaevskii equation. The Gross-

Pitaevskii equation has, as Schrodinger's equation, a time independent form to get

the ground state. It has also a time dependent form.

You simply replace the energy by the derivative of the wave function. This is the

time-dependent form. Everything is very simple, and you can do many-body

physics, but on your computer, you pretty much look for single-particle wave

function and take them to the power N.

So some areas where the Gross-Pitaevskii equation has quantitatively explained

experiments-- one is the expansion of a Bose-Einstein condensate. It's this famous

situation when you have an elongated condensate and let it expand. It expands

faster in the radial direction.
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One simple argument is the pressure of the mean field is larger and leads to faster

acceleration. So therefore, if you have a cigar-shaped condensate and release it, it

turns into a disk. It inverts the aspect ratio, going from a cigar shape to a disk

shape.

And that has been beautifully and quantitatively described by the Gross-Pitaevskii

equation. Here we have measured the interaction energy as a number of

condensed atoms. And I mentioned to you that this X parameter comes often with

power 1/5 and 2/5. And this here is a fit to the power 2/5, beautifully confirming the

theory.

So the Gross-Pitaevskii equation was invented in 1962, about 50 years ago by

Gross and Pitaevskii to describe vortices. Actually, Lev Pitaevskii is still alive, going

strong, and publishing papers. One of his latest predictions was solitons in Fermi

gases, and I know in Professor Zwierlein's group, one of his lab just looked at the

same physics, and compared to the theory of Lev Pitaevskii. And this year we are

celebrating-- I forgot, the 85th or 90th birthday of him.

AUDIENCE: [INAUDIBLE]

PROFESSOR: 90?

AUDIENCE: There's a poster.

PROFESSOR: I know there's a poster next to my door, but I forgot which anniversary. So I mean,

he's an legend. But he's still walking. He's still doing science. So if you meet him,

you go back to 50 years in history. Anyway, it is this Lev Pitaevskii, and he invented

his equations to describe vortices.

So anyway so we have this nonlinear Schrodinger equation. Let me just show you

what vortices are and how they are formed. Vortices come-- if you solve the Gross-

Pitaevskii equation-- if you ever any quantum fluid or quantum gas, and you add

angular momentum, the angular momentum cannot lead to rigid body rotation. This

would violate the fact that the velocity field has to be irrotational to make sure that

the phase of the wave function is well defined.
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So if you rotate the system, it can absorb angular momentum only by forming

vortices. And vortices are singular points of the wave function-- singular points

where the density is 0. In other words-- I don't have time to be exhaustive here-- but

when something rotates, there is a dynamic phase you can say, because there are

matter waves going in circles. And the integral of the phase has to be an integer

number of 2 pi, otherwise you would not have a well-defined phase of the wave

function.

And if you now say you make a circle, which is 2 pi. You make the circle smaller,

smaller, smaller. In the middle of the circle, you go around. The wave function

changes by 2 pi, but what should the wave function do on one point? Which number

between 0 and 2 pi should the wave function peak?

Well, the wave function says I can't peak. I just go to 0. And a 0 value has no phase

and I'm fine. That's exactly what the wave function tells you. So therefore if you

want to describe vortices, you want to now describe the Gross-Pitaevskii equation,

but with the boundary condition that the wave function goes to 0. And if you want to

describe one vortex, you want the wave function to go 0 in the center of the cloud.

And so you make a corresponding Ansatz. You allow the phase to wrap around by 2

pi, when the angle phi is varied. And then when you solve it, you have, of course,

put in that there should be a 0 of the density at the center. And it's now nice for me

to-- there's an important review paper which describes all that and more-- but it's

nice to show you now the two extreme cases of the ideal condensate without

interaction, and the strong interacting condensate.

The ideal condensate-- well, we are in the first excited state of the harmonic

oscillator potential. And this is the dashed line. And of course, the size of the whole,

the 0, is pretty much on the order of the oscillator length, because there is no other

length scale in the ideal harmonic oscillator.

But if you have the interacting system, remember what interactions are doing. They

want to keep the density as constant as possible. Well, we are not in a box potential.
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We're in an inverted parabola potential.

And remember, our Thomas-Fermi solution, which neglects kinetic energy, is the

inverted parabola up to here. And then the tail is when we can no longer neglect the

kinetic energy. But if we now say, OK, fine, but now in addition, we want a vortex in

the center, the wave function out there says no.

We do what minimizes kinetic energy, and what minimizes repulsive energy. We

follow the inverted parabola, and only at the very last moment-- on the scale of the

healing length, the system meets the required boundary condition that the density

goes to 0.

Anyway, with this qualitative understanding, you can get a lot out of those. You can

immediately understand the salient feature of the solution.

Question?

AUDIENCE: I know we're not talking details, but is there a simple, maybe clear reason why when

you spin a Bose-Einstein condensate you get many vortices, but when you spin your

coffee in your cup, you just get one big one?

PROFESSOR: Yes. So the question is, if I have a wrap-around of 4 pi in phase, whether the

system should have a doubly charged vortex, or two singly charged vortices? What

is the difference in energy?

Well, what happens is doubly charged vortices are unstable. My group, at some

point, were the first to create doubly charged vortices, but we saw that they

immediately decayed.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Pardon?

AUDIENCE: [INAUDIBLE]?

PROFESSOR: Initially, we couldn't observe. We just saw that it was unstable. But it's a decay into

15



two vortices.

But it's easy to understand. If you put two vortices on top of each other, what is the

energy of the system compared to one vortex? Well, the energy of a vortex is the

rotational field around it, and if you superimpose two vortices, the velocity around

the doubly charged vortices is twice the velocity of one vortex. And therefore, the

kinetic energy is four times.

If you have two vortices which are far separated that it has its own velocity field. It

has its own velocity field here. And when the two velocity fields come together, the

velocity is already so low that you don't have to consider that, then those two

vortices have an energy which is two times the energy of a single vortex.

So therefore, when the two vortices, they start out with four times the energy of a

single vortex, and when they dissociate and repel each other, they have shed half of

their energy. So this argument tells you immediately that vortices are in effect

repulsive. And therefore, any multiple-charged vortex will spontaneously decay.

It's also this net repulsion between vortices which makes the vortices arrange in a

regular lattice. The regular lattice which you saw before is Nature's answer to how

can we minimize the energy of all those vortices? And the idea is let's keep the

average distance between them as large as possible, and the answer is a

hexagonal lattice. Yeah.

AUDIENCE: So a few slides back, when you write the G-P equation, when you plotted sort of for

the box potential, the ground state and the excited state comparing the G-P

equation to the typical single-particle [INAUDIBLE]. And so I guess I'm a little bit

confused about how excitations manifest themselves in the system.

Because in some sense, if you were to solve the G-P equation, would you arrive at

a spectrum of solutions? Then I guess I'd be confused at whether excitations

manifest themselves into that spectrum of solutions, or rather than they become

excitations, sort of deviations from the mean field as including the [INAUDIBLE].

PROFESSOR: You are now asking about something more complicated. You're asking what are the
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excited states of the many-body system? And actually, we have already found one

answer. And this is if you want these small excitations, it's one particle becomes a

phonon, or one particle becomes a quasiparticle.

What we are talking about here is what happens if the whole macroscopic wave

function is in an excited state. So we are asking here in the box potential what

happens if you force all N atoms to have one node in the wave function. And this is

what I'm talking about here.

So the excitation energy of this state here is much, much higher than of single

quasiparticle excitations. I'm not sure if I'm addressing your question here, but--

AUDIENCE: So with single quasiparticle excitations, are those essentially sort of deviations from

the mean field?

PROFESSOR: No, they are-- you really look for many-body physics-- main field deviations--

probably. I mean, what you do is in that sense, yes. You're allowing in this Ansatz

that psi operator is psi average plus fluctuations. You now look for fluctuations, and

you're looking for the energy eigenspectrum of those fluctuations. And the answer

are quasiparticles.

So it is, actually, the Bogoliubov solution for the spectrum of the fluctuations. And

the answer is the dispersion relation I presented to you. Whereas here we are

asking what are excited states of the macroscopic wave function? It's a very, very

different question which we've addressed here. Yes.

AUDIENCE: So when you stir the condensate, do you view it as-- do you stir, sort of, at the trap

frequency, so I do sort of N single excitations? Or do you stir at N times the trap

frequency, so you get one sort of N particle excitation?

PROFESSOR: Well, the experimental answer is you want to stir at the quadrupole frequency, which

is square root 2 times the trap frequency. Then you create quadrupolar excitations.

The quadrupolar excitation can be regarded as a standing sound wave, but you

create a macroscopic number of those excitations.

17



So you make, actually, the whole condensate wave function oscillate in a

quadrupolar pattern, but it's a rotating quadrupole, and that eventually then

rearranges itself and leads to vortices. So I think the correct answer is the most

efficient way to create vortices would be to excite quasiparticles, but then create so

many-- and this may relate to Matt's question-- create so many quasiparticles that

you have really a time-dependent and oscillating macroscopic wave function.

So eventually, you have a coherent excitation of quasiparticles. And that eventually

means the condensate moves in a quadrupolar pattern, but it's a quadrupolar

pattern with rotation, and that eventually turns into many vortices. But that's really a

very rich question which you're asking, which has been studied-- a lot of different

aspects of that have been studied.

OK, so we've talked about Bose-Einstein condensates in a homogeneous system,

just sort of to lay the groundwork. We've talked about Bose-Einstein condensates in

traps in inhomogeneous system. Now we want to talk about Bose-Einstein

condensates in optical lattices.

Well, there are two reasons why we want to do that. One is we want to use the

Bose-Einstein condensate to obtain deeper insight into the properties of matter. And

a lot of forms of matter appear in periodic lattices.

So if you put a Bose-Einstein condensate into a periodic potential, we can at least

understand some of the properties of crystalline matter, or electrons which are block

waves in a periodic potential. So this is one reason why.

The other reason why we want to go to optical lattices is the following-- ideal Bose-

Einstein condensates are trivial. Weakly interacting Bose-Einstein condensates are

entertaining, and you can write a lot of papers, have a lot of fun with it, develop your

methods-- also mildly intellectually interesting because how those weak interactions

manifest itself in vortices and all. It's really rich and interesting.

But the conceptional problems appear when you go to strong interactions. Strongly

correlated matter is where mean field descriptions no longer work. This is really the
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frontier of our understanding of many-body systems.

And when you want to be there, you want to create a strongly correlated system.

And strongly correlated systems means that the interaction energy dominates over

kinetic energy.

In Bose-Einstein condensates you can only go so far with increasing interactions--

why are Feshbach resonances? Because you get into some inelastic collisions. So

that's one knob to turn.

You go to larger and larger of scattering lengths, and crank up the interactions. But

if atoms strongly interact, they start to do bad chemistry. They start to spin flip. They

do other things.

And in some cases you keep it under control. In others, you just can't keep it under

control.

But another way to get to strong interactions means you reduce the kinetic energy.

It's the ratio of the two which matters. And when you put particles in a lattice, well,

the lattice actually reduces the kinetic energy. You may know from condensed

matter physics that in a lattice there is an effective mass, which is higher than the

[INAUDIBLE] mass. Therefore you've reduced the kinetic energy.

Or if you want another hand-waving approximation, the kinetic energy is given by

the bandwidths. And if the tunneling becomes slower and slower, the width of your

band becomes narrower, and your kinetic energy is less. So anyway, I can give you

many hand-waving approximations why in a lattice, kinetic energy is reduced and

repulsive energy is probably enhanced, because instead of having your atoms

spread out, they're bunched up at each lattice site into a higher density cloud.

So anyway, maybe you're interested in parity potentials, or you're interested in

quantum systems with strong correlations. For whatever reasons, you want optical

lattices.

Now I have here a few slides which introduce periodic potentials, but it is really just
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the single particle physics in a periodic potential. It has nothing do with quantum

gases. This could be the first lecture of how to describe electrons in a metal.

So let me just quickly go through assuming that almost all of you are familiar. But I

use those slides also just to give you a few definitions and introduce a few symbols.

So this is simple, boring, exactly understood physics. We have a Hamiltonian which

has kinetic energy, and a periodic potential which is our lattice potential.

It's rather trivial to solve, but exactly for your wave function, you use Bloch's

theorem and divide it by an exponential factor with quasi momentum times a

periodic function. And if you now solve Schrodinger's equation, you want to use

Fourier space.

You Fourier analyze the wave function. You Fourier analyze the potential. And since

the potential is periodic, sine square potential has only three Fourier components at

0 plus/minus 1 times the periodicity of the lattice.

You do a Fourier expansion for your periodic wave function. And if you insert that

into Schrodinger's equation, well, the Fourier transform has turned the differential

equation into an algebraic equation, because the second derivative simply becomes

now k squared or q squared.

So in other words, you have a set of linear equations. There is an index which is the

band index-- how high do you want to go? And usually you truncate it. But it's the

same. It is that same trivial story which is told in all textbooks of condensed matter

physics.

If you have no band structure, well, you have the parabola, but to prepare for band

structure, I've opened it down here in the first Brillouin zone. And if you now

introduce a lattice, you introduce band gaps, and you go from the left to the middle

to the right for stronger and stronger lattices.

So the case which I will focus on, because it is the most extreme case away from

free space, is this case which is called the tight binding limit, where the potential

energy of the lattice is large. And large means compared with the kinetic energy at
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the Brillouin Zone, which is k squared-- k is the lattice momentum-- k squared over

2 m. And that's the recoil energy. So that our dimensionless parameter here is the

depth of the lattice measured in recoil energies of the photon, because that is the

kinetic energy of the free gas at the Brillouin zone.

OK there are few things which immediately simplify that. Once we're in the tight

binding limit, our lattice is really deep, and each side forms a harmonic oscillator.

And the harmonic oscillator frequency is analytically given by the depth of the lattice.

And the solution here for the lowest band is that the lowest band-- the energy in the

lowest band, the dispersion relation is-- well, we have a harmonic oscillator in each

site at x y z. So the average energy in the lowest band is the 0 point energy in x, y,

and z-- three half h-bar omega 0. And then we have a cosinusoidal band structure

where q is the quasimomentum. And what appears here as the only interesting

parameter is j. And j is I think this 4 should be 4j is the bandwidth.

So what appears here now for the first time is j. It appears here as the bandwidth.

But let me immediately give it another interpretation as a tunneling matrix element in

the following way-- right now, we have formulated the physics in Bloch wave

functions which are infinitely extended. The Bloch wave functions are for the lattice

what plain waves are for free space.

But if you have tight binding limit, there is another limit which is important. Namely, a

particle is localized and hops around in the lattice. The localized particle, of course,

is in free space. It would be a wave packet-- a superposition of plain waves.

So let's do the same in the lattice. Let's construct superpositions of Bloch waves.

And these are our wave packets. And the wave packet is now called the Wannier

function.

And there is a mathematical procedure how you should pick the phases here to get

the maximal normalization. But the simple picture is those Wannier functions are

very, very close to the Gaussian ground state solution of the harmonic oscillator on

each side. The wings are different, but I don't want to go into that.
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You transform from an orthonormal basis of Bloch wave function to another

orthonormal basis Wannier function. And the Wannier functions are as well localized

as possible. That's the procedure.

And now we can simply rewrite our total Hamiltonian or everything we're interested

in, not in Bloch wave functions but in Wannier wave functions. And what comes out

now is, is that the bandwidth j is nothing else than our Hamiltonian with kinetic

energy in the periodic potential. But j becomes now a matrix element between two

Wannier functions.

But the Wannier functions have now-- I'll put in some indices in a moment-- connect

now two different sides. So it is-- you have Wannier function. You have the

Hamiltonian and connect it to another Wannier function. So it is the amplitude that,

with the Hamiltonian, the particle can hop from one side to another side.

So therefore j, which was the bandwidth, is now the tunneling energy divided by h

bar-- the tunneling rate from on one side to the other side. For very deep lattice,

everything is analytic and it can easily be solved. And I mentioned already in the

tight binding approximation, you should think about your Wannier function as just

localized Gaussian eigensolutions of the harmonic oscillator. Yes?

AUDIENCE: So qualitatively, this question sounds sort of silly, but normally when we write down

the solution for j, we're only considering nearest neighbor. But from the math, I don't

immediately see why we wouldn't include i equal to j.

PROFESSOR: Give me one more slide. So I should've actually-- what I should have done is that-- j

has an index here. I just didn't want to overload you with indices. I mean, this is sort

of just telling you what j is in its simplest form. It is loaded with indices and I well

show you in a moment where those indices come in.

So I just wanted to give you the idea if we want to have Wannier function. We hop

from one Wannier function to the other one, and the operator is the Hamiltonian.

And therefore, there should be an index j and l. And maybe-- let me just do the next

step first and then come back to it, but I wanted to tell you here what I'm aiming at--
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namely interpretation of j, of tunneling from one side to the next.

But right now I haven't really told you which j I really mean. There should be-- based

on the right-hand side, there is a j which has two indices. And I will make the indices

disappear in a moment.

But before I make those indices disappear, let me introduce the other relevant

parameter, which will also have indices, and that is we have to bring in the

interactions. We want to describe an interacting system. We describe an interacting

system using the short-range approximation by assuming that two particles interact

with a delta function.

And if you have two particles on site, each of them has a density which is the

Wannier function squared. And the product of the two densities integrated gives us

the expectation value for the repulsive energy. And this is given here.

So the moment we introduce interactions, we are now interested in the interaction

energy between two particles which in this case occupy the same side. OK so I've

tried to introduce was what sort of j is. j is a matrix element between two Wannier

functions with a Hamiltonian in between. And u is the matrix element of two Wannier

functions with the interaction operator in between.

And now I want to use that concept to take my full Hamiltonian and transform from

field operators localized at x to Wannier functions. So they B operators are now

creation operators. They create an atom in a Wannier function. In other words, B

dagger means you have a particle in a Wannier function at site i. And I just use that

as a basis transformation and the exact transformation of this Hamiltonian is now

into this form. So

What I have right now is, I have the tunneling matrix element between particles at

site i and j, and I have to sum over all of them. And in terms of interaction, I can

calculate this matrix element by using Wannier function with four different indices

and ask what happens.

And this is simply an exact way of rewriting it. And here I've given you the definition.
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So if you want to forget everything I told you about j and u, I've done an exact

transformation from field operators to Wannier function creation operators. And this

introduces tunneling terms like this from site i to site j.

And these here includes products of four Wannier functions which are responsible

for the interaction term. Actually, if this is not complicated enough, I've suppressed

band indices here. I should also now sum over all possible bands.

But OK, I want to come now to the leading approximation in a tight binding model.

And that is where-- I mean those Wannier functions are overlapped. Two

neighboring Wannier functions barely overlap. If I go further away, the overlap

becomes even smaller. So the most dominant terms are nearest neighbor

interactions. And the nearest neighbor interaction is where i and j differ by 1. And

this is what I call j without indices.

And similarly, when it comes to the interaction term where we have products of four

Wannier functions and we want to get the overlap of all four, and then multiply it with

g, the prefactor of our delta function to get an interaction term, well the best overlap

is if all indices are the same. And this is what I call U.

So in that limit, in that tight binding limit, my Hamiltonian is now very simple. It

consists of a tunneling term parametrized with j, and an on site interaction term

parametrized with U. Yes.

AUDIENCE: So you're saying i, j and k are all the same, so the interaction is with itself?

PROFESSOR: No, two particles per site. When the four particles are the same, it turns into-- this

Hamiltonian here has all indices are the same. And if you calculate that, it turns into

the product of 2 b. b dagger is the occupation number at each site. But if you're

careful with commutators, it becomes occupation number times occupation number

minus 1. If you have only one particle per site, this term is 0.

So technically U is, if you put in 2 times 1, if you have two particles per site, U is the

interaction energy between two particles. Just use this expression to figure out what

it is for three or four. But for one particle, you get 0.
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The self interaction of a particle is absolutely 0. One particle does not interact with

itself.

AUDIENCE: That gets back to my question with the [INAUDIBLE]. So when you have i equals j,

the [INAUDIBLE] term, do you just--

PROFESSOR: No, I assume, i j is nearest neighbor. I assume that the index i and j differ by 1.

AUDIENCE: Yeah, I mean your argument was that the best overlap is between nearest

neighbors.

PROFESSOR: Yes.

AUDIENCE: So an overlap with the Wannier functions at the same site is sort of the kinetic

energy term. Is it approximately 0, or you just absorb that into the chemical

potential?

PROFESSOR: This is a 0.

AUDIENCE: [INAUDIBLE] So we're only looking at nearest neighbor, so are we essentially saying

the case where i equals j is approximately 0 [INAUDIBLE].

AUDIENCE 2: Because it's the matrix element of a Hamiltonian. So p, the candidate, plus the

lattice operator. So if I take my Wannier function, which is built out of eigenvalues

for that equation, [INAUDIBLE] bunch of energy terms. On every site [INAUDIBLE]

they're the same. Because you have a common [INAUDIBLE] energy that you can

[INAUDIBLE].

AUDIENCE: Well then just multiple it by [INAUDIBLE].

PROFESSOR: My gut feeling is-- and this is why nobody considers it-- it's just a constant energy,

which is probably something like the 0 point energy times the number of particles,

which is not affecting any dynamics. It's pretty much a constant which can be simply

dropped.

Let me just go back to that slide. I hope-- let me just look up the reference. I haven't
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looked at it recently. When we do this exact transformation, there should be a

reference whether i and j, what happens when i equals j. I think it's just a constant

term.

AUDIENCE: Because if you're summing over every single lattice site, so you get the number of

particles times 0 [INAUDIBLE].

PROFESSOR: Yeah, but even mathematically it gives just a constant term, here, which is

[INAUDIBLE]. Thanks. It was good to clarify it.

OK, I think within the next 20 minutes, I can step you through the superfluid to Mott

insulator transition. First, references for what I've just said are given here.

But let me now come take this Bose-Hubbard model and discuss its two limiting

cases. One case is where U is much larger than j. The other case is where j is much

larger than U. These are the two limiting cases, and it will turn out that one is an

insulator and one is a superfluid.

And that makes perfect sense, of course. If U is much larger than j, I can set j

equals to 0 if I can neglect it. No tunneling means no transport, and that means an

insulator. It's also clear that when there is no tunneling, that the system is really

described by a product of so and so many particles per site.

So it could be one particle per site. And I have a product over all sites, or two

particles per site. So this will be the ground state. And it's called the ground state of

the Mott insulator.

It's also trivial to discuss what happens if j is much, much larger than U, because

then I simply neglect U, and I have a free gas. Well, a free gas of Bloch wave

function, but that's the same as a free gas of planar wave function. It's just that

quasimomentum replaces momentum. And if you have just an ideal Bose gas in a

periodic lattice instead of Bose-Einstein condensation in the lowest momentum

state, you have Bose-Einstein condensation in the lowest quasimomentum state.

The lowest quasimomentum state is a superposition of all Wannier function-- I
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mean, the 0 momentum state in free space is a superposition of all position delta

functions. The plane wave is delocalized. And the lowest quasimomentum state is

just completely delocalized over all Wannier functions. But this is nothing else than

the q equals 0 quasimomentum Bloch wave.

The interesting question is-- and this has led to hundreds if not more papers in the

literature-- how do we go from one limit to the other limit? And now you would say,

well, maybe we should use what has worked so well. We should use the Bogoliubov

approximation. Just assume we have a condensate, replace all those kind of a 0

operators for the lowest Bloch waves.

However, this doesn't work, because the interesting thing here is to find the

transition from the superfluid from the Bose-Einstein condensate to an insulating

state. The nature of this approximation is that you need N 0 to be large. But we're

interested when the condensate wave function turns to 0, and in the insulator it

becomes 0.

So we are actually interested in the opposite limit. And indeed, if you would ignore

everything I've just said that doesn't make sense to make this approximation and

make it nevertheless, you will find that you never get the insulating state because

you've pretty much eliminated the possibility to describe an insulating state by doing

this approximation.

So I want to show you now that we have to do another mean field approximation,

which is actually nice. It's very different from this Bogoliubov approximation, but it's

also a mean field approximation which will describe our system. So the goal is now

that I want to find an effective Hamiltonian which describes the transition from here

to there.

And the important approximation I will use was is the following-- again, I have to get

rid of operators. Products of two many operators cannot be solved. And so what I

will do is I will use products of operators, write them as average value plus

fluctuations.
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And then when I multiply that out, I take the product of the average values, and I

include the fluctuations in leading order. So I take delta A times B and delta B times

A average, but I neglect the product of those fluctuations. You can say I neglect the

correlation of fluctuations here.

So this is spelled out here. But the sign is important. Just look at this equation-- A

delta B plus delta B with B plus A average times B average.

If I absorb A times B by upgrading delta B to B, but I do the same here, I have to

subtract 1 product of the two average values. It's actually this minus sign which will

play a role later, but here you see already that I will make this decoupling

approximation-- that I decouple the fluctuations from each other and I write it in this

way, there is an important minus sign.

OK, so we want to start in the insulating state. And we're going to figure out how

does the system develop superfluidity out of the insulation state? And the

perturbation operator which takes me out of the insulating state is tunneling.

So therefore, the operator which is responsible for breaking out of the insulating

state is the operator which induces tunneling between neighboring sites. And the

tunneling operator in this Hamiltonian-- remember, the Bose-Hubbard model had j

times B dagger B-- this was our tunneling term-- this involves now products of

operators.

And I told you we want to get rid of products of operators to get something we can

easily solve. So we use now this product of operators on two neighboring sites. And

we use exactly this decoupling approximation.

So therefore, we replace each operator by an average value, and we neglect the

product of the fluctuations. And then we obtain this. And I explained to you where

the minus sign came from. So now I call this average value of the operator B l, I call

the superfluid order parameter psi.

I think I could have chosen psi to be complex, and then B l dagger B l would have

complex conjugate. But it's sufficient here to restrict the discussion on real numbers,
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and it makes the notation simpler. So anyway, I introduce that.

And what happens now is the following-- that I have my Hamiltonian. The

Hamiltonian had the interaction energy. But the tunneling term is now very

simplified, because instead of tunneling from one site to a neighboring site, the

other side is sort of absorbed by the mean field, by the superfluid order parameter

psi.

And therefore, and this here gives me a psi squared term which appears here. Trust

me, this is just an identical rewrite of the previous Hamiltonian by using this

decoupling approximation. So what we have gained now is something really

dramatic.

We had many sites and tunneling from site to site. But if you look at it now, we

simply sum the effective Hamiltonian over site index l. So our effective Hamiltonian

is now the sum of an identical Hamiltonian per site.

The sites no longer interact with each other. Each site interacts with all the other

sites described by the mean field by the superfluid order parameter psi.

So therefore, our many-body problem, which is still a many-body problem, but has

turned into an effective Hamiltonian for each site, because each side has the same

Hamiltonian. Colin.

AUDIENCE: What happened to the j psi squared term?

PROFESSOR: This here?

AUDIENCE: Oh, OK.

PROFESSOR: OK so I can say instead of solving for the sum, I can just solve for each site

individually. And this is now my effective Hamiltonian for each site. Now I want to

catch the onset of superfluidity. So I want to get the system when psi is small.

And therefore, I can just ask-- I don't know what psi is. It's part of my solution. But

I'm interested in the moment when psi begins to take off from 0, when superfluidity
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emerges.

So what I can therefore do is, I can regard psi as an epsilon parameter, as a small

parameter. And the psi parameter comes with an operator V. And this operator V is

nothing else than B l dagger plus B l.

So in other words, what I'm doing is, I'm separating my Hamiltonian into a

Hamiltonian which is diagonal in the quantum numbers of the isolating state-- just

one, two, three particles per site. And psi squared is the Z number. Psi squared is

also diagonal in that.

And now the possibility of tunneling, the possibility of superfluidity is now

perturbative in this term psi times V.

OK, I don't want to explain, actually, this expression. It just formalizes [INAUDIBLE]

intermediate step. When we have the chemical potential, and we raise the chemical

potential-- we go from zero to one particle per site to two particles per site. And

whatever the chemical potential is determines whether we have one or two particles

per site.

This is just telling me as a function of chemical potential, what is the ground state of

the insulator? So now we take this ground state-- it's actually much easier described

in words then by this formula-- we take this ground state and do perturbation theory

in our term psi times V. Remember, the operator is B dagger B. And the epsilon is

psi.

So in second-order perturbation theory, we get psi squared. And then V, because B

B dagger, is very simple. It only couples one occupation number N to N plus 1 and

N minus 1, because B and B dagger destroy or create a particle per site.

So therefore, I can immediately write down what this matrix element is in second-

order perturbation theory. I mean, these are all-- sorry, it's all defined here. I know

I'm losing you now. Nobody will tell me what is the difference between U bar and U,

but it's trivially defined.
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So the idea is we have the isolating system. We do perturbation theory in tunneling.

And the perturbative operator is psi times B plus B dagger. The B plus B dagger

matrix elements are trivial, because they admix to N particles per site-- N plus 1 and

N minus 1. And this is what we've done here.

AUDIENCE: And the j is just occupation number?

PROFESSOR: The j is the occupation number of our site.

AUDIENCE: I have two questions. So in the bottom equation, what happened to the psi

squared?

PROFESSOR: Sorry, this is the sum. The psi square is missing.

AUDIENCE: I guess I had the same question for the equation next to the green thing. Is there

supposed to be a psi squared in there? Because originally, there's a psi squared

and an h0.

PROFESSOR: No, this is the ground state where psi is 0. And now we do perturbation theory in psi

V. These are the unperturbed energies which appear in the energy denominator.

The wave functions we are using are Fock states-- number states-- per site. And

here we couple occupation number j to all possible N's. But because of B and B

dagger, N has only two values-- j plus 1 and j minus 1. And this is what's given here.

It's mathematically trivial. The notation is more complicated than the physics behind

it. But now comes again-- I think I need five minutes and I'm done. But now comes

the interesting physics.

We have to ask what are we doing here? It's all the mathematical, and the math is

really simple here. What we have done is we have looked at the isolating state, and

we have done perturbation theory in psi times B plus B dagger. And now we get an

energy correction which is psi squared. And what are we really doing here?

Well, you can say the following-- we started with a hypothesis that we have a

superfluid state characterized by psi and psi, at the onset of superfluidity-- is small.
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But now we have done the calculation assuming that there is a psi. But now we are

turning around and said have we really done the system a favor by introducing

superfluidity? In other words, has our perturbation theory in psi lowered the energy

of the state or raised the energy of the state.

So in other words, we've done a hypothetical calculation. Hey, what would the

system feel like if there were a little bit of superfluidity? If the system says great, I've

lowered my energy, then we know we are in the superfluid state.

When the system says no, I raised my energy because of the psi, then the system

has rejected our idea to introduce superfluidity. So therefore, the question we are

raising now is after we have done the calculation, for what values of U and j is it

favorable to introduce a psi or not?

Now I was expecting the question of some of you that in second-order perturbation

theory, second-order perturbation theory always lowers the energy. But remember,

this is why I emphasized the minus sign-- we had a psi squared term which came

from that, which came from the last term of the decoupling approximation, which

had a minus sign.

And therefore, we have in psi squared one term which came from this special psi--

and I emphasized in the decoupling approximation. And we have a contribution of

psi squared which comes from perturbation theory. And the two together can

actually change their sign.

So what we have right now is if you describe the ground state as a function of psi,

we have our unperturbed energy of the Mott insulating states, and then we have a

term in psi squared. And we should-- and we could, but we don't-- calculate the next

order in psi to the four. And it turns out in fourth-order perturbation theory, this term

is always positive.

So what happens now to the total energy when this term A2, which we have exactly

analytically calculated-- if this term A2 is larger or smaller than 0. Well, if you have a

parabolic term and a quartic term, in this case, both the quadratic and the quartic
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term are opening up like in a U shape, but here the total energy turns into W shape.

And the interpretation is fairly simple. Under those conditions, the system prefers to

have psi equal 0, whereas here, it's like the system wants to have a psi parameter

which is finite, either positive or negative. And whether it's positive or negative is

sometimes called spontaneous symmetry breaking between two degenerate

solutions.

What I'm showing here is, of course, very similar to the Ginzburg-Landau theory of

phase transitions, where you have an effective potential and the phase transition

takes place when the second-order coefficient changes sign, and the effective

potential turns from U-shaped into W-shaped. So that's what we have done.

So anyway, I think this is a nice problem where the interpretation is, I think, much

more subtle than the calculation itself. But we've calculated the phase transition.

Everything is analytic. Here is the analytic result, which I know with very indigestible

notation.

I followed exactly the paper by Vanderstraeten, [? Stouff ?] and collaborators, which

is posted on the website. You can plot this phase diagram in this way. But if you use

what is more common, normalize the chemical potential by U and normalize j by U,

you get these wonderful lobes of the Mott insulator where you see that, if you

increase the chemical potential, you have N equals 1, N equals 2, N equals 3, Mott

insulator, and in between you go through superfluid regions.

However if your tunneling is larger, if your tunneling is too large, you're only

superfluid. So this is sort of the way how you derive this rather rich phase diagram

of bosonic atoms in an optical lattice. Green is an insulating state. And white is the

superfluid state.

Let me just conclude by showing a few slides how this can be observed. So in one

case, we have an insulating state with a definite number of particles per site. And

here we have superfluid state, which has the normal fluctuations in number.

Here's another cartoon picture of an condensate in the lowest Bloch wave function.
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And here you have localized number states. Often, you observe the transition by

taking the system and releasing it in time of flight into ballistic expansion.

If the superfluidity is coherent, the wave function on the different sites is coherent.

And what you get is a multi-slit interference pattern, which is a diffraction pattern.

And you see these characteristic diffraction patterns. It's an in-slit diffraction pattern

which characterizes the coherence in the initial state.

However if you have a completely isolating state, you have a Gaussian wave packet

on each side, which has nothing to do with the next neighbor. And then the

Gaussian wave function simply expands in a structureless way. And so the transition

from here to there happens exactly when the ratio of U over j crosses the value we

have derived.

There's another technique of observing that which is more recent. This is a

quantum gas microscopes where you do the same physics in two dimensions, so

you have only one plane where this physics takes place. And you can observe

atoms now with a microscope.

So each green dot here is an atom. If you sort of zoom in. And if you now study the

region where you go through the superfluid to the Mott insulator, you see that you

have exactly one atom per site.

If you increase the atom number, you have an insulator with one atom per site. And

in the middle, you have state with two atoms per site, which-- for reasons I don't

want to discuss-- are color-coded here in black. And that sort of goes on and goes

on. So you can really resolve site per site the occupation of the number of atoms

per site.

So I think I'll stop here with the Bose gases. When you think the Mott insulator is the

end of the story, all motion has been frozen out and you have one particle per site,

well, it could be the beginning of a new story. Because if you use two different

hyperfine states, spin up and spin down, we can talk about spin ordering.

But this would be a whole different lecture.
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