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Lecture 6: Scaling Theory of Localization 

6.1 Notion of dimensionless conductance. 

G 
g = where G is (resistance)−1 

e2/π� 

G = σLd−2 L = dimension of system 

Recall Einstein’s formula which relates conductivity to diffusion: 

N (0) 
σ = 2e 2 · D 

Ω 

where 

N (0) = # of states/energy 

Ω = unit volume 

D = diffusion coefficient 

Way to derive above equation is to calculate charge current density in two ways. 

j =	 −eD� · n · · · current as diffusion of charge carriers 

j = −σ�V · · · V is local electrical potential 

dV 
= −σ · �n 

dn 

Now, the local chemical potential is linearly related to V , i.e. 

µ =	 eV + constant


dn dn 2N (0)

∴ = = e = e · · · · 2 is for spin. 

dv dµ Ω 
σ Ω 

∴ j = − · �n	 (1) 
e 2N (0) 

Comparing this to Einstein’s formula, one gets 

N (0) 
σ =	 2e 2 · D (2) 

Ω 
2e2 

�D 
⇒ G = e 2 

2N (0) 
· D · Ld−2 = · · N (0) 

Ω	 � L2 
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6.2 Thouless Energy 

The last equation suggests to define a quantity called Thouless Energy, ET


�D �

ET = = (3) 

L2 τT 

Now, 
1 

N (0) ∼ · · · Δ is level spacing 
Δ 

2e2 ET ET 
⇒ G ∼ ⇒ g ∼ 

� Δ Δ 

Physical interpretation 

Assume the one box problem is solved and we want to study the behavior of the system 

as it gets bigger. Each box has its own distribution of energy levels. As the two boxes 

are in contact, the wavefunctions that were initially localized in separate boxes would mix. 

For weak coupling, one can do perturbation theory if mixing is smaller than typical level 

spacing Δ. For weak mixing, the wavefunctions resemble the initial states and so one gets 

localized distribution. For strong coupling, the final state would be a complicated mixture of 

all initial states and we get extended states. Physically one can think of diffusion as lifetime 

to leak particle out of box. And so it’s reasonable to think of Thouless energy as effective 

coupling. Thus the ratio ET /Δ, which also represents the dimensionless conductance ’g,’ 

characterizes the further scaling properties. 
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6.3 Sensitivity of energy eigenvalues to boundary conditions and its relation to ET . 

Here we derive another form of ET . Usually one uses periodic boundary conditions 

ψα(x + L) = ψα(x) · · · ψα is an eigenstate of the Hamiltonian. 

One can as well use the twisted boundary condition 

iφψα(x)ψα(x + L) = e · · · φ is same for all α. 

Such boundary conditions can arise if a magnetic field is present. Consider applying a 

uniform magnetic field (magnetic field is confined in flux tube) along the z direction. And 

we study the behavior of the eigenstates sitting on a cylindrical surface whose axis is parallel 

to the magnetic field. 

1 � eA 
�

2 

+ ψα + V (r)ψα = Eαψα
2m i c 

x 

ψ → ψ� exp −i A · d� 
o 

1 � � 
⇒ −�2 

α(r) + v(r)ψ� 
α(r)ψ� 

α(r) = Eαψ
� 

2m 

Thus the gauge transformation has removed A from the Schrodinger equation, but now 

ψα(r) has different boundary conditions. 



� 
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� � L � 

ψ�(x+ L) = ψ�(x) exp i A · d� 
o 

= ψ�(x) exp [iφB] 

where φB is magnetic flux. We will compute ΔEα using perturbation theory. 

e φ 
H = VxA = Vx 

c L 

To first order in H �, ΔEα = 0 as < H � >∼< Vx >= 0. 

For perturbation theory second order in A, we have two terms: the diamagnetic term 

e2 A2 

c2 2m 

which gives a constant shift to all energy levels 

1 1 
= φ2 

2m 

The paramagnetic term gives, to second order in A (or φ), 

� | < β|VxA|α > |2 φ2 
� | < β|Vx|α > |2 

= 
Eα − Eβ L2 Eα − Eβ

β±α β �=α 

∂2Eα 1 2 � | < β|Vx|α > |2 

∴ = + (4) 
2 L2∂φ2 mL Eα − Eβ

α�=β 

Thus one gets the same matrix element < β|Vx|α > that appeared in derivation of Kubo 

formula. 

Typical variation in energy levels can look like this. As first order shift is zero, all curves 

have zero slope at α = 0. All low lying states don’t undergo much variation as they occur 

in potential valleys and hence localized. 

One can do a sanity check on Eq.(4). On general grounds, there is equal probability 

for any level to go up or down and so average variation in Eα’s should be zero. By using 

Thomas-Reich-Kunz F -sum rule, one can indeed show that 

� ∂2Eα 
= 0 

2∂φ
α 
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Now, | < β|Vx|α > |2 ∼ V 2 . Fluctuation of such terms is dominated by the term with 

maximum weight, i.e., by smallest Eα − Eβ 

� | < β|Vx|α > |2 V 2 

variance ∼ 
Eα − Eβ Δ 

β �=α 

This is the average fluctuation in the curvature. 

Thus typically, 

� ∂2Eα � 1 V 2 

∼ Et 
� ∂φ2 � L2 Δ 

1 V 2 1 
Et ∼ ∼ 

2 
V 2 · N(0) 

L2 Δ L

Now, 
N2(0) N(0) 

2πσ = 2e · V 2 = 2e 2 D 
Ω Ω 

By comparing Boltzmann & Einstein formula for σ 

D 
⇒ D = πV 2N(0) ⇒ Et = ∼ ET

2 

E

L

Thus for large ET /Δ, one gets extended states and hence large conductance, while for small 

T /Δ, one gets localized states and hence small conductance. Thus we have established the 

relevance of Thouless energy for conductance. 



� 
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6.4 Application to 1 − Δ System


One expects Ohm’s low behavior for small length.


1

g(L) ∼ as L increases, g(L) decreases 

L 

as 
ET 

g(L) < 1 ⇒ < 1 
Δ 

and so the states are localized. 

⇒	 For large L, g(L) ∼ e −L/ξ 

· · · ξ is the localization length 

τ

Due to inelastic scattering the eigenvalues become ill-defined because of dephasing. Let 

us define a quantity τφ as the time over which a state looses the information about its phase. 

φ for various scattering mechanisms can be given by 

T 2	 T 31	 1 
∼	 ∼ 

ω2τee �F τe−phonon D 

Let us define Lφ as the length over which the dephasing occurs. 

Lφ = Doτφ 

So our argument works if 

Lφ >> width of the sample. 
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Otherwise we are considering a system to which our derivation based on Quantum Mechanics 

ideas doesn’t apply and the system should rather be treated classically. And in such a 

situation, one used Ohm’s law. So to observe non-metallic behavior of copper wire, one 

needs to have a very small wire thickness or very low temperature as Lφ increases with 

decrease in temperature. 

Thus one expects the following behavior of conductivity of a one-dimensional system. 

For Lφ > ξ, we can think of conductivity in terms of hopping of electrons over a distance 

scale ξ in time τφ. This gives rise to a diffusion constant of ξ2/τφ and resistivity which is 

proportional to τφ � T −p. [reference, book by Y. Imry] 


