MIT OpenCourseWare
http://ocw.mit.edu

8.512 Theory of Solids II

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1. Estimate the mean free path for plasmon production by a fast electron through a metal by the following steps:
(a) For small q it is a good approximation to assume that $\varepsilon^{-1}(q, \omega)$ is dominated by the plasmon pole, i.e.

$$
\operatorname{Im}-\frac{1}{\varepsilon(q, \omega)} \approx A(q) \delta\left(\omega-\omega_{p l}\right) .
$$

Determine the constant $A(q)$, using the f-sum rule.
(b) Using (a), write down an expression for the probability of scattering into a solid angle Ω by emitting a plasmon.
(c) Estimate the mean free path for plasmon emission. Put in some typical numbers (electron energy $=100 \mathrm{KeV}$, etc.)
2. Dielectric constant of a semiconductor.
(a) In a periodic solid, show that the dielectric response function is given within the random phase approximation by

$$
\begin{equation*}
\varepsilon(q, \omega)=1+\frac{4 \pi e^{2}}{q^{2}} \sum_{k} \frac{\left.\left|\langle\mathbf{k}+\mathbf{q}, \beta| e^{i \mathbf{q} \cdot \mathbf{r}}\right| \mathbf{k}, \alpha\right\rangle\left.\right|^{2}\left(f\left(\varepsilon_{k}^{\alpha}\right)-f\left(\varepsilon_{\mathbf{k}+\mathbf{q}}^{\beta}\right)\right)}{\varepsilon_{\mathbf{k}+\mathbf{q}}^{\beta}-\varepsilon_{\mathbf{k}}^{\alpha}-\omega-i \eta} \tag{1}
\end{equation*}
$$

where the sum over \mathbf{k} is over the first Brillouin zone and ε_{k}^{α} is the energy of band α.
(b) We will evaluate Eq. (1) in an approximate way for a semiconductor in the limit $\omega=0$ and $q \rightarrow 0$. Argue that the energy denominator in Eq. (1) may be replaced by an energy scale Δ given by the average energy gap. To estimate the numerator, derive the following theorem:

$$
\begin{equation*}
\left.\sum_{b}\left(\varepsilon_{b}-\varepsilon_{a}\right)\left|\langle b| e^{i \mathbf{q} \cdot \mathbf{r}}\right|\right\rangle\left. a\right|^{2}=\frac{\hbar^{2} q^{2}}{2 m} \tag{2}
\end{equation*}
$$

where $|a\rangle$ and $|b\rangle$ are the eigenstate of a Hamiltonian \mathcal{H} with a kinetic energy term $-\hbar^{2} \nabla^{2} / 2 m$. This is a generalization of the f-sum rule in atomic physics. It is proven by evaluating the expectation value of

$$
\left[\left[H, e^{i \mathbf{q} \cdot \mathbf{r}}\right], e^{-i \mathbf{q} \cdot \mathbf{r}}\right]
$$

in the state $|a\rangle$. [We assume H obeys time reversal symmetry, i.e. $\psi_{\alpha}(r)$ and $\psi_{\alpha}^{*}(r)$ are both eigenfunctions with energy E_{α}.]
(c) By making the further approximation that the energy difference in Eq. (2) may be replaced by the energy scale Δ, show that for a semiconductor

$$
\varepsilon(q \rightarrow 0, \omega=0)=1+\left(\frac{\hbar \omega_{p l}}{\Delta}\right)^{2}
$$

where $\omega_{p l}$ is the plasma frequency. Estimate ε for Si and Ge and compare with experiment.

