8.512 Theory of Solids II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

- 1. Using the results of Problem 1, Set 10,
 - (a) Calculate the low temperature $\chi_{\parallel}(T)$ for a Heisenberg antiferromagnet. Show that it is proportional to T^2 .
 - (b) For an antiferromagnet with an Ising anisotropy, argue that $\chi_{\parallel} \sim e^{-\Delta/T}$. What is the value of Δ ?
- 2. Consider an antiferromagnet with exchange -J on a cubic lattice with an anisotropy term $-DS_z^2$ where D > 0. We showed in class that the spin wave spectrum is

$$w(\mathbf{k}) = \sqrt{(w_0 + w_A)^2 - w_0^2 |\gamma_k|^2}$$
(1)

where $w_0 = 2zJS$, $w_A = 2DS$, $\gamma_k = \frac{1}{z} \sum_{\{\delta\}} e^{i\mathbf{k}\cdot\boldsymbol{\delta}}$, and $\{\boldsymbol{\delta}\}$ is the set of vectors to the z nearest neighbors.

(a) Show that in an external field H_z parallel to \hat{z} , the doubly degenerate spectrum is split as

$$w_{H_z}(\mathbf{k}) = w(\mathbf{k}) \pm g\mu_B H_z \quad . \tag{2}$$

(b) Now consider an external field in the transverse direction, i.e., $\mathbf{H} = H_y \hat{y}$. What happens to the spin wave spectrum?