MIT OpenCourseWare
http://ocw.mit.edu

8.512 Theory of Solids II

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8.512 Theory of Solids

Problem Set 6

Due April 6, 2004

1. (a) We can include the effects of Coulomb repulsion by the following effective potential:

$$
V(\omega)=V_{p}(\omega)+V_{c}(\omega)
$$

where $V_{p}=-V_{0}$ for $|\omega|<\omega_{D}$ is the phonon mediated attraction and $N(0) V_{c}=$ $\mu>0$ for $|\omega|<E_{F}$ represents the Coulomb repulsion. Write down the selfconsistent gap equation at finite temperature. Show that $\Delta(\xi)$ is frequency dependent even near T_{c} so that the T_{c} equation becomes

$$
\begin{equation*}
\Delta(\xi)=-N(0) \int d \xi^{\prime} V\left(\xi-\xi^{\prime}\right) \Delta\left(\xi^{\prime}\right) \frac{1-2 f\left(\xi^{\prime}\right)}{2 \xi^{\prime}} \tag{1}
\end{equation*}
$$

This integral equation is difficult to solve analytically, but we may try the following approximate solution:

$$
\begin{aligned}
\Delta(\omega) & =\Delta_{1}, \quad|\omega|<\omega_{D} \\
& =\Delta_{2},|\omega|>\omega_{D}
\end{aligned}
$$

Now rewrite Eq.(1) as

$$
\begin{equation*}
\Delta(\xi)=-N(0) \int d \xi^{\prime} V_{p}\left(\xi^{\prime}-\xi\right) \Delta\left(\xi^{\prime}\right) \frac{1-2 f\left(\xi^{\prime}\right)}{2 \xi^{\prime}}+A \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\xi)=-N(0) \int d \xi^{\prime} V_{c}\left(\xi^{\prime}-\xi\right) \Delta\left(\xi^{\prime}\right) \frac{1-2 f\left(\xi^{\prime}\right)}{2 \xi^{\prime}} \tag{3}
\end{equation*}
$$

Convince yourself that $A(\xi)$ is a slowly varying function of ξ for $\xi \ll E_{F}$, so that we may approximate $A(\xi)$ by $A(0)$ in Eq.(2). Produce an argument to show that in the region $\xi>\omega_{D}$ the first term in the R.H.S. of Eq.(2) is small compared with A so that in fact $\Delta_{2} \approx A(0)$. In the same spirit show that

$$
\Delta_{1} \sim N(0) V_{0} \Delta_{1} \ln \frac{\omega_{D}}{k T_{c}}+\Delta_{2}
$$

Combining this with an equation for Δ_{2} using Eq.(3), show that the T_{c} equation becomes

$$
\begin{equation*}
1=\ln \left(\frac{\omega_{D}}{k T_{c}}\right)\left(N(0) V_{0}-\mu^{*}\right) \tag{4}
\end{equation*}
$$

where $\mu^{*}=\frac{\mu}{1+\mu \ln \left(E_{F} / \omega_{D}\right)} . \mu^{*}<\mu$ is called the renormalized Coulomb repulsion. It can be thought of as an effective repulsion with a cutoff at ω_{D} instead of E_{F}. Equation (4) shows that the condition for superconductivity is $N(0) V_{0}>\mu^{*}$ and not $N(0) V_{0}>\mu$. For screened Coulomb repulsion, estimate μ and μ^{*} for a typical metal.
(b) Upon isotope substituting $M \rightarrow M+\delta M$, how is the Debye frequency affected to leading order? Assuming that this is the only effect, how is $\delta T_{c} / T_{c}$ related to $\delta M / M$, (i) in the absence of Coulomb repulsion, and (ii) including Coulomb repulsion.

