MIT OpenCourseWare http://ocw.mit.edu

8.512 Theory of Solids II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

- 1. (a) Consider a one-dimensional chain of hydrogen atoms with lattice spacing a. Using a single 1s orbital per atom, construct the tight binding band. You may keep only the nearest-neighbor matrix element $V(a) = \langle \phi(r)|H|\phi(r+a)\rangle$, and ignore the overlap $\langle \phi(r)|\phi(r+a)\rangle$. Assume V<0. Where is the Fermi energy?
 - (b) Now assume that the *n*th atom is displaced by a small amount $(-1)^n \delta$ along the chain direction. For small displacement show that the matrix elements are alternating $V + \Delta$ and $V \Delta$, where $\Delta = 2\delta \left(\frac{dV}{da}\right)$. What is the new band structure? Is the system a metal or an insulator?
 - (c) Calculate the change in the electronic energy upon distortion. Show that it is of the form $\Delta^2 \ln |\Delta/V|$ in the limit $|\Delta| \ll |V|$. Compute the coefficient of this term.

Hint: Make use of the fact that $|\Delta| \ll |V|$. Then the contributions to the energy change come mainly from momentum states near $k = \pm \pi/2a$, where $\cos ka$ and $\sin ka$ can be expanded to leading order.

- (d) The displacement costs lattice energy which is of the form $b\delta^2$ in the harmonic approximation. Show that the uniform chain is unstable to the distortion assumed in part (b). Similar arguments were put forward by Peierls in 1950 to show that a one-dimensional metal is unstable to distortions which turn it into an insulator.
- (e) Evaluate the polarization function $\Pi_0(q,\omega=0)$ for a one-dimensional free Fermion gas. Show that a logarithmic singularity appears at $q=2k_F$.
- 2. Consider a two-dimensional electron gas (electron motion is confined to the x-y plane). What is the plasmon dispersion $\omega_{pl}(q)$ for small \mathbf{q} in the plane? Show that ω_{pl} is proportional to $|q|^{1/2}$.

Hint: Note that while the electrons are confined to the plane, the electromagnetic field is not.