MIT OpenCourseWare
http://ocw.mit.edu

8.512 Theory of Solids II

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1. (a) Consider a one-dimensional chain of hydrogen atoms with lattice spacing a. Using a single $1 s$ orbital per atom, construct the tight binding band. You may keep only the nearest-neighbor matrix element $V(a)=\langle\phi(r)| H|\phi(r+a)\rangle$, and ignore the overlap $\langle\phi(r) \mid \phi(r+a)\rangle$. Assume $V<0$. Where is the Fermi energy?
(b) Now assume that the nth atom is displaced by a small amount $(-1)^{n} \delta$ along the chain direction. For small displacement show that the matrix elements are alternating $V+\Delta$ and $V-\Delta$, where $\Delta=2 \delta\left(\frac{d V}{d a}\right)$. What is the new band structure? Is the system a metal or an insulator?
(c) Calculate the change in the electronic energy upon distortion. Show that it is of the form $\Delta^{2} \ln |\Delta / V|$ in the limit $|\Delta| \ll|V|$. Compute the coefficient of this term.

Hint: Make use of the fact that $|\Delta| \ll|V|$. Then the contributions to the energy change come mainly from momentum states near $k= \pm \pi / 2 a$, where $\cos k a$ and $\sin k a$ can be expanded to leading order.
(d) The displacement costs lattice energy which is of the form $b \delta^{2}$ in the harmonic approximation. Show that the uniform chain is unstable to the distortion assumed in part (b). Similar arguments were put forward by Peierls in 1950 to show that a one-dimensional metal is unstable to distortions which turn it into an insulator.
(e) Evaluate the polarization function $\Pi_{0}(q, \omega=0)$ for a one-dimensional free Fermion gas. Show that a logarithmic singularity appears at $q=2 k_{F}$.
2. Consider a two-dimensional electron gas (electron motion is confined to the $x-y$ plane). What is the plasmon dispersion $\omega_{p l}(q)$ for small \mathbf{q} in the plane? Show that $\omega_{p l}$ is proportional to $|q|^{1 / 2}$.

Hint: Note that while the electrons are confined to the plane, the electromagnetic field is not.

