MIT OpenCourseWare http://ocw.mit.edu

8.512 Theory of Solids II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8.512 Theory of Solids

Problem Set 5

Due March 18, 2004

1. Consider a two dimensional superconductor with a d-wave energy gap given by

$$\Delta(\phi) = \Delta_0 \cos 2\phi .$$

Assume an isotropic energy band with Fermi velocity ν_F in the normal state. The quasiparticle spectrum is given by

$$E(\mathbf{k}) = \sqrt{\nu_F^2 (|\mathbf{k}| - k_F)^2 + \Delta^2(\phi)}.$$

(a) Show that the energy gap vanishes at 4 points on the Fermi surface. In the vicinity of these nodal points, show that the quasiparticle dispersion is given by

$$E(\mathbf{k}) = \sqrt{\nu_F^2 k_1^2 + \nu_2^2 k_2^2} ,$$

where k_1 and k_2 are momentum components perpendicular and parallel to the Fermi surface measured from the nodal points. What is ν_2 in terms of Δ_0 and k_F ? Show that the density of states at energy E per node per spin is $\frac{1}{2\pi\nu_F\nu_2}E$.

(b) Show that at low T, thermal excitation of the quasiparticles leads to a linear T reduction of the superfluid density

$$\frac{\rho_s}{m}(T) = \frac{\rho_s}{m}(T=0) - \frac{2\ln 2}{\pi} \frac{\nu_F}{\nu_2} T$$
.

The integral you encounter can be done by a change of variable $y = e^{-x}$.

(c) In the presence of \boldsymbol{A} and $\nabla \theta$ where θ is the phase of the order parameter, the quasiparticle spectrum is changed by

$$E(\mathbf{k}, \mathbf{A}) = E(\mathbf{k}) + \mathbf{\nu}_F \cdot \frac{1}{2} \left(\mathbf{\nabla} \theta + \frac{2e}{c} \mathbf{A} \right)$$

The last term is the gauge invariant generalization of the term we discussed in class. Consider a single vortex and assume the superconductor is extreme type II.

At a distance R away from the vortex core in the \hat{x} direction, calculate the density of states which is generated at the Fermi level. (Assume $\xi_0 \ll R \ll \lambda_L$.) How is your answer different if you approach the vortex core in the (1,1) direction?

(d) In an external field H, a triangular vortex lattice is formed. Show that the density of states found in (c) gives rise to the following unusual contribution to the specific heat

$$c_{\nu} = \alpha \sqrt{H}T$$
,

Make a crude estimate of the coefficient α .

For an experimental confirmation of the prediction first made by G. Volovik, *JETP Lett.* **58**, 469 (1993), see K. Moler *et al.*, *Phys. Rev. Lett.* **73**, 2744 (1994).

2. Make a table for the real part of the transverse and longitudinal response functions K_{\perp} and K_{\parallel} . Give the limits $\omega = 0, q \to 0$, and $q = 0, \omega \to 0$ for a perfect metal, a disordered metal, and a superconductor with or without disorder (16 quantities in all!). Write the leading nonvanishing contributions in terms of physical quantities such as Landau diamagnetism, conductivity and scattering lifetime.