MIT OpenCourseWare http://ocw.mit.edu

8.512 Theory of Solids II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

In this lecture we will discuss some general properties of the response functions χ , and some useful relations that they satisfy.

3.1 General Properties of $\chi(\vec{q},\omega)$

Recall that

$$\chi(\vec{q},\omega) = \frac{\delta n(\vec{q},\omega)}{U(\vec{q},\omega)}$$
(3.1)

with $n(\vec{r},t) \in \mathbb{R}$ and $U(\vec{r},t) \in \mathbb{R}$. Under Fourier transform, this implies

$$n(-\vec{q},-\omega) = n^*(\vec{q},\omega) \tag{3.2}$$

$$U(-\vec{q}, -\omega) = U^*(\vec{q}, \omega) \tag{3.3}$$

As a result,

$$\chi(\vec{q},\omega) = \chi^*(-\vec{q},-\omega) \tag{3.4}$$

$$\chi''(-\vec{q},-\omega) = -\chi''(\vec{q},\omega) \tag{3.5}$$

where χ'' is the imaginary part of the response function $\chi(\vec{q}, \omega)$.

Consider the extension of ω to the complex plane. We can then rewrite the expression for $\chi(\vec{q},\omega)$ as

$$\chi(\vec{q},\omega) = \lim_{\eta \to 0^+} -\sum_n |\langle n | \hat{\rho}_{\vec{q}}^{\dagger} | \phi_0 \rangle|^2 \left\{ \frac{1}{\omega - (E_n - E_0) + i\eta} - \frac{1}{\omega + (E_n - E_0) + i\eta} \right\}$$
(3.6)

Without the $+i\eta$ term in the energy denominator, there would be singularities (poles) on the real axis whenever ω is equal to the spacing between the ground state and some excited state. The presence of $+i\eta$ pushes these poles just into the lower 1/2-plane, ensuring that $\chi(\vec{q},\omega)$ is analytic in the entire upper-1/2 ω -plane including the real axis.

Analyticity of $\chi(\vec{q}, \omega)$ in the upper-1/2 plane is needed to build *causality* into the theory. Consider the response function in time, $\chi(t)$:

$$\chi(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\chi(\omega) \,e^{-i\omega t} \tag{3.7}$$

To evaluate this integral, we perform a contour integral in the complex ω plane. For t < 0, closing the contour in the upper 1/2 plane ensures that $|e^{-i\omega t}| \to 0$ on the curved portion of the

1

contour. Since we have ensured that $\chi(\omega)$ is analytic in the upper half plane, Cauchy's residue theorem guarantees that the integral over the entire contour is 0. As a result, the piece we need, i.e. the integral from $-\infty$ to ∞ along the real axis, must also be 0. Thus $\chi(t) = 0$ for t < 0, which means that the system cannot respond to a perturbation until *after* the perturbation has occurred.

What about the t > 0 case? In this case, the contour must be closed in the lower 1/2 plane to prevent the exponential from blowing up. However, the $i\eta$ in the energy denominator has pushed the singularities into this region of the complex ω plane. Thus the value of the contour integral will be nonzero, and the system will respond to perturbations for t > 0.

3.2 Kramers-Kronig

Consider the integral

$$\oint d\omega' \frac{\chi(\vec{q}, \omega')}{\omega - \omega'} = 0 \tag{3.8}$$

As we have just shown in the previous section, our definition of $\chi(\vec{q},\omega)$ ensures that $\chi(\vec{q},\omega)$ is analytic in the upper-1/2 complex ω plane. Although the integrand here has a pole on the real axis due to the $\omega - \omega'$ in the denominator, by making a hump over this pole we can ensure that the value of the contour integral itself vanishes by Cauchy's residue theorem.

Assuming that $\chi(\vec{q},\omega) \to 0$ as $|\omega| \to \infty$,

$$0 = \int_{-\infty}^{\infty} d\omega' \chi(\vec{q}, \omega') \Pr\left[\frac{1}{\omega - \omega'}\right] + i\pi\chi(\vec{q}, \omega)$$
(3.9)

where the additional term $i\pi\chi(\vec{q},\omega)$ is one half of the contribution from the pole at $\omega' = \omega$ that we picked up by making a hump over the pole. Thus for fixed \vec{q} ,

$$\chi'(\vec{q},\omega) = -\frac{1}{\pi} \Pr\left[\int_{-\infty}^{\infty} d\omega' \frac{\chi''(\vec{q},\omega)}{\omega - \omega'}\right]$$
(3.10)

$$\chi''(\vec{q},\omega) = -\frac{1}{\pi} \Pr\left[\int_{-\infty}^{\infty} d\omega' \frac{\chi'(\vec{q},\omega)}{\omega - \omega'}\right]$$
(3.11)

or equivalently

$$\chi(\vec{q},\omega) = \lim_{\eta \to 0^+} -\int_{-\infty}^{\infty} \frac{d\omega'}{\pi} \frac{\chi(\vec{q},\omega)}{\omega - \omega' + i\eta}$$
(3.12)

The important message from all of this is that the entire response function $\chi(\vec{q}, \omega)$ can be reconstructed from its imaginary (or real) part *alone*.