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Lecture 7: The Scaling Theory of Conductance ­
Part II 

Last time, we studied localization and conductance in one dimension using arguments about 
the scaling behavior of systems with random potentials. In this lecture, we will extend those 
arguments to higher dimensions to learn about conductance in two and three dimensional systems. 

In the last lecture, we first studied some basic properties of the energy levels of independent 
electrons in a box with a random potential. The energy levels of such a system occur at random 
energies, with a typical spacing between levels Δ. We then investigated the perturbing effect of 
the coupling between many such boxes in contact with one another. The typical energy range 
over which the levels would be shifted by this coupling is of the order of the Thouless energy ET . 
Extended (conducting) states of the joint system are realized when ET is much greater than the 
typical level spaceing Δ. This is the strong­coupling limit. 

The Thouless energy was also related to the dephasing time τφ through the relation 

ET = 
h̄ 
τφ 

(7.1) 

Within our model of microscopic diffusion, we also get a dephasing length Lφ � 
Lφ = Dτφ (7.2) 

where D is the microscopic diffusion constant. 
Although we live in a three dimensional world, we can realize the physics of lower dimensional 

systems from bulk systems by keeping some dimensions of the system on the order of the dephasing 
length. For instance, a long wire with a diameter less than Lφ yields a good example of a one 
dimensional system. A two dimensional system can be realized by evaporating thin films to a 
thickness of order Lφ or less. 

We also defined a localization length ξ as the length at which the Ohm’s law 1/L conductance 
becomes of order 1. Ordinarily, there are two length scales in a system – the mean free path 
� = vF τel, and the localization length ξ. In a strictly one dimensional system, however, all of the 
back scattering adds up to give 100% reflection after some distance. As a result, there is always 
localization in a one dimensional system, and ξ = �. 

7.1 Scaling Theory of Conductance: General Formulation 

Our idea is to start on a small scale over which we are able to understand the behavior of the 
system, and then to gradually build up our knowledge at larger distances from this small length­
scale knowledge. This approach is very much related to the renormalization group procedure 
used extensively in statistical physics. 
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2 Scaling Theory of Conductance: General Formulation 

Our main assumption is that the dimensionless conductance g is a function of length scale 
only 

g = g(L) (7.3) 

That is, we assume that when several copies of a small system are stacked together to make up 
a larger system, the conductance of the larger system depends only on the conductance of the 
original small system. 

We wish to answer the question of how g depends on L. Since the intuitive picture of our 
scaling procedure involves doubling the system size over and over again, it makes sense to think 
in a logarithmic scale. Thus we will consider the logarithmic derivative 

d ln g 
= β [g(L)] (7.4)

d ln L 

where β is some function of its argument. 
Notice that the right hand side of equation (7.4) depends on L only through the function g(L). 

This is exactly what we mean by our assumption of scaling behavior. To determine the form of 
this function β[g], we will examine its behavior for large and small values of the conductance g. 

The case of g � 1 corresponds to the metallic limit, in which we expect the familiar Ohm’s 
Law scaling to hold 

(7.5)g ≈ σ0L
d−2 + · · · 

where Ld−2 comes from the ratio of the cross sectional area of the sample to its length. 
In this large g limit, 

lim β[g] = (d − 2) (7.6) 
g→∞ 

To modify this result with higher order corrections, we can assume that there exists an 
analytical expansion for β in powers of 1/g. Since we are working in the g → ∞ limit, 1/g is a 
good small parameter. To first order in 1/g, we get 

1 
β[g] → (d − 2) − c 

g 
(7.7) 

where c is some unknown constant. 
In the opposite limit, we have g � 1, which corresponds to the case of localization. Here, 

we expect the conductance to drop off exponentially with length 

g ≈ e−L/ξ (7.8) 

Differentiating this expression, we get 

d ln g 
=

1 dL 
d ln L 

− 
ξ d ln L 

(7.9) 

L 
= − 

ξ 
(7.10) 

= ln g (7.11) 

which gives 

lim β[g] = ln g (7.12) 
g→0 
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7.2 Scaling Theory of Conductance: Results in 1, 2, and 3 Dimensions 

Based on the limiting behavior calculated above, we can draw a qualitative picture of how we 
expect β to behave in the β­g plane. We analyze the behavior of β in one, two, and three 
dimensions. In all cases, the conductance increases with increasing values of L if β > 0, and 
decreases with increasing L if β < 0. 

One Dimension: In one dimension, β reaches an asymptotic value of ­1 for large values 
of g. Thus the “flow” of the transformation as L increases is towards smaller values of g. Thus 
as the length of a one dimensional system is increased, the conductance decreases towards 0 and 
eventually crashes exponentially as g becomes less than unity. 

Two Dimensions: For a two dimensional system, the asymptotic limit of β for large values 
of g is 0. This is an interesting case, as it implies that the conductance of a two dimensional 
system is independent of the system size for a large enough length scale. However, the presence 
of the correction term in (1/g) indicates that (for c > 0) there is still a very slight negative slope 
to the g versus L curve, meaning that as the system is scaled up the conductance will eventually 
be sucked in towards g = 0 and a localized state will be realized. 

To investigate this behavior further, we can integrate β[g] to get g as a function of L. For 
large g and d = 2, 

d ln g 
d ln L 

= − 
c 
g 

(7.13) 

dg 
d ln L 

= − c � � 
(7.14) 

g = g0 − c ln 
L 
L0 

(7.15) 

where we have used the initial conditions L0 = �, the mean free path characterizing the small 
length scale over which we began the scaling procedure, and g0 = σBoltz is the Boltzmann 
conductivity on this small length scale. Thus we see that the conductance in two dimensions 
decreases logarithmically as L increases. 

How do we expect these results to be modified at finite temperatures? Due to fluctuation 
effects such as the electron­phonon interaction etc, we expect the dephasing time to have power­
law scaling with temperature 

1 ∝ TP (7.16)
τφ 

Based on this dephasing time, we can define a dephasing length 

Lφ = D0τφ (7.17) 

≈ T−P/2 (7.18) 

For length scales greater than this dephasing length, we expect the system to display classical 
behavior. Thus Lφ injects a long distance cut­off, above which g should obey classical Ohm’s 
Law scaling with 

cP 
g = g0 + ln(Tτel) (7.19)

2 

This is the limiting case for perturbative weak localization – it is only valid if the correction term 
is small compared with g0. 
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The Unstable Fixed Point in Three Dimensions 4 

Three Dimensions: In three dimensions, the situation is a little more interesting. The 
large g limit has β[g] positive ((d − 2) = 1), while the small g limit crashes to −∞ like ln g. 
By continuity, this means that the function β[g] must cross the β = 0 at some point gc on the 
g­axis. This point is of considerable interest, as it represents a stationary point of the scaling. 
If a three dimensional system is realized with a dimensionless conductance equal to the critical 
conductance gc, then the conductance will be independent of scale as the system size is changed. 
However, if the initial conductance is slightly greater than gc, the flow will take the system to 
higher and higher values of conductance. On the other hand, if the initial conductance is less 
than gc, then the conductance will crash to 0 as the system scale is increased. To achieve such 
conditions in three dimensions, it is necessary to start with an extremely disordered system. 

7.3 The Unstable Fixed Point in Three Dimensions 

Recall that gc is the value of the conductance at which β[gc] = 0. If the conditions are arranged 
such that a system in three dimensions has conductance gc, then the system will exhibit the 
curious behavior of scale invariance. However, we already showed that the flow for increasing L 
is away from this fixed point for deviations to either side of gc. Thus the fixed point at gc is an 
unstable fixed point. 

With such interesting mathematical behavior in the vicinity of gc, you can be sure that there 
is some interesting physics involved. In fact, this point describes a metal­insulator transition: 
finite scale systems prepared with conductance less than gc become asymptotically insulating as 
L →∞, while systems with conductance just above gc become good conductors as L →∞. 

To better understand the behavior close to this transition, we linearize the flow around gc: 

βL = s
g − gc (7.20) 

gc 

where βL is the linearized version of the scaling function β and s is the “slope” of the flow in the 
β­g plane at g = gc. 

Close to the transition (i.e. g−gc 
gc 

� 1), where we expect the linearization of β to be valid, 
we can replace β in equation (7.4) with βL 

d ln g 
= βL[g]

d ln L 
g − gc = s (7.21) 

gc 

Using the fact that 

ln(g/gc) = ln 1 + 
g − gc 

gc 

g − gc ≈ 
gc 

(7.22) 

we can easily solve for the behavior of g(L) in the vicinity of the transition: 

g−gcd gc = s 
d ln L 

g − gc (7.23) 
gc 
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5 Experimentally Observable Consequences 

cln 
g − g

= s ln L (7.24) 
gc 

s 
g(L) − gc L 

(7.25)= 
Lg 0c 

Thus the conductance diverges from the fixed point as a power law in the length scale L of 
the system. Using our condition for the validity of the power­law scaling region, we can define 
the localization length ξ through the relation 

= 1 (7.26)
g(ξ) − gc 

gc 

Why is it reasonable to associate ξ with L? In the scaling region, the correlation length 
of the system diverges (as with crucial opalescence) and it is difficult to determine if one is in a 
metallic or insulating phase. Typical localized states have wave functions that decay exponentially 
over a length ξ. If we are looking at a length scale L shorter than ξ, it is very difficult to tell 
the difference between a localized and an extended wave function. However, when L exceeds ξ 
on the insulating side, the wave function becomes clearly localized and the conductance crashes 
exponentially to zero. Thus near the transition we expect 

ξ 
= 

L0 

−1/s
g − gc (7.27) 

gc 
−ν 

g − gc (7.28)= 
gc 

where ν = 1/s is the critical exponent associated with the correlation length in they study of 
critical phenomena. Numerical experiments indicate that ν is of order 1. 

7.4 Experimentally Observable Consequences 

Suppose we have a system on the metallic side of the critical conductance g > gc. For L � ξ 
we expect Ohm’s Law type scaling behavior. Thus we can define a large length­scale limiting 
conductivity σ(L →∞) 

σ (L = ξ) = (7.29)(L →∞) ≈ σ
ξd

g̃
−2 

This definition makes sense because σ is essentially constant for length scales beyond the 
localization length ξ. Substituting in equation (7.28) for ξ, we get �(d−2)ν 

g − gc
σ(L →∞) ∝ (7.30) 

gc 

7.5 The Model of Microscopic Diffusion 

So far, all we have done amounts to little more than fancy guess­work. Although we were able 
come a very long way using these simple arguments, we still don’t have much idea about the 
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values of the coefficients appearing in our equations. To get a handle on this aspect of the theory, 
we need to consider a microscopic model of our system. 

The physical picture we employ is that of the Feynman/Dirac path integral formulation of 
quantum mechanics. Recall that according to this formulation, the quantum mechanical ampli­
tude for a particle to go from (� x2, t2) is given by x1, t1) to (�

x2, t2 | � h� � x1, t1 � = eiS/¯ (7.31) 
all paths 

where S is the classical action associated with a particle traversing a particular path from (�x1, t1) 
to (�x2, t2). Using the method of stationary phase, it can be shown that the primary contribution 
to this amplitude comes from paths very close to the path satisfying the classical Euler­Lagrange 
equations. For a free particle, this means that the amplitude is dominated by paths confined to 
a tube of width proportional to k−1 where k is the wave vector of a plane wave connecting (�x1, t1) 
and (�x2, t2). 

In a disordered system, however, the path from (� x2, t2) is better described by a x1, t1) to (�
random walk (diffusion). If we associate an amplitude Ai = |Ai eiSi /¯| h with each possible random 
walk path, then the total amplitude A is given by 

A = Ai (7.32) 
i 

The probability for getting from (� x2, t2) is given by the square of the ampli­x1, t1) to (�
tude |A 2 . In general, we expect the phases of different paths to vary considerably, leading to |
cancellation of the cross­terms in the double­sum for |A 2 . Thus we might conclude |

A|2 (7.33)| ≈ |Ai|2 

i 

7.6 Time Reversal Symmetry and the Probability of Return 

However, if the system’s Hamiltonian exhibits time reversal symmetry, we must take more care 
˜in calculating the probability of return. Consider two paths Ai and Ai that are time­reversed 

versions of each other. Since the time­reversed amplitude is the same as forward­time version, 

2Ai|2 = 4 Ai (7.34)|Ai + ˜ | |

which should be compared with the result 2|Ai
2 that we got previously assuming cancellation |

of all cross terms. This shows that quantum interference results in an enhanced probability of a 
particle coming back to where it started from in a system with time­reversal symmetry. 

When this result is taken into account in order consideration of propagation through a 
disordered medium, this can be interpre ted as an increase in back scattering that leads to 
increased resistivity. This phenomenon is actually a result of wave mechanics, and is not restricted 
to quantum systems. It was first discovered in the 1950s by the study of radar transmission 
through dense fog. Instead of isotropic scattering, there is an enhancement in the probability of 
back­scattering (180o reflections). 

What is the classical probability of return? One way to get the answer is to simply solve the 
diffusion equation: 

2 

P (r, t) ∝ 
(Dt

1
)d/2 

e−r /(Dt) (7.35) 
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7 Time Reversal Symmetry and the Probability of Return 

The probability of the particle being back where it started at time t is found by setting r = 0 
in this expression, giving 

1 
Pret ∝ 

(Dt)d/2 
(7.36) 

If we wait a long time (on the order of the dephasing time τφ, then the total probability of 
coming back through the initial point is given by ⎧ 1 

� τφ 
� ⎨ D ln d = 2 τ� τφ dt 

P0 = (Dt)d/2 
= � (7.37)⎩ 1 τφ 

�−1/2τ d = 3 
D3/2 τ 

According to equation (7.34), paths which close on themselves acquire an enhanced proba­
bility. Thus one expects a reduction of conductivity proportional to P0. In a previous lecture, 
we derived the Einstein relation for the conductivity, which yields g ∝ D. This suggests that in 
two dimensions 

c τφ
σ = σ0(1 − ln ) (7.38) 

g0 τ 
c τφ 

g = g0(1 − ln ) (7.39) 
g0 τ 

τ 
g = g0 − c ln (7.40)

τφ 

We have just seen that time reversal symmetry leads to an enhanced probability of return. 
If this is correct, then by finding a way to break time reversal symmetry we should see the 
effect disappear. The easiest way to do this is through the addition of a magnetic field (vector 
potential). In a magnetic field, 

Ai ∝ e iSi iSi +i � � e A·d�
(7.41)→ � 

Ai ∝ e iSi iSi −i � �˜ e A·d�
(7.42)→ 

This time, the cross terms give 

|A|2 e 2i A·d�
= |A|2 e 2iΦB /φ0 (7.43) 

where φ0 = hc/e is the flux quantum. 
The typical magnetic flux through a random­walk return­path is 

φB (7.44)ΦB ≈ L2 

When ΦB � hc/2e, the cross terms show up with random phases and the interference is 
destroyed. In this case, everything goes back to the normal case without the enhanced return 
probability. From this observation, we can define a magnetic length scale 

hc 1 
LB = (7.45)

2e B 
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When LB < Lφ, we should replace Lφ with LB in the correction to the conductivity 

− c ln 
L L−→ − c ln 
Dτ Dτ 

c ln B 

2 
B 

2 
φ B 

≈ 

(7.46) 

(7.47) 

To see the effect, we can go to low temperatures and measure the resistivity R as a function 
of B. Note that the conductivity is predicted to increase with magnetic field. This is called 
negative magnetoresistance and cannot be explained by Boltzmann transport. This phenomenon 
has been seen experimentally. However, it turns out that there is another logarithmic term in 
the conductivity for interacting electrons in the presence of disorder which coexists with the 
weak localization effect. This latter effect has a different magnetic field dependence, which makes 
magnetoresistance measurements a powerful tool to disentangle the two effects. 
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