

8.512 Theory of Solids II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Due March 10, 2008

- 1. Consider a tight-binding model on a lattice with hopping matrix element t. Add an on-site disorder potential V_i , where V_i is a random variable distributed uniformly between $\pm \frac{W}{2}$. Consider the one-dimensional case with N sites.
 - (a) For a given realization of V_i , consider the eigenvalues for periodic boundary conditions, i.e., $V_N = V_1$ and $\psi_N = \psi_1$ where ψ_1 is the wavefunction on site *i*. The eigenvalues are solved by diagonalizing an $(N-1) \times (N-1)$ matrix. Set up the form of the matrix.
 - (b) Now consider a twisted boundary condition, i.e., $V_N = V_1$ and $\psi_N = \psi_1 e^{i\phi}$. How is the matrix modified from (a).
 - (c) Show that the eigenvalues E_α in (b) are equivalent to a problem with complex hopping, i.e., t is replaced by te^{i(φ/(N-1))} and with periodic boundary conditions. This is the problem of a ring with N 1 sites with a magnetic flux through the ring. What is the value of the flux in units of the flux quantum hc/e.
 - (d) Diagonalize the matrix numerically for a given realization of disorder. Choose W/t = 2.0 and N = 20. Plot the energies of the 10 levels near E = 0 as a function of ϕ . Now increase N and observe how the picture changes.
 - (e) For the values of W/t chosen in part (d) calculate the dimensionless conductance of the sample using the Thouless formula

$$G = \frac{E_T}{\Delta}$$

where

$$E_T = \frac{\overline{d^2 E_\alpha}}{d\phi^2}$$

and Δ is the average energy level spacing. Calculate E_T and Δ by averaging over the 10 levels near E = 0 and by averaging over a number of realizations of the random potential. Check the dependence of G as a function of sample size N. (f) Optional. If you are interested, you may repeat the problem for a two-dimensional square lattice and contrast the behavior. Compare W/t = 4 and 9.