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Lecture 10: Superconductors With Disorder
 

Up to now, all of our discussions have centered around superconductivity in an idealized, per­
fectly isotropic environment. Because such perfect order is never realized in the real world, it 
is important to extend the theory to systems with disorder. Surprisingly, we will find that the 
energy gap Δ and the transition temperature Tc are not affected by the presence of disorder. The 
effective superfluid density ρs will be strongly affected, however. 

10.1 The Anderson Theorems 

To study superconductivity in the presence of disorder, we will add a random potential Vrnd(�r) 
to the single­particle Hamiltonian such that 

Ĥ0 = 
ˆ2 
p� 
2m 

+ Vrnd(�r) (10.1) 

Under this assumption, we will be able to extend the BCS theory to prove the following two 
statements: 

Provided that disorder is not strong enough to cause the eigenstates of the single particle Hamil­
tonian to be localized, 

(i) Disorder does not affect Tc. 
(ii) Disorder does not affect Δ. 

These statements were originally due to Anderson, and are commonly known as Anderson’s 
Theorems. The key to understanding Anderson’s Theorems is to think in terms of the exact 
single­particle eigenstates of Ĥ0 

Ĥ0| α � = �α| α � (10.2) 

Here, | α � is an eigenstate of the disordered single­particle Hamiltonian for a particular 
instance of the random potential Vrnd(�r). Although in position space these wavefunctions may 
be very complicated functions of �r, there is no conceptual difficulty in defining such states. 
Practically speaking, they can be found approximately through standard PDE solving methods 
on a big computer. 

Since the random potential destroys the continuous translational invariance of the system’s 
Hamiltonian, momentum (�k) is no longer a good quantum number in a disordered system. Thus 
we no longer have the states of opposite momentum to pair­up like we did in our original BCS 
formulation. Anderson’s contribution, however, was to suggest that in a more general setting we 
should look for time­reversed states to pair with each other. 
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10.1.1 Time Reversal Symmetry 

What are time reversed states? To recall the idea behind time reversal symmetry, or microscopic 
reversibility, consider a system with Hamiltonian ~ ( t )  that is in the state I +;to ) at time to. If we 
flow the system backwards in time through an infinitessimal interval dt, the Shrodinger equation 
tells us that the state at time to - dt should have been 

Now imagine reversing all momenta (pi, + -gk) and angular momenta ( i k  + - i k )  in 
the initial state I $; to ) .  While this is easy to imagine classically where particles have definite 
positions and momenta, quantum mechanically it corresponds to changing the linear and angular 
momentum basis kets according to I @) + I -@) and I J; J, ) + I J; -J, ), respectively. Reversing 
the linear and angular momenta of all states and flowing the system forward in time to to+dt 
should not lead to any observably different consequences from the situation in which the original 
kets were simply flowed backwards to to -dt. As is shown in standard quantum mechanics books, 
consistency of the theory requires that the coefficients of the basis kets be taken to their complex 
conjugates, i.e. 

By projecting these state onto a position eigenket I r ') 

we see that the spatial orbital 4 ~ ( r ' ,  to) = ( r'l T I +;to ) of the time reversed state is simply the 
complex conjugate of the original orbital q5(< to) = (r'l + ; to) .  

Taking into account the reversal of angular momentum as well, the spin-orbital associated 

with the HO eigenket I a ) and its time reversed partner are 4, T (3+ 
T 4; ( 3 .  For a system 

whose Hamiltonian is invariant under time-reversal (i.e. = 0), these states are clearly 

degenerate. As a result, any linear combination of 4, and 4; is also an eigenstate of HO with 
energy E,. In particular, this means that we can always arrange to pick real-valued orbitals, 
such that the time reversed pair is simply (4, T ,  q5, 1). This two-fold spin degeneracy, called the 
Kramers degeneracy, is always present in systems with time-reversal symmetry. 

10.1.2 Effective BCS Hamiltonian 

Recall our discussion of the BCS effective Hamiltonian in an isotropic medium from last semester. 
By applying the phonon mediated electron-electron interaction to the BCS wavefunction, we 
arrived at the reduced Hamiltonian 
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Since that reduced Hamiltonian was constructed by projecting onto the isotropic­medium 
BCS wave function written in terms of momentum eigenstates, we cannot take this reduced 
Hamiltonian as our starting point. Instead, we return to the more general phonon mediated 
electron­electron interaction 

1 � 
Ĥ 

e−ph = V c�
† 

k�+q, σ� � 
c�
† 

k−�q, σ 
c�k, σc�k�, σ� (10.9)

2 
�k,�k�,� q,σ,σ� 

Assuming V = −V0 is independent of �k, �k� etc, we can factor V outside the summation. 
Substituting 

k � c�k 

† = d�re−i�·rΨ†(�r) (10.10) 

into (10.9), we get 

d�r1d�r2d�r3d�r4e
−i�k�+� � q r1 e−i�k−q� r�2 e i

�k �r3 e i
�k� �r4 Ψ† (�r1)Ψ†

σ(�r2)Ψσ(�r3)Ψσ(�· · · ·
σ� r4) 

= d�r1d�r2d�r3d�r4e
−i� q·(�r2−�r1)e−i�k� ·(�r1−�r4 )e−i�k·(�r2−�r3)Ψ†

σ� (�r1)Ψ†
σ(�r2)Ψσ(�r3)Ψσ(�r4) 

= d�r1d�r2d�r3d�r4δ(�r2 − �r1)δ(�r1 − �r4)δ(�r2 − �r3)Ψ
†
σ� (�r1)Ψ†

σ(�r2)Ψσ(�r3)Ψσ (�r4) 
σ,σ� 

= d�rΨσ
† 

� (�r)Ψσ
† (�r)Ψσ(�r)Ψσ (�r)


σ,σ�


= 2 d�rΨ† (�r)Ψ† (�r)Ψ (�r)Ψ (�r) (10.11) ↑ ↓ ↓ ↑

where in the last line we have explicitly put in the sum over σ and σ�, used Ψσ(�r)Ψσ(�r) = 
Ψσ
† (�r)Ψσ

† (�r) = 0, and the Fermion creation/destruction operator anti­commutation relations. 
Finally we can write the interaction in terms of the field creation/destruction operators 

Ĥ 
e−ph ≈ −V0 d�rΨ†

↑ (�r)Ψ
†
↓ (�r)Ψ↓(�r)Ψ↑(�r) (10.12) 

where the approximation is that we assumed the interaction potential could be pulled outside 
the sum as a constant V0. 

Using relation (10.2) for the single­particle eigenstates of the disordered system, the total sys­
tem Hamiltonian including the phonon mediated electron­electron coupling in second quantized 
form is 

Ĥ = �α c
† cα + c† cα d�rΨ† (�r)Ψ† (�r)Ψ (�r)Ψ (�r) (10.13)α ↑ ↑ α ↓ ↓ − V0 ↑ ↓ ↓ ↑

α 

We can now proceed with the mean­field averaging procedure analogous to the one used in 
the clean superconductor case. Using the definition 

Δ(�r) = V0 � Ψ (�r)Ψ (�r) � (10.14)↓ ↑

we can rewrite the effective Hamiltonian as � � � � � � 
Ĥeff = �α c

† cα ↑ + c† cα ↓ − 
1
2 

d�r Δ(�r)Ψ† (�r)Ψ† (�r) + Δ∗(�r)Ψ↓(�r)Ψ↑(�r) (10.15) α α↑ ↓ ↑ ↓
α 
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With the change of basis 

Ψσ(�r) = φα(�r) cα, σ (10.16) 
α 

we can rewrite the definition of Δ(�r) in terms of the exact eigenstates of the disordered potential 

Δ(�r) = V0 � Ψ (�r)Ψ (�r) ��↓ ↑

= V0 φα(�r) φβ (�r) �cα ↓ cβ ↑� (10.17) 
α, β 

In general, we expect that Δ(�r) will be a very complicated function of �r. However, in 
the presence of weak disorder, the eigenstates φα(�r) are extended in space. At any particular 
location, (10.17) will contain a sum over a very large number of nearly random contributions from 
the different eigenstates. In this situation, Δ(�r) sums up to a nearly constant value throughout 
space. Thus when disorder is weak, we can replace Δ(�r) by its spatial average Δ 

1 
� 

V0 
� � 

Δ = 
Ω 

d�rΔ(�r) = 
Ω 

d�r φα(�r) φβ (�r) �cα ↓ cβ ↑� (10.18) 
α, β 

Recall that since φα(�r) and φβ (�r) are exact eigenstates of the single particle Hamiltonian, 
they obey the orthonormality condition 

d�rφα(�r)φβ (�r) = δαβ (10.19) 

which leads to 

Δ = 
V

Ω 
0 

� 
�cα ↓ cβ ↑� (10.20) 

α 

and an effective Hamiltonian 

Ĥ 
eff = �α c

†
α ↑ cα ↑ + c†α ↓ cα ↓ − Δc†α ↑ c

†
α ↓ − Δ∗cα ↓ cα ↑ (10.21) 

α 

Notice that the Hamiltonian is now block­diagonalized in α. In exactly the same way as 
before, we can now diagonalize the Hamiltonian separately for each α by the Bogoliubov trans­
formation 

γα = uαcα + vαc
† (10.22)↑ ↑ α ↓ 

γ† = vα
∗ cα + uαc

† (10.23)α α↓ ↑ ↓ 

giving the familiar quasiparticle spectrum 

= (�α − µ)2 + Δ 2 (10.24)Eα | |
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10.1.3 The Self­Consistent Equation 

With the high degree of similarity between this more general formalism and the BCS relations 
obtained previously, it is straightforward to see that the same algebraic steps can be followed to 
arrive at the self­consistent equation for Δ: � Δ

Δ = V0 � (1 − 2f(Eα)) (10.25) 
ξ 2 + |Δ|2 

α α 

where 

ξα = �α − µ (10.26) 

The important terms in this sum occur for ξα less than the order of Δ. In this range, there 
is a high, nearly constant density of states N(0), which at low temperatures (f(Eα) ≈ 0) allows 
us to convert the sum to an integral 

Δ
Δ = V0N (0) dξ (10.27)

2Eξ 

In equation (10.27), all references to the eigenstates and hence the potential have disap­
peared. This is exactly the self­consistent equation obtained by BCS theory. As a result Tc and 
Δ are not affected by the presence of disorder. 

This is an extremely powerful and important result. As such, it is important to remember 
under what conditions it is valid. Our derivation was quite general, but relied on one key as­
sumption. In order to get rid of the spatial dependence of Δ(�r), we had to assume weak disorder 
such that the eigenstates | α � are extended in space. This can be summarized in the condition 

kF � � 1 (10.28) 

where � is the elastic scattering mean free path. Additionally, for the use of N(0) as the density 
of states near µ to be valid, we need the disorder to not significantly affect the density of states. 

10.1.4 Time Reversal Symmetry Breaking 

Surprisingly, we found that disorder does not reduce Tc for a superconductor. However, terms in 
the Hamiltonian that break time reversal symmetry can have a devastating effect on Tc. Two 
such possibilities are 

(i) Magnetic Impurity Scattering 
(ii) Interaction With a Magnetic Field H�

In the case of (10.1.4), impurity scattering can lead to spin­flips which destroy the BCS­style 
pairing of time­reversed states. Even a tiny bit of magnetic impurities ( 1 ≈ Δ0 can destroy τmag 

superconductivity. For comparison, the analogous condition for elastic disorder scattering gives 
1 < �F .τel 

Although a magnetic field also breaks time reversal symmetry, a superconductor is able 
to compensate for this by allowing the field to penetrate through local non­superconductive 
regions called vortices. Interestingly, disorder is actually beneficial in this case, as it provides a 
mechanism for pinning vortices in space. If the vortices are free to swim around throughout the 
superconductor, there can be dissipation which is undesirable. 
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10.1.5 Non­S­Wave Superconductors 

Everything we have said about the Anderson Theorems and disorder so far is true only for s­wave 
superconductors for which 

Δ�k = �c�k ↑ c −�k ↓� (10.29) 

is independent of �k. 
If Δ�k does have a dependence on �k, then the derivation will break down at the averaging 

step because impurities mess up the structure of momentum space. As a result, non­s­wave su­
perconductors do not even tolerate elastic scattering; 1 ≈ Δ0 is the most that can be supported. τel 
Thus very clean samples are need to see non­s­wave superconducting behavior. 

In the case of non­s­wave high Tc superconductors, we are saved by the fact that Δ0 is quite 
large. This allows the high Tc materials to become superconducting with a reasonable amount of 
impurities. Furthermore, the CuO bond in copper­oxide materials is very strong, and naturally 
tends to prohibit impurities from entering into the lattice. Through intentional doping with zinc, 
the effect of impurities on Tc can be observed. For an s­wave superconductor, we would expect 
no change for small amounts of doping, while for high Tc materials we would expect a linear 
decrease of Tc with doping fraction. 

10.2 Conductivity in Disordered Superconductors 

So far, it seems as if disorder has almost no effect on superconductivity. While Δ and Tc are 
unaffected by weak disorder, however, the effective superfluid density ρs is affected strongly. 
Instead of considering ρs directly, we will focus on the absorption of electromagnetic radiation. 
That is, we will be interested in the quantity σ� (q, ω� ). 

The situation is considerably simplified of A�
⊥
(�r) and �j(�r) are slowly varying functions in space. 

This is the case in the limit �q 0. When working with light, we always work in this limit, but →
here we also apply this limit to thinking about the Meisner effect. 

If the London penetration depth λL is much larger than the correlation length xi0, then 
magnetic fields may penetrate a distance much larger than the length scale of variations of the 
order parameter. Thus this case also corresponds to the q� 0 limit. → 

10.2.1 Derivation of the Transverse Conductivity 

Returning to the Kubo formula in the �q 0 limit, → 

π 1 � � � 
σ� (�q 0, ω) = d�rĵ x

p(�r) d�r�ˆ x(�r�) 0 �δ (ω − (En − E0)) (10.30) ⊥(xx) → 
ω Ω 

� 0 | | n �� n | jp |
n 

To proceed with the calculation, we need to write the paramagnetic current operator in 
second quantized form in the basis of exact single­particle eigenstates: 

d� r ĵ 
x
p(�r) = e Vαβ c

† (10.31)β,σcα,σ 

α,β,σ 

where 

1 1 ∂ 
Vαβ = d�rφ∗ (�r) φα(�r) (10.32) 

m β i ∂x 
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Next, we change to the Bogoliubov quasiparticle basis using the substitution 

cα ↑ = uαγα ↑ + vαγα
†
↓ (10.33) 

After making this substitution and noting that the excited states |n � correspond to states 
containing single pairs of quasiparticle­hole excitations | αβ � of energy Eα + Eβ , we get 

e 
σ� (�q 0, ω) = 

2 π � 
(uαvβ − vαuβ )

2 
Vαβ 

2δ (ω − (Eα + Eβ )) (10.34)⊥ → 
ω Ω 

α,β 

| | 

In the case of a clean superconductor, the analogous expression contained the coherence 
factor � �2 

p2 = u� v� (10.35)�k,�k+q� k k+�q − v�ku�k+�q 

which is 0 for �q 0. With disorder present, however, the eigenstates are no longer the simple →
�k­states, and the coherence factor pα,β does not vanish. 

This lack of cancellation is not difficult to handle. Recall 

2 uα = 
1
2 

1 + 
E

ξα

α 
(10.36) 

2 vα =
1
2 

1 − 
E

ξα

α 
(10.37) 

Furthermore, note that uα and vα depend on α only through the combination E
ξα

α 
. In each 

term of the sum, we can insert the identity 
∞ ∞

1 = dξδ(ξ − ξα) dξ�δ(ξ� − ξβ ) (10.38) 
∞ ∞ 

Furthermore, we can switch the order of summation and integration, and make the definition 

1 � 
f(ξ, ξ�) ≡ 

Ω 
α,β 

|Vαβ |2δ (ξ − ξα) δ (ξ� − ξβ ) (10.39) 

With this definition, the conductivity simply becomes 

e2 ∞ ∞ 

σ� (�q 0, ω) = π dξ dξ�(uξvξ� − vξuξ� )2f(ξ, ξ�)δ (ω − (Eξ + Eξ� )) (10.40)⊥ → 
ω ∞ ∞ 

In this form, the conductivity is written as an integral over the reduced energies ξ and ξ�. 
All information about the actual eigenstates and the disorder is confined to the function f(ξ, ξ�). 
Furthermore, f(ξ, ξ�) is simply a function of the normal metal eigenstates, and does not require 
any knowledge of the superconducting behavior of the system. This function is in fact the very 
same function we encountered in the calculation of the conductivity of a disordered normal metal. 

We can move past equation (10.40) by substituting in for uξ, etc using equations (10.36) and 
(10.37). �� �1/2 � �1/2 � �1/2 � �1/2 

�2 

(uv� − vu�)2 = 
1
4 

1 + 
E

ξ 
1 − 

E

ξ�

� − 1 − 
E

ξ 
1 + 

E

ξ�

� (10.41) 

1 
� � 

ξξ� 
� � 

ξ2 �1/2 � 
2 �1/2 

� 
ξ� 

=
4

2 1 − 
EE� − 2 1 − 

E2 
1 − 

E�2 
(10.42) 

1 ξξ� Δ2 

=
2 

1 − 
EE� − 

EE� (10.43) 
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With this coherence factor expanded out in terms of ξ and E, the integral can now be 
performed directly once f(ξ, ξ�) is known. 

10.2.2 Recovering the Normal Metal Result 

Given this formula for the transverse conductivity, how can we return to the normal metal limit? 
If h̄ω � Δ, then the energy gap will be inconsequential and we expect normal metal­like behavior. 
In fact, when ξ , ξ� � Δ, with ξξ� < 0, E ξ and the quantity (uv� − vu�) 1. After a slight | | | | → →
adjustment of the limits of integration to take advantage of the symmetry ξ ξ�, we recover the 
normal metal result obtained previously: 

↔ 

ω�Δ e2π 
� ∞ � 0 

σ� σn = dξ dξ�f(ξ, ξ�)δ (ω − (ξ + ξ� )) (10.44)⊥ → 
ω 0 −∞ 

| | 

Previously, the prefactor 2 was due to the sum over degenerate spin states (Kramers Degeneracy). 
Here, since the Bogoliubov quasiparticles involve mixtures of spin states, the 2 is automatically 
accounted for. 

10.2.3 More on Superconductor Conductivity 

Using the normal metal result, we can now write the superconductor absorptivity in terms of the 
normal metal absorptivity and an integral 

σ� (q� 0, ω) = 
σn 

∞ 

dξ 
∞ 

dξ� 
1

(uv� − vu�)2 
δ(ω − (E + E�)) (10.45)⊥ → 

ω 2 �−∞ �−∞ � � 
σn 

∞ ∞ 1 ξξ� Δ2 

= 
ω 

dξ dξ� 
4

1 − 
EE� − 

EE� δ(ω − (E + E�)) (10.46) �−∞ �−∞ � � 
σn 

∞ ∞ 1 Δ2 

= 4 
ω 

dξ dξ� 
4

1 − 
EE� δ(ω − (E + E�)) (10.47) 

0 0 

σn 
∞ ∞ Δ2 

= 
ω 

dξ dξ� 1 − 
EE� δ(ω − (E + E�)) (10.48) 

0 0 

As a check of our sanity, we can look at the ω � Δ limit of this integral. We expect that 
this should give us back the normal metal conductivity as before. 

σ� = 
σn 

∞ 

dξ 
∞ 

dξ�δ(ω − (ξ + ξ�)) (10.49)⊥ ω �0 0 

= 
σn

ω 

dξ (10.50)
ω 0 

= 
σn 
ω (10.51)

ω 
= σn (10.52) 

10.3 The London Penetration Depth 

If we plot σ� vs ω, we find that in the superconducting state σ� = 0 for ω < 2Δ, since no ⊥ ⊥
excitations are possible in this energy range. Above 2Δ, the curve rises rapidly to the normal 
metal value, and then decays away with a width on the order 1/τel, the elastic scattering rate. 
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Such behavior is only visible experimentally if 1/τel � 2Δ, which means this is only the case for 
disordered superconductors. If the elastic scattering rate is very low compared with 2Δ, all of 
the spectral weight will simply collapse to a delta function as zero frequency. 

Recall the Kubo formula 

K = −iωσ (10.53) 

which implies 

K �� = −iωσ� (10.54) 

Now, we would like to investigate the real part of the current response K �(ω = 0), as this is 
the quantity that related to the diamagnetic behavior of superconductors. Using Kramers­Kronig, 
we can relate the real and imaginary parts of K 

dω� K ��(ω�)
K �(q� 0, ω = 0) = (10.55)→ 

π ω� 

dω� 
= σ�(ω�) (10.56)

π 

The final expression is just the area under curve σ�(ω). Relating the normal metal and 
superconductor values, 

Ks
� − Kn

� = − dω� (σs
� (ω�) − σn

� (ω�)) (10.57) 

∝ σnΔ (10.58) 
ne2τ 

= Δ (10.59) 
m 
2ne 

= (τΔ) (10.60) 
m 

The proportionality comes from the fact that the difference between the superconductor and 
normal metal conductivity curves is the hole of width 2Δ and height σn that is removed in the 
superconductor conductivity curve due to the presence of the energy gap. 

In the last line, we have separated the result into a product of the clean superconductor 
2 nediamagnetism m and an addition factor of τΔ that arises from disorder. Returning to the 

linear response relation for the current, we get 

�j = − KA� (10.61) 
2ne 

= − 
m 

(τΔ)A� (10.62) 

2 

= 
nse 

A� (10.63)− 
m 

Thus we see that the effect of disorder is to change the superfluid density to 

ns = (τΔ)n, τ Δ � 1 (10.64) 

Thus the effect of disorder is to dramatically reduce the superfluid density by the factor 
τ Δ. Accordingly, the current carried by the supefluid is also significantly reduced. A directly 
measurable consequence of this result is the increase of the London penetration depth 

λ−2 =
4πnse

2τ 
(10.65)L mc2 
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or 

(disorder) (clean) 1 
λL = λL · √

τΔ 
(10.66) 

The take home message of all this is that disorder reduces the superconductor’s ability to 
cancel magnetic fields, allowing much greater penetration of the fields into the sample. 
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