MIT OpenCourseWare
http://ocw.mit.edu

8.512 Theory of Solids II
 Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE V

Continued discussion on Kubo formula:

Sanity Check with a random potential:

$$
\begin{gathered}
\overline{V(\mathbf{r}) V\left(\mathbf{r}^{\prime}\right)}=V_{0}^{2} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
\sigma_{\mu \mu}(q, \omega)=\frac{1}{\omega} \int d\left(\mathbf{r}-\mathbf{r}^{\prime} \int d t e^{-i \omega t} e^{i \mathbf{q} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} \overline{<0\left|\left[j_{p \mu}(\mathbf{r}, t), j_{p \mu}\left(\mathbf{r}^{\prime}, t\right)\right]\right| 0>}\right. \\
=\frac{1}{\omega} \frac{1}{\Omega} \int d \mathbf{r} \int d \mathbf{r}^{\prime} \int d t e^{-i \omega t} e^{i \mathbf{q} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} \overline{<0\left|\left[j_{p \mu}(\mathbf{r}, t), j_{p \mu}\left(\mathbf{r}^{\prime}, t\right)\right]\right| 0>}
\end{gathered}
$$

Where the bar in the above equation is the impurity average.
$\mathrm{DC} q=0 \omega \rightarrow 0$
$\sigma(\omega)=\frac{1}{\omega} \frac{1}{\Omega} \sum_{n}<0\left|\int d \mathbf{r} j_{p \mu}(\mathbf{r})\right| n><n\left|\int d \mathbf{r}^{\prime} j_{p \mu}\left(\mathbf{r}^{\prime}\right)\right| 0>\delta\left(\omega-\left(E_{n}-E_{0}\right)\right)$
Where $\mid n>$ is an exact eigenvalue of the full one-body hamiltonian $:(H+V)\left|n>=E_{n}\right| n>$ In principle one can find the spectrum of ($H+V$) so $\mid n>$ is the particlehole pair:

$$
\begin{gathered}
|n>=| \beta \bar{\alpha}>, E_{\beta}>E_{F}, E_{\alpha}<E_{F} \\
\int d \mathbf{r}<n \left\lvert\, j_{p \mu}\left(\left.\mathbf{r}\left|0>=\int d \mathbf{r}\left(\frac{e}{m}\right)<n\right| \nabla_{\mathbf{r}} \sum_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right) \right\rvert\, 0>\right.\right. \\
=\int d \mathbf{r}\left(\frac{e}{m}\right) \int d \mathbf{r}_{1} \varphi_{\beta}^{*}\left(\mathbf{r}_{1}\right) \nabla_{\mathbf{r}} \delta\left(\mathbf{r}-\mathbf{r}_{1}\right) \varphi_{\alpha}\left(\mathbf{r}_{1}\right) \\
=\frac{e}{m} \int d \mathbf{r}_{1} \varphi_{\beta}^{*}\left(\mathbf{r}_{1}\right) \nabla_{\mathbf{r}_{1}} \varphi_{\alpha}\left(\mathbf{r}_{1}\right)=(e / m)<\beta|\nabla| \alpha>
\end{gathered}
$$

$\sigma(\omega)=\frac{\pi e^{2}}{\omega \Omega} \sum_{\alpha \beta} \overline{|<\beta| \frac{\nabla}{m}|\alpha>|^{2}} \overline{\delta\left(\omega-\left(E_{\beta}-E_{\alpha}\right)\right) f\left(E_{\alpha}\right)\left(1-f\left(E_{\beta}\right)\right)}$
Where the "broken" average comes from our assumption that the random potential causes uncorrelated φ and E.
$\sigma(\omega)=\frac{\pi e^{2}}{m^{2} \omega \Omega} \int_{-\omega}^{0} d \omega_{1} \overline{\sum_{\alpha} \delta\left(\omega_{1}+E_{\alpha}\right) \sum_{\beta} \delta\left(\omega_{1}-E_{\beta}-\omega_{1}\right) \mid} \overline{<\beta\left|\frac{\nabla}{m}\right| \alpha>\left.\right|^{2}}$
MORE APPROXIMATIONS:
$\overline{|<\beta| \frac{\nabla}{m}|\alpha>|^{2}}=\overline{v^{2}}$
$\omega \gg$ level spacing $\Rightarrow N(\omega)=\overline{\sum_{\alpha} \delta\left(\omega_{1}+E_{\alpha}\right)} \simeq N(0)$
Note that $N(0)$ is the density of state per (just!) unit energy, so it should diverge as $\Omega \rightarrow \infty$ or $\triangle \rightarrow 0: N(0) \approx \frac{1}{\Delta}$.

$$
\sigma(\omega \rightarrow 0)=\frac{e^{2} \pi N_{0}^{2}}{\Omega} \overline{v^{2}}
$$

Next we estimate $\overline{|<\beta| \frac{\nabla}{m}|\alpha>|^{2}}$:

Define l as the distance that wavefunction loses information about its phase so for a perfect plane wave (without scattering) $l \rightarrow \infty$ and for a very strong scattering impurity $l \rightarrow k_{F}^{-1}$. At this point we intend to find approximation for the $\overline{|<\beta| \frac{\nabla}{m}|\alpha>|^{2}}$ in the former regime or

$$
k_{F} l \ll 1
$$

Let's make a grid out of our sample where each section has the volume of

$$
\nu=\frac{4 \pi}{3} l^{3}
$$

Definition of l suggests that within each box we can in principle associate a wave vector to our wavefunction:
So one an define

$$
\delta_{i} \equiv \int^{\nu_{i}} d \mathbf{r} \psi_{\mathbf{k}^{\prime}}^{*} \frac{1}{m} \frac{\partial}{\partial x} \psi_{\mathbf{k}}
$$

associate \mathbf{k} with α and \mathbf{k}^{\prime} with β. By this partitioning we have:

$$
\begin{gathered}
\overline{v^{2}}=\overline{v_{\alpha \beta}^{2}}=\frac{\Omega}{\nu} \overline{|\delta|^{2}} \\
\delta_{i} \approx\left(\int_{0}^{\nu} d \mathbf{r} \frac{e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}}}{\Omega} \frac{k}{m}\right) e^{i \phi_{i}}
\end{gathered}
$$

Where ϕ_{i} is the random phase at the site i.

$$
\left|\mathbf{k}-\mathbf{k}^{\prime}\right|=2 k_{F} \sin \frac{\theta}{2} \simeq k_{F} \theta
$$

for $k_{F} \theta l>1$ we will encounter rapid oscillations and $\delta_{i}=0$ and for

$$
k_{F} \theta l<1 \Rightarrow \delta_{i}=\frac{k \nu}{m \Omega} e^{i \phi_{i}}
$$

In order to average over different boxes, we average over \mathbf{k} and \mathbf{k}^{\prime} which amounts to average over θ.

Now the θ integration:

$$
\begin{gathered}
\overline{v^{2}}=\frac{\Omega}{\nu}\left(\frac{k \nu}{m \Omega}\right)^{2} \int_{0}^{1 / k l} d \theta \frac{2 \pi \sin \theta}{\pi} \\
\int_{0}^{1 / k l} d \theta \frac{2 \pi \sin \theta}{\pi}=\frac{1}{4(k l)^{2}} \\
\therefore \overline{v^{2}}=\frac{\pi l}{3 m^{2} \Omega} \\
\sigma(\omega \rightarrow 0)=\frac{e^{2} \pi^{2}}{3 m^{2}}\left(\frac{N(0)}{\Omega}\right) l
\end{gathered}
$$

Put $l=\tau v_{f} ; n=\frac{k_{F}^{3}}{3 \pi^{2}} ; \frac{N(0)}{\Omega}=\frac{m k_{F}}{2 \hbar^{2} \pi^{2}}$ in the

$$
\sigma_{\text {Boltzman }}=\frac{n e^{2} \tau}{m}
$$

you'll get the same result (Of course with different coefficient)

$$
\frac{e^{2}}{\hbar} k_{F}^{2} l
$$

