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LECTURE V 

Continued discussion on Kubo formula: 

Sanity Check with a random potential : 

V (r)V (r�) = V 2
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Where the bar in the above equation is the impurity average. 

DC q = 0 ω → 0 
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Where |n > is an exact eigenvalue of the full one-body hamiltonian 
: (H + V )|n >= En|n > In principle one can find the spectrum of 
(H + V ) so |n > is the particlehole pair: 

|n >= |βα >, Eβ > EF , Eα < EF
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Where the ”broken” average comes from our assumption that the 
random potential causes uncorrelated ϕ and E. 
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MORE APPROXIMATIONS: 
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Note that N(0) is the density of state per (just!) unit energy, so it 
should diverge as Ω →∞ or �→ 0 : N(0) ≈ 1 .
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Define l as the distance that wavefunction loses information about 
its phase so for a perfect plane wave (without scattering) l → ∞ 
and for a very strong scattering impurity l k−1 . At this point we → F 

2intend to find approximation for the < β α > in the former | | | |
regime or 

kF l � 1 

Let’s make a grid out of our sample where each section has the 
volume of 
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Definition of l suggests that within each box we can in principle

associate a wave vector to our wavefunction:

So one an define
 � νi 1 ∂ 

drψ∗δi ≡ k� m ∂x
ψk 

associate k with α and k� with β. By this partitioning we have: 
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Where φi is the random phase at the site i. 
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for kF θl > 1 we will encounter rapid oscillations and δi = 0 and for 
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In order to average over different boxes, we average over k and k� 

which amounts to average over θ. 

Now the θ integration: 
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you’ll get the same result (Of course with different coefficient) ∼ 
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