MIT OpenCourseWare
http://ocw.mit.edu

### 8.512 Theory of Solids II

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

### 8.512 Theory of Solids

1.) (a) Prove the finite temperature version of the fluctuation dissipation theorem

$$
\chi^{\prime \prime}(q, \omega)=\frac{1}{2}\left(e^{-\beta \omega}-1\right) S(q, \omega),
$$

and

$$
S(q, \omega)=-2\left(n_{B}(\omega)+1\right) \chi^{\prime \prime}(q, \omega),
$$

where $S(q, \omega)=\int d \vec{x} d t e^{-i \vec{q}-\vec{x}} e^{i \omega x}\langle\rho(\vec{x}, t) \rho(0,)\rangle_{T}$ and $n_{B}(\omega)=\left(e^{\beta \omega}-1\right)^{-1}$ is the Bose occupation factor.
(b) Show that $\chi^{\prime \prime}(q, \omega)=-\chi^{\prime \prime}(-q,-\omega)$ and $S(-q,-\omega)=e^{-\beta \omega} S(q, \omega)$. In terms of the scattering probability, show that this is consistent with detailed balance.
2.) Neutron scattering by crystals.

We showed in class that the probability of neutron scattering with momentum $\vec{k}_{i}$ to $\vec{k}_{f}$ is given by $\left(2 \pi b / M_{n}\right)^{2} S(\vec{Q}, \omega)$ where $b$ is the scattering of the nucleus $\vec{Q}=\vec{k}_{i}-\vec{k}_{f}$ and

$$
S(\vec{Q}, \omega)=\int d t e^{i \omega t} F(\vec{Q}, t)
$$

where

$$
\begin{equation*}
F(\vec{Q}, t)=\sum_{j, e}\left\langle e^{-i \vec{Q} \cdot \vec{r}_{j}(t)} e^{i \vec{Q} \cdot \vec{r}_{i}(0)}\right\rangle_{T} \tag{1}
\end{equation*}
$$

and $\vec{r}_{j}(t)$ is the instantaneous nucleus position. Write $\vec{r}_{j}=\vec{R}_{j}+\vec{u}_{j}$, where $\vec{R}_{j}$ are the lattice sites, and expand $\vec{u}_{j}$ in terms of phonon modes

$$
\begin{equation*}
\vec{u}_{j}=\sum_{\alpha} \sum_{q} \vec{\lambda}_{\alpha} \frac{1}{\sqrt{2 N M \omega_{q}}}\left(a_{q} e^{i\left(\vec{q} \cdot \vec{R}_{j}-\omega_{q} t\right)}+c . c .\right) \tag{2}
\end{equation*}
$$

where $\vec{\lambda}_{\alpha}$ are the polarization vectors and $\alpha$ labels the transverse and longitudinal modes. Note that only $\vec{Q} \cdot \vec{u}_{j}$ appear in Eq. (1). For simplicity, assume the $\alpha$ modes are degenerate for each $\vec{q}$ so that we can always choose one mode with $\vec{\lambda}_{\alpha}$ parallel to $\vec{Q}$. Henceforth we will drop the $\alpha$ label and $\vec{\lambda}_{\alpha}$ and treat $\vec{Q} \cdot \vec{u}_{j}$ as scalar products $Q u_{j}$. Then

$$
F(\vec{Q}, t)=\sum_{j l} e^{-i \vec{Q} \cdot\left(\vec{R}_{j}-\vec{R}_{l}\right)} F_{j l}(t)
$$

where

$$
F_{j l}(t)=\left\langle e^{-i Q u_{j}(t)} e^{i Q u_{l}(0)}\right\rangle_{T} .
$$

a) Show that

$$
\begin{equation*}
F_{j l}(t)=\left\langle e^{-i Q\left(u_{j}(t)-u_{l}(0)\right)}\right\rangle_{T} e^{\frac{1}{2}\left[Q u_{j}(t), Q u_{l}(0)\right]} \tag{3}
\end{equation*}
$$

Furthermore, for harmonic oscillators, the first factor can be written as

$$
\begin{equation*}
\left\langle e^{-i Q\left(u_{j}(t)-u_{l}(0)\right)}\right\rangle_{T}=e^{-\frac{1}{2} Q^{2}\left\langle\left(u_{j}(t)-u_{l}(0)\right)^{2}\right\rangle_{T}} \tag{4}
\end{equation*}
$$

b) Using Eqs. (1-4) show that

$$
\begin{equation*}
F_{j l}(t)=e^{-2 W} \exp \left\{\frac{Q^{2}}{2 N M} \sum_{q} \frac{1}{\omega_{q}}\left(\left(2 n_{q}+1\right) \cos \theta_{j l}+i \sin \theta_{j l}\right)\right\} \tag{5}
\end{equation*}
$$

where the Debye-Waller factor $2 W$ is given by

$$
2 W=\frac{Q^{2}}{2 N M} \sum_{q} \frac{1}{\omega_{q}}\left(2 n_{q}+1\right)
$$

and $n_{q}=1 /\left(e^{\beta \omega_{q}}-1\right), \quad \theta_{j l}=-\omega_{q} t+\vec{q} \cdot\left(\vec{R}_{j}-\vec{R}_{l}\right)$.
c) Expand the exp factor in Eq. (5) to lowest order and show that ( $V^{*}$ is the volume of reciprocal lattice unit cell)

$$
\begin{align*}
S(Q, \omega)= & N V * e^{-2 W}\left\{\sum_{G} \delta(\vec{Q}-\vec{G})\right. \\
& +\sum_{\vec{q}} \frac{Q^{2}}{2 N M \omega_{q}}\left(\left(n_{q}+1\right) \sum_{G} \delta(\vec{Q}-\vec{q}-\vec{G}) \delta\left(\omega-\omega_{q}\right)\right.  \tag{6}\\
& \left.\left.+n_{q} \sum_{G} \delta(\vec{Q}+\vec{q}-\vec{G}) \delta\left(\omega+\omega_{q}\right)\right)\right\}
\end{align*}
$$

d) Discuss the interpretation of various terms in Eq. (6) .
e) Even though we did not compute it explicitly, what experiment would you propose to measure the polarization vector $\lambda_{\alpha}$ of a given mode at energy $\omega_{q}$ ?

