Modern quantum many-body physics Semi-classical approach

Xiao-Gang Wen (MIT)

Classical motion of a particle and Newton's Law

The motion of electrons or holes in a semiconductor does not follow Newton's law. They follow a generalized Newton law.

F = ma

THE MORE FORCE...
THE MORE ACCELERATION

This image is in the public domain.

First-order equation of motion and phase-space Lagrangian

- If (x, p) fully characterize the state of a particle, then their equation of motion is first-order:

$$
\dot{x}=\partial_{p} H(x, p), \quad \dot{p}=-\partial_{x} H(x, p) \quad \text { Why this form? }
$$

which can be obtained via phase-space Lagrangian

$$
\mathcal{L}(x, \dot{x}, p, \dot{p})=p \dot{x}-H(x, p), \quad S=\int \mathrm{d} t \mathcal{L}(x, \dot{x}, p, \dot{p})
$$

- A classical system is fully characterized by 1) EOM + Hamiltonian, or by 2) phase-space Lagrangian.
- A phase-space point fully characterises a classical state.
- Phase-space Lagrangian contains only first order time derivative.
- From S to first-order equation of motion

$$
\delta S=\int \mathrm{d} t \delta p \underbrace{\left[\dot{x}-\partial_{p} H(x, p)\right]}_{=0}+\delta x \underbrace{\left[-\dot{p}-\partial_{x} H(x, p)\right]}_{=0},
$$

we got that above equation of motion.

Phase-space Lagrangian description of Shrödinger equation

For a quantum system, its state is fully characterized by a vector $\phi\rangle$ in a Hilbert space \mathcal{V} :

$$
|\phi\rangle=\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots
\end{array}\right) \rightarrow \text { first-order E.O.M i } \dot{\phi}_{m}=H_{m n} \phi_{n}
$$

(Why ϕ_{m} is complex? Why $\left|\phi_{m}\right|^{2}$ related to probability?)

- Phase-space Lagrangian (taking $\hbar=1$ unit)

$$
L=\mathrm{i} \phi_{m}^{*} \dot{\phi}_{m}-\phi_{m}^{*} H_{m n} \phi_{n}=\langle\phi| \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}-H|\phi\rangle, \quad S=\int \mathrm{d} t L .
$$

- From
(Can we have non-linear Shrödinger equation?)

$$
\delta S=\int \mathrm{d} t \delta \phi_{m}^{*}\left[\mathrm{i} \dot{\phi}_{m}-H_{m n} \phi_{n}\right]+\delta \phi_{n}\left[-\mathrm{i} \dot{\phi}_{m}^{*}-\phi_{m}^{*} H_{m n}\right]
$$

we get the equation of motion

$$
\mathrm{i} \dot{\phi}_{m}=H_{m n} \phi_{n}, \quad-\mathrm{i} \dot{\phi}_{n}^{*}=\phi_{m}^{*} H_{m n}
$$

Quantum \rightarrow classical: Dynamical variational approach

- Given a Hamiltonian H, we can use variational approach to get an approximate ground state, by minimizing $\left\langle\phi_{\xi^{\prime}}\right| H\left|\phi_{\xi^{\prime}}\right\rangle$, where ξ^{\prime} are the variational parameters \rightarrow approximate ground state $\left|\phi_{\xi_{0}^{\prime}}\right\rangle$.
But how to get the low energy excited states?
- Dynamical variational approach (semi-classical approach):
- we assume the variational parameters has a time-dependence $\xi^{\prime}(t)$.
- The variational parameters ξ^{\prime} fully characterize the state, ie ξ^{\prime} parametrize a phase-space.
- The dynamics of $\xi^{\prime}(t)$ is given by the phase-space Lagrangian

$$
\mathcal{L}\left(\xi^{\prime}, \dot{\xi}^{\prime}\right)=\left\langle\phi_{\xi^{\prime}(t)}\right| \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}-H\left|\phi_{\xi^{\prime}(t)}\right\rangle=-a_{l}\left(\xi^{\prime}\right) \dot{\xi}^{\prime}-\bar{H}\left(\xi^{\prime}\right)
$$

where

$$
\operatorname{ia}_{l}\left(\xi^{\prime}\right) \equiv\left\langle\phi_{\xi^{\prime}}\right| \partial_{\xi^{\prime}}\left|\phi_{\xi^{\prime}}\right\rangle,
$$

which is the vector potential in the phase-space.

Most general phase-space description of classical system

From $S=\int \mathrm{d} t L\left(\dot{\xi}^{\prime}, \xi^{\prime}\right)=\int \mathrm{d} t\left[-a_{1} \dot{\xi}^{\prime}-\bar{H}\right]$, we get

$$
\begin{aligned}
& \delta S=\int \mathrm{d} t\left[-\left(\partial_{\jmath} a_{l}\right) \delta \xi^{J} \dot{\xi}^{\prime}+\dot{a}_{l} \delta \xi^{\prime}-\delta \xi^{\prime} \partial_{l} \bar{H}\left(\xi^{\prime}\right)\right] \\
& =\int \mathrm{d} t \delta \xi^{\prime}\left[-\left(\partial_{l} a_{J}\right) \dot{\xi}^{j}+\left(\partial_{\jmath} a_{l}\right) \dot{\xi}^{J}-\partial_{l} \bar{H}\right]=\int \mathrm{d} t \delta \xi^{\prime}\left[-b_{l J} \dot{\xi}^{J}-\partial_{l} \bar{H}\right]
\end{aligned}
$$

and the equation of motion
$b_{I J} \dot{\xi}^{J}=-\frac{\partial \bar{H}}{\partial \xi^{\prime}}, \quad b_{I J}=\partial_{I} a_{J}-\partial_{J} a_{I}=$ "magnetic field" in phase-space

- The above EOM conserve energy $\partial_{t} \bar{H}\left(\xi^{\prime}(t)\right)=0$.
- Choose an equivalent (redundant) trial wave function $\mathrm{e}^{\mathrm{i} \theta\left(\xi^{\prime}\right)}\left|\psi_{\xi^{\prime}}\right\rangle$:

$$
L\left(\dot{\xi}^{\prime}, \xi^{\prime}\right)=-a_{l} \dot{\xi}^{\prime}-\dot{\theta}\left(\xi^{\prime}\right)-\bar{H}\left(\xi^{\prime}\right)=\left[-a_{l}-\partial_{l} \theta\right] \dot{\xi}^{\prime}-\bar{H}\left(\xi^{\prime}\right)
$$

which gives rise to the same EOM. Phase space Lagrangian is a way to lable/describe a physical system. Two phase space Lagrangians, differing by a total time derivative of any function, label/describe the same system \rightarrow Gauge redundancy

Gauge "symmetry" and symmetry

Gauge redundancy (also called gauge symmetry by mistake) and symmetry (real physical symmetry) in quantum system:

- If we give a single quantum state two names $|a\rangle$ and $|b\rangle$, then $|a\rangle$ and $|b\rangle$ will have the same properties (since $|a\rangle=|b\rangle$). We say there is a gauge redundancy or gauge symmetry, and the theory of $|a\rangle$ and $|b\rangle$ is a gauge theory.
- If two orthogonal states $|a\rangle$ and $|b\rangle$ same properties, then we say there is a symmetry between $|a\rangle$ and $|b\rangle$ (since $\langle a \mid b\rangle=0$).

Gauge "symmetry" is indeed a symmetry in classical system

Differential form

- The phase space "vector potential" a_{l} gives rise to a differential 1-form, $a=a_{l} \mathrm{~d} \xi^{\prime}$.
The phase space "magnetic field" $b_{I J}$ gives rise to a differential 2-form, $b=b_{I J} \mathrm{~d} \xi^{\prime} \wedge \mathrm{d} \xi^{J} / 2$! (assuming the sum of indices), where \wedge is the wedge product $d \xi^{\prime} \wedge d \xi^{J}=-d \xi^{J} \wedge d \xi^{\prime}$.
- The physical meaning of the 2-form: for any 2-dimensional submanifold $M^{2} \subset M_{\text {phase space, }}$, the pair b, M^{2} give rise to a number:
$\left\langle b, M^{2}\right\rangle=\int_{M^{2}} b=\int_{M^{2}} b_{I J} \mathrm{~d} \xi^{\prime} \mathrm{d} \xi^{J} / 2!=\int_{M^{2}} b_{x y} \mathrm{~d} x \mathrm{~d} y=$ number $=$ flux.
which is called evaluate 2-form b on 2-manifiold M^{2}.
So the 2-form b describes a "magnetic field" in the phase space $M_{\text {phase space }}$.
- n-form: $\omega_{n}=\omega_{I_{1} \cdots I_{n}} \mathrm{~d} \xi^{I_{1}} \wedge \cdots \wedge \mathrm{~d} \xi^{I_{n}} / n$!

Evaluate n-form ω_{n} on n-manifiold $M^{n}:\left\langle\omega_{n}, M^{n}\right\rangle=\int_{M^{n}} \omega_{n}=$ number

- For a m-form and a n-form, we have $\omega_{m} \wedge \omega_{n}=(-)^{m+n} \omega_{n} \wedge \omega_{m}$.

Generalized Stokes theorem in differential form

- Exterior derivative d maps a n-form to a $n+1$-form: $\omega_{n} \rightarrow \nu_{n+1}$

$$
\begin{aligned}
& \quad \nu_{n+1} \equiv \mathrm{~d} \omega_{n}=\left(\partial_{I_{0}} \omega_{I_{1} \cdots I_{n}}\right) \mathrm{d} \xi^{I_{0}} \wedge \cdots \wedge \mathrm{~d} \xi^{I_{n}} /(n+1)!\text { (with sum of indices) } \\
& \quad \nu_{n+1}=\nu_{l_{0} \cdots I_{n}} \mathrm{~d} \xi^{I_{0}} \wedge \cdots \wedge \mathrm{~d} \xi^{I_{n}} /(n+1)! \\
& \nu_{l_{0} \cdots I_{n}}=\left(\partial_{I_{0}} \omega_{I_{1} \cdots I_{n}}-\partial_{I_{1}} \omega_{I_{0} \cdots I_{n}} \pm \cdots\right)_{\text {anti-symmetrize }} /(n+1)! \\
& - \\
& -b_{I J}=\partial_{I} a_{J}-\partial_{J} a_{l} \rightarrow b=\left(\partial_{I} a_{J}-\partial_{J} a_{l}\right) \mathrm{d} \xi^{\prime} \mathrm{d} \xi^{J} / 2!=\partial_{I} a J \mathrm{~d} \xi^{\prime} \mathrm{d} \xi^{J}=\mathrm{d} \text { a. } \\
& \text { - } \mathrm{d} \omega_{n} \nu_{m}=\left(\mathrm{d} \omega_{n}\right) \nu_{m}+(-)^{n} \omega_{n}\left(\mathrm{~d} \nu_{m}\right) . \\
& \text { - Generalized Stokes theorem } \quad \int_{M^{n+1}} \mathrm{~d} \omega_{n}=\int_{\partial M^{n+1}} \omega_{n}
\end{aligned}
$$

- Definition: ω_{n} is closed if $\mathrm{d} \omega_{n}=0$.

Definition: ω_{n} is exact there is a $n-1$-form μ_{n-1} such that $\omega_{n}=\mathrm{d} \nu_{n-1}$. Since $\mathrm{d} d=0$, an exact form is also a closed form.

- Two vector potential 1 -forms differing by an exact 1 -from are equivalent
- ω_{n} is exact iff $\int_{M^{n}} \omega_{n}=0$ for any closed manifold $M^{n} . \omega_{n}$ is closed iff $\int_{M^{n}} \omega_{n}=0$ for any contractible closed manifold M^{n}.
- A magnetic field is described by a closed (or exact?) 2-form b.

Generalized Liouville's theorm

- Generalized Liouville's theorem

Consider a time evolution from $t \rightarrow \tilde{t}, \xi^{\prime} \rightarrow \tilde{\xi}^{\prime}$, determined by the equation of motion

$$
b_{I J} \dot{\xi}^{J}=-\frac{\partial \bar{H}}{\partial \xi^{\prime}}
$$

Then

$$
\operatorname{Pf}\left(b_{I J}\left(\xi^{\prime}\right)\right) \mathrm{d}^{n} \xi^{\prime}=\operatorname{Pf}\left(b_{I J}\left(\tilde{\xi}^{\prime}\right)\right) \mathrm{d}^{n} \tilde{\xi}^{\prime} \quad\left(b_{x p} \mathrm{~d} x \mathrm{~d} p=b_{\tilde{x} \tilde{p}} \mathrm{~d} \tilde{x} \mathrm{~d} \tilde{p}\right)
$$

In other words, the sympletic volume $\operatorname{Pf}\left(b_{I J}\left(\xi^{\prime}\right)\right) \mathrm{d}^{n} \xi^{\prime}$ is invariant under time evolution.

- The phase space is a sympletic manifold characterized by anti-symmetric tensor $b_{I J}$: area element $\mathrm{d} S^{2}=b_{I J} \mathrm{~d} \xi^{\prime} \wedge \mathrm{d} \xi^{J} / 2$!.
- It is different from the usual manifold characterized by symmetric matrics tensor $g_{I J}$: distance ${ }^{2}$ element $\mathrm{ds}^{2}=g_{I J} \mathrm{~d} \xi^{l} \cdot \mathrm{~d} \xi^{J}$.
- A classical system is described by pair $\left(M_{\text {phase space }}, H\left(\xi^{\prime}\right)\right)$, a sympletic manifold and a function (Hamiltonian) on it.

Change of variables

If we change the variables to $\eta^{\prime}=\eta^{\prime}\left(\xi^{\prime}\right)$, we get
$L\left(\dot{\eta}^{\prime}, \eta^{\prime}\right)=\int \mathrm{d} t\left[-a_{l}^{\eta} \dot{\eta}^{\prime}-\bar{H}\left(\eta^{\prime}\right)\right], \quad b_{I J}^{\eta} \dot{\eta}^{J}=-\frac{\partial \bar{H}}{\partial \eta^{\prime}}, \quad b_{I J}^{\eta}=\partial_{\eta^{\prime}} a_{j}^{\eta}-\partial_{\eta^{J}} a_{l}^{\eta}$
where

$$
\begin{aligned}
a_{l}^{\eta} & =-\mathrm{i}\langle\phi| \partial_{\eta^{\prime}}|\phi\rangle=-\mathrm{i}\langle\phi| \partial_{\xi^{\prime}}|\phi\rangle \frac{\partial \xi^{J}}{\partial \eta^{\prime}}=a_{J} \frac{\partial \xi^{J}}{\partial \eta^{\prime}} . \quad a_{l}^{\eta} \mathrm{d} \eta^{\prime}=a_{l} \mathrm{~d} \xi^{\prime} . \\
b_{I J}^{\eta} & =\partial_{\eta^{\prime}}(\underbrace{a_{K} \frac{\partial \xi^{K}}{\partial \eta^{J}}}_{a_{j}^{\eta}})-\partial_{\eta^{J}}(\underbrace{a_{K} \frac{\partial \xi^{K}}{\partial \eta^{\prime}}}_{a_{l}^{\eta}})=\left(\partial_{\eta^{\prime}} a_{K}\right) \frac{\partial \xi^{K}}{\partial \eta^{J}}-\left(\partial_{\eta^{J}} a_{K}\right) \frac{\partial \xi^{K}}{\partial \eta^{\prime}} \\
& =\left(\partial_{\xi^{L}} a_{K}\right) \frac{\partial \xi^{L}}{\partial \eta^{\prime}} \frac{\partial \xi^{K}}{\partial \eta^{J}}-\underbrace{\left(\partial_{\xi^{L}} a_{K}\right) \frac{\partial \xi^{L}}{\partial \eta^{J}} \frac{\partial \xi^{K}}{\partial \eta^{\prime}}}_{\text {exchange } K \leftrightarrow L}=\left(\partial_{\xi^{L}} a_{K}-\partial_{\xi^{K}} a_{L}\right) \frac{\partial \xi^{L}}{\partial \eta^{\prime}} \frac{\partial \xi^{K}}{\partial \eta^{J}} \\
& =b_{L K} \frac{\partial \xi^{L}}{\partial \eta^{\prime}} \frac{\partial \xi^{K}}{\partial \eta^{J}} . \quad \quad b_{I J}^{\eta} \mathrm{d} \eta^{\prime} \mathrm{d} \eta^{J}=b_{I J} \mathrm{~d} \xi^{\prime} \mathrm{d} \xi^{J} .
\end{aligned}
$$

Derive generalized Liouville's theorm

- For the time evolution from $t \rightarrow \tilde{t}, \xi^{\prime} \rightarrow \tilde{\xi}^{\prime}$, we have

$$
\mathrm{d}^{n} \tilde{\xi}^{\prime}=\operatorname{Det}(\hat{\jmath}) \mathrm{d}^{n} \xi^{\prime}, \quad J_{I J}=\frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{J}}
$$

For $\tilde{t}=t+\delta t, \tilde{\xi}^{\prime}=\xi^{\prime}-b^{I K} \frac{\partial \bar{H}}{\partial \xi^{K}} \delta t$, where $b_{I J} b^{J K}=\delta_{I K}$.
$J_{I J}=\delta_{I J}-\partial_{J}\left(b^{I K}\right) \frac{\partial \bar{H}}{\partial \xi^{K}} \delta t-b^{I K} \frac{\partial^{2} \bar{H}}{\partial \xi^{K} \partial \xi^{J}} \delta t \xrightarrow{\text { trace }} \operatorname{Det}(\hat{J})=1-\partial_{I}\left(b^{I K}\right) \frac{\partial \bar{H}}{\partial \xi^{K}} \delta t$

- Assume for η^{\prime} variable, $b_{I J}^{\eta}$ is indenpendent of η^{\prime}. Then, $\partial_{I}\left(b^{I K}\right)=0$ and $\operatorname{Det}(\hat{\jmath})=1$. We have the Liouville's theorm

$$
\mathrm{d}^{n} \eta^{\prime}=\mathrm{d}^{n} \tilde{\eta}^{\prime} \text { or } \sqrt{\operatorname{Det}\left(b_{I J}^{\eta}\left(\eta^{\prime}\right)\right)} \mathrm{d}^{n} \eta^{\prime}=\sqrt{\operatorname{Det}\left(b_{I J}^{\eta}\left(\tilde{\eta}^{\prime}\right)\right)} \mathrm{d}^{n} \tilde{\eta}^{\prime}\left(b^{\eta} \text { ind. of } \eta^{\prime}\right)
$$

- Change variables \rightarrow Generalized Liouville's theorem
$\sqrt{\operatorname{Det}\left(b_{I J}^{\eta}\right)} \operatorname{Det}\left(\frac{\partial \eta^{\prime}}{\partial \xi^{J}}\right) \operatorname{Det}\left(\frac{\partial \xi^{\prime}}{\partial \eta^{J}}\right) \mathrm{d}^{n} \eta^{\prime}=\sqrt{\operatorname{Det}\left(\tilde{b}_{I J}^{\eta}\right)} \operatorname{Det}\left(\frac{\partial \tilde{\eta}^{\prime}}{\partial \tilde{\xi}^{J}}\right) \operatorname{Det}\left(\frac{\partial \tilde{\xi}^{\prime}}{\partial \tilde{\eta}^{J}}\right) \mathrm{d}^{n} \tilde{\eta}^{\prime}$

$$
\begin{aligned}
\sqrt{\operatorname{Det}\left(b_{I J}\left(\xi^{\prime}\right)\right)} \mathrm{d}^{n} \xi^{\prime} & =\sqrt{\operatorname{Det}\left(b_{I J}\left(\tilde{\xi}^{\prime}\right)\right)} \mathrm{d}^{n} \tilde{\xi}^{\prime} \\
\rightarrow \quad \operatorname{Pf}\left(b_{I J}\left(\xi^{\prime}\right)\right) \mathrm{d}^{n} \xi^{\prime} & =\operatorname{Pf}\left(b_{I J}\left(\tilde{\xi}^{\prime}\right)\right) \mathrm{d}^{n} \tilde{\xi}^{I}
\end{aligned}
$$

Phase-space volume occupied by a quantum state

- For a classical theory every phase-space point represents a distinct state. There is an ∞ number of states for a finite phase space.
- For a quantum system, $\left|\phi_{\xi^{\prime}(t)}\right\rangle$ and $\left|\phi_{\tilde{\xi}^{\prime}(t)}\right\rangle$ are orthogonal (ie are different quantum states) only when ξ^{\prime} and $\tilde{\xi}^{\prime}$ are different enough \rightarrow uncertainty of ξ^{\prime}. There is a finite number of states for a finite phase space.

- How many quantum states does a phase space region D^{n} contain? From the generalized Liouville's theorm and conservation of degrees of freedom, we guess

$$
N=\int_{D^{n}} \frac{\mathrm{~d}^{n} \xi^{\prime}}{(2 \pi)^{n / 2}} \operatorname{Pf}\left(b_{I J}\right)
$$

We will confirm it later.

Density of quantum states and the sympletic structure

- The number of quantum state in a region D^{n} in n-dimensional phase space can also be written in term of diferetial 2-form, $b=b_{I J} \mathrm{~d} \xi^{\prime} \mathrm{d} \xi^{J} / 2$!, that defines the sympletic structure of the phase space:

$$
N=\int_{D^{n}} \frac{\mathrm{~d}^{n} \xi^{\prime}}{(2 \pi)^{n / 2}} \operatorname{Pf}\left(b_{I J}\right)=\int_{D^{n}} \frac{b^{n / 2}}{(2 \pi)^{n / 2}}
$$

Example: For 2-dimensional phase space

$$
\int_{D^{2}} \frac{b}{(2 \pi)}=\int_{D^{2}} \frac{b_{I J} \mathrm{~d} \xi^{\prime} \mathrm{d} \xi^{J} / 2!}{2 \pi}=\int_{D^{2}} \frac{b_{12} \mathrm{~d} \xi^{1} \mathrm{~d} \xi^{2}}{2 \pi}
$$

The number of quantum state in the region D^{2} is equal to the number of flux quantum (also called Chern number) through D^{2} for the phase space "magnetic" field $b_{I J}$.

- Quantization of "magnetic" field: If D^{n} is closed (ie is the whole phase space)

$$
\int_{D^{n}} \frac{b^{n / 2}}{(2 \pi)^{n / 2}} \in \mathbb{Z} \quad \text { (higher Chern number) }
$$

An example: an anharmonic oscillator

- What is low energy spectrum of

$$
H=\frac{k^{2}}{2}+\frac{1}{2} v x^{2}+\frac{1}{4} x^{4}, \quad k=-i \partial_{x}
$$

- Trial ground state:

$$
\left|\psi_{0}\right\rangle=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \mathrm{e}^{-\frac{1}{2} \alpha x^{2}}
$$

The value of α is determined by minimizing the average energy

$$
\left\langle\psi_{0}^{\alpha}\right| \hat{H}\left|\psi_{0}^{\alpha}\right\rangle=\frac{3+4 \alpha^{2}+4 \alpha v}{16 \alpha^{2}}
$$

We find

$$
\begin{aligned}
\alpha & =\frac{2 \times 6^{\frac{2}{3}} v+6^{\frac{1}{3}}\left(27+\sqrt{729-48 v^{3}}\right)^{\frac{2}{3}}}{6\left(27+\sqrt{729-48 v^{3}}\right)^{\frac{1}{3}}}=\sqrt{v}+\frac{3}{4 v}+O\left(1 / v^{2}\right) \\
\langle\hat{H}\rangle & =\frac{1}{2} \sqrt{v}+\frac{3}{16 v}+O\left(1 / v^{2}\right)
\end{aligned}
$$

An anharmonic oscillator

- Dynamical trial ground state

$$
\left|\psi_{\xi^{\prime}}\right\rangle=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \mathrm{e}^{\mathrm{i} \xi^{2} x} \mathrm{e}^{-\frac{1}{2} \alpha\left(x-\xi^{1}\right)^{2}}
$$

a state with position $x=\xi^{1}$ and momentum $k=\xi^{2}$ fluctuations.

$$
L\left(\dot{\xi}^{\prime}, \xi^{\prime}\right)=\left\langle\psi_{\xi^{\prime}(t)}\right| \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}-H\left|\psi_{\xi^{\prime}(t)}\right\rangle=-a_{l}\left(\xi^{\prime}\right) \dot{\xi}^{\prime}-\bar{H}\left(\xi^{\prime}\right)
$$

where $a_{l}=-i\left\langle\psi_{\xi^{\prime}}\right| \frac{\partial}{\partial \xi^{\prime}}\left|\psi_{\xi^{\prime}}\right\rangle$,

$$
\bar{H}\left(\xi^{\prime}\right)=\left\langle\psi_{\xi^{\prime}}\right| \hat{H}\left|\psi_{\xi^{\prime}}\right\rangle
$$

- The resulting equation of motion is given by

$$
b_{I J} \dot{\xi}^{J}=-\frac{\partial \bar{H}}{\partial \xi^{l}}, \quad b_{I J}=\partial_{I} a_{J}-\partial_{\jmath} a_{l}
$$

- Calculate $a_{l}=\mathrm{i}\left\langle\psi_{\xi^{\prime}}\right| \frac{\partial}{\partial \xi^{\prime}}\left|\psi_{\xi^{\prime}}\right\rangle$:

$$
\begin{aligned}
& a_{1}=-\mathrm{i} \int \mathrm{~d} x\left(\frac{\alpha}{\pi}\right)^{1 / 2} \mathrm{e}^{-\mathrm{i} \xi^{2} x} \mathrm{e}^{-\frac{1}{2} \alpha\left(x-\xi^{1}\right)^{2}} \alpha\left(x-\xi^{1}\right) \mathrm{e}^{\mathrm{i} \xi^{2} x} \mathrm{e}^{-\frac{1}{2} \alpha\left(x-\xi^{1}\right)^{2}}=0 \\
& a_{2}=-\mathrm{i} \int \mathrm{~d} x\left(\frac{\alpha}{\pi}\right)^{1 / 2} \mathrm{e}^{-\mathrm{i} \xi^{2} x} \mathrm{e}^{-\frac{1}{2} \alpha\left(x-\xi^{1}\right)^{2}} \mathrm{i} x \mathrm{e}^{\mathrm{i} \xi^{2} x} \mathrm{e}^{-\frac{1}{2} \alpha\left(x-\xi^{1}\right)^{2}}=\xi^{1}
\end{aligned}
$$

An anharmonic oscillator

We find $b_{I J}=\epsilon_{i j}$ and

$$
\bar{H}\left(\xi^{\prime}\right)=\frac{1}{2}\left(\xi^{2}\right)^{2}+\frac{1}{2} v\left(1+\frac{3}{2 \alpha v}\right)\left(\xi^{1}\right)^{2}+\frac{1}{4}\left(\xi^{1}\right)^{4}+\frac{3+4 \alpha^{3}+4 \alpha v}{16 \alpha^{2}}
$$

- The corresponding equation of motion has a form

$$
\dot{\xi}^{1}=\xi^{2}, \quad \dot{\xi}^{2}=-v\left(1+\frac{3}{2 \alpha v}\right) \xi^{1}-\left(\xi^{1}\right)^{3}
$$

- The number of quantum states in a phase space region D^{2}

$$
N=\int_{D^{2}} \frac{\mathrm{~d} \xi^{1} \mathrm{~d} \xi^{2}}{2 \pi} \operatorname{Pf}\left(b_{I J}\right)=\int_{D^{2}} \frac{\mathrm{~d} \xi^{1} \mathrm{~d} \xi^{2}}{2 \pi}=\int_{D^{2}} \frac{\mathrm{~d} x \mathrm{~d} k}{2 \pi}
$$

which is what we expected.

An anharmonic oscillator

- The small motions around the ground state $\xi_{0}^{l} \rightarrow$ A collection of Harmonic oscillators \rightarrow low energy spectrum.
- This is why for many interacting systems, the low energy excitations are non-interacting (like phonons in interacting crystals).
- This is why semi-classical approach works well for many systems.
- For small motion around the ground state $\xi^{1}=0, \xi^{2}=0$:

$$
\dot{\xi}^{1}=\xi^{2}, \quad \dot{\xi}^{2}=-v\left(1+\frac{3}{2 \alpha v}\right) \xi^{1}
$$

A harmonic oscillator with mass $m=1$, spring constant $K=\frac{3 \alpha+2 \alpha^{2} v}{2 \alpha^{2}}$, and frequency $\omega=\sqrt{v\left(1+\frac{3}{2 \alpha v}\right)}$.

- Re-quantizing the harmonic oscillator \rightarrow low energy spectrum for the Hamiltonian

$$
H=\frac{k^{2}}{2}+\frac{1}{2} v x^{2}+\frac{1}{4} x^{4}, \quad k=-i \partial_{x}
$$

Geometric phase and related mathematics

$\delta \phi=a_{l} \mathrm{~d} \xi^{\prime}=-\mathrm{i}\left\langle\psi_{\xi^{\prime}}\right| \frac{\partial}{\partial \xi^{\prime}}\left|\psi_{\xi^{\prime}}\right\rangle \mathrm{d} \xi^{\prime}$ is the so call geometric phase.

- What is the geometric phase?

Consider $\left|\psi_{\xi^{\prime}}\right\rangle$ and $\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle$, what is the phase difference between $\left|\psi_{\xi^{\prime}}\right\rangle$ and $\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle$?

- But $\left|\psi_{\xi^{\prime}}\right\rangle$ and $\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle$ are not parallel: $\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle \neq \mathrm{e}^{\mathrm{i} \delta \phi}\left|\psi_{\xi^{\prime}}\right\rangle$. They differnce cannot be characterized by a phase.
- But for small $\delta \xi^{\prime}$, the leading difference is just a phase factor

$$
\left\langle\psi_{\xi^{\prime}} \mid \psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle \approx 1+\mathrm{i} O\left(\delta \xi^{\prime}\right), \quad\left\langle\psi_{\xi^{\prime}+\delta \xi^{\prime}} \mid \psi_{\xi^{\prime}}\right\rangle \approx 1-\mathrm{i} O\left(\delta \xi^{\prime}\right)
$$

since, to the first order in δ

$$
\left.\left.\begin{array}{rl}
0 & =\delta\left\langle\psi_{\xi^{\prime}} \mid \psi_{\xi^{\prime}}\right\rangle=\left(\left\langle\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right|-\left\langle\psi_{\xi^{\prime}}\right|\right)\left|\psi_{\xi^{\prime}}\right\rangle+\left\langle\psi_{\xi^{\prime}}\right|\left(\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle-\left|\psi_{\xi^{\prime}}\right\rangle\right) \\
& =\left[\left\langle\psi_{\xi^{\prime}}+\delta \xi^{\prime} \mid \psi_{\xi^{\prime}}\right\rangle-1\right]+\left[\left\langle\psi_{\xi^{\prime}}\right| \psi_{\xi^{\prime}}+\delta \xi^{\prime}\right.
\end{array}\right\rangle-1\right] \rightarrow\left[\left\langle\psi_{\xi^{\prime}}+\delta \xi^{\prime} \mid \psi_{\xi^{\prime}}\right\rangle-1\right]=\mathrm{imag} .
$$

Therefore $\left\langle\psi_{\xi^{\prime}} \mid \psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle \approx \mathrm{e}^{\mathrm{i} O(\delta \xi)}$, or

$$
\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle=\mathrm{e}^{\mathrm{i} \delta \phi}\left|\psi_{\xi^{\prime}}\right\rangle+\#\left(\delta \xi^{\prime}\right)^{2}, \quad \text { geometric phase }=\delta \phi=a_{l}\left(\xi^{\prime}\right) \delta \xi^{\prime}
$$

Is the geometric phase meaningless?

- Geometric phase $\mathrm{e}^{\mathrm{i} \delta \phi}=\left\langle\psi_{\xi^{\prime}} \mid \psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle=\mathrm{e}^{\mathrm{i} a_{l} \delta \xi^{\prime}}$. But we can always change the phase of $\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle \rightarrow\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle_{1}=\mathrm{e}^{-\mathrm{i} \text { al } \delta \xi^{\prime}}\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle$, to make the geometric phase to be zero: $\left\langle\psi_{\xi^{\prime}} \mid \psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle^{\prime}=\mathrm{e}^{-\mathrm{i} a_{l} \delta \xi^{\prime}} \mathrm{e}^{\mathrm{i} a_{l} \delta \xi^{\prime}}=1$.
- The move $\left|\psi_{\xi^{\prime}}\right\rangle \rightarrow\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle$ is a generic transportation.
- The move $\left|\psi_{\xi^{\prime}}\right\rangle \rightarrow\left|\psi_{\xi^{\prime}+\delta \xi^{\prime}}\right\rangle^{\prime}$ is a parallel transportation. It appears that we can always make geometric phase $=0$, and the geometric phase is meaningless. This is wrong!
- As we change the phase of $\left|\psi_{\xi^{\prime}}\right\rangle:\left|\psi_{\xi^{\prime}}\right\rangle \rightarrow \mathrm{e}^{\mathrm{i} f\left(\xi^{\prime}\right)}\left|\psi_{\xi^{\prime}}\right\rangle$, the
 geometric phase (ie the connection) also changes: $a^{\prime} \rightarrow a^{\prime}+\partial_{\xi^{\prime}} f$
- We can always choose a f to make $a^{\prime}=0$ along a particular path $\xi^{\prime}(t)$, to make $\left|\psi_{\xi^{\prime}(t)}\right\rangle$ to have the same phase for all $t \rightarrow$ parallel transportation along the path.
- But, we cannot find a f to make $a^{\prime}=0$ for all ξ^{\prime}, ie to make all $\left|\psi_{\xi^{\prime}}\right\rangle$'s to have the same phase. Some part of geometric phase (or vector potential) a^{l} is physical, and other part is not. The meaningful part is the "magnetic field": $b_{I J}=\partial_{\xi^{\prime}} a_{J}-\partial_{\xi^{\prime}} a_{I}$, which is quantized.

What is the geometric phase for spin- $1 / 2$?

Consider a spin-1/2 state in \boldsymbol{n}-direction $|\boldsymbol{n}\rangle=\binom{\mathrm{e}^{-\mathrm{i} \varphi / 2} \cos (\theta / 2)}{\mathrm{e}^{\mathrm{i} \varphi / 2} \sin (\theta / 2)}$

- Let us compare the phase of $|\boldsymbol{n}(\theta, \varphi)\rangle$ and $|\boldsymbol{n}(\theta+\delta \theta, \varphi+\delta \varphi)\rangle$:

$$
\begin{aligned}
& \langle\boldsymbol{n}(\theta, \varphi) \mid \boldsymbol{n}(\theta+\delta \theta, \varphi+\delta \varphi)\rangle \\
= & 1+\underbrace{\langle\boldsymbol{n}(\theta, \varphi)| \frac{\partial}{\partial \theta}|\boldsymbol{n}(\theta, \varphi)\rangle}_{\mathrm{i} \mathrm{a}_{\theta}} \delta \theta+\underbrace{\langle\boldsymbol{n}(\theta, \varphi)| \frac{\partial}{\partial \varphi}|\boldsymbol{n}(\theta, \varphi)\rangle}_{\mathrm{i} a_{\varphi}} \delta \varphi \\
= & 1+\mathrm{i} a_{\theta} \delta \theta+\mathrm{i} a_{\varphi} \delta \varphi \approx \mathrm{e}^{\mathrm{i}\left(a_{\theta} \delta \theta+\mathrm{a}_{\varphi} \delta \varphi\right)},
\end{aligned}
$$

where ia $a_{\theta}=\langle\boldsymbol{n}(\theta, \varphi)| \frac{\partial}{\partial \theta}|\boldsymbol{n}(\theta, \varphi)\rangle$ and $\mathrm{ia}_{\varphi}=\langle\boldsymbol{n}(\theta, \varphi)| \frac{\partial}{\partial \varphi}|\boldsymbol{n}(\theta, \varphi)\rangle$
$-\mathrm{e}^{\mathrm{i}\left(a_{\theta} \delta \theta+a_{\varphi} \delta \varphi\right)}=\mathrm{e}^{\mathrm{i} \mathrm{a}_{l} \delta \xi^{\prime}}$ is the geometric phase as we change $|\boldsymbol{n}(\theta, \varphi)\rangle$ to $|\boldsymbol{n}(\theta+\delta \theta, \varphi+\delta \varphi)\rangle=|\boldsymbol{n}+\Delta \boldsymbol{n}\rangle$.

- $\boldsymbol{a}=\left(a_{\theta}, a_{\varphi}\right)$ is the connection (vector potential) of the geometric phase. (Like the vector potential in electromagnetism.)

The notion of the "flux" of the geometric phase

- Consider a loop $|\boldsymbol{n}(t)\rangle, t \in[0,1], \boldsymbol{n}(0)=\boldsymbol{n}(1)$. The total geometric phase of the loop

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} \sum \delta \boldsymbol{\varphi}(t)} & =\left\langle\boldsymbol{n}(0) \mid \boldsymbol{n}\left(t_{1}\right)\right\rangle\left\langle\boldsymbol{n}\left(t_{1}\right) \mid \boldsymbol{n}\left(t_{2}\right)\right\rangle\left\langle\boldsymbol{n}\left(t_{2}\right) \mid \boldsymbol{n}\left(t_{3}\right)\right\rangle \cdots\left\langle\boldsymbol{n}\left(t_{N-1}\right) \mid \boldsymbol{n}(1)\right\rangle \\
& =\mathrm{e}^{\mathrm{i} \sum \boldsymbol{a}(t) \cdot \delta \boldsymbol{n}(t)}=\mathrm{e}^{\mathrm{i} \int \boldsymbol{a}(t) \cdot \mathrm{d} \boldsymbol{n}(t)}=\mathrm{e}^{\mathrm{i} \int \boldsymbol{a}(t) \cdot \frac{\mathrm{d} \boldsymbol{n}(t)}{\mathrm{d} t} \mathrm{~d} t}
\end{aligned}
$$

- If we change the phase of $|\boldsymbol{n}\rangle:|\boldsymbol{n}\rangle \rightarrow \mathrm{e}^{\mathrm{i} f(\boldsymbol{n})}|\boldsymbol{n}\rangle$, the total geometric phase for a loop - the geometric flux - does not change.
- Computing the geometric flux:
$\oint_{C} a_{\theta} \mathrm{d} \theta+a_{\varphi} \mathrm{d} \varphi=\int_{D}\left(\partial_{\theta} a_{\varphi}-\partial_{\varphi} a_{\theta}\right) \mathrm{d} \theta \mathrm{d} \varphi \quad$ or $\quad \oint_{C} a=\int_{D} \mathrm{~d} a=\int_{D} b$. where $C=\partial D$, ie the loop C is the boundary of the disk D.
- $b=\partial_{\theta} a_{\varphi}-\partial_{\varphi} a_{\theta}$ is called the geometric curvature (magnetic field): $b \Delta \theta \Delta \varphi=$ the total geometric phase for a small loop $(\theta, \varphi) \rightarrow(\theta+\Delta \theta, \varphi) \rightarrow(\theta+\Delta \theta, \varphi+\Delta \varphi) \rightarrow(\theta, \varphi+\Delta \varphi) \rightarrow(\theta, \varphi)$.
- The total geometric phase for a loop $\oint_{C} \boldsymbol{a} \cdot \mathrm{~d} \boldsymbol{n}$ and the geometric curvature b are meaningful, since they are invariant under the gauge transformation $|\boldsymbol{n}\rangle \rightarrow \mathrm{e}^{\mathrm{i} f(\boldsymbol{n})}|\boldsymbol{n}\rangle$ and $\boldsymbol{a} \rightarrow \boldsymbol{a}+\boldsymbol{\partial} f$.

The geometric phase (the flux) for spin- $1 / 2$

From i $a_{\theta}=\langle\boldsymbol{n}(\theta, \varphi)| \frac{\partial}{\partial \theta}|\boldsymbol{n}(\theta, \varphi)\rangle$ and i $a_{\varphi}=\langle\boldsymbol{n}(\theta, \varphi)| \frac{\partial}{\partial \varphi}|\boldsymbol{n}(\theta, \varphi)\rangle$ and $|\boldsymbol{n}\rangle=\binom{\cos (\theta / 2)}{e^{\mathrm{i} \varphi} \sin (\theta / 2)} \rightarrow a_{\theta}=0, \quad a_{\varphi}=\sin (\theta / 2) \sin (\theta / 2)=\frac{1-\cos (\theta)}{2}$ "Flux" of geometric phase: total geometric phase around a loop For a loop $(\theta, \varphi) \rightarrow(\theta+\Delta \theta, \varphi) \rightarrow(\theta+\Delta \theta, \varphi+\Delta \varphi) \rightarrow(\theta \theta, \varphi+\Delta \varphi) \rightarrow(\theta, \varphi)$:

$$
\begin{aligned}
& \oint_{[\Delta \theta, \Delta \varphi]} a_{\theta} \mathrm{d} \theta+a_{\varphi} \mathrm{d} \varphi=0+\frac{1-\cos (\theta+\Delta \theta)}{2} \Delta \varphi+0-\frac{1-\cos (\theta)}{2} \Delta \varphi \\
& =\frac{1}{2} \sin (\theta) \Delta \theta \Delta \varphi=b_{\theta \varphi} \mathrm{d} \theta \mathrm{~d} \varphi=\frac{1}{2} \Omega([\Delta \theta, \Delta \varphi])=\text { half solid angle. }
\end{aligned}
$$

- The total "flux" of the geometric phase on any campact space S^{2} must be quantized

$$
\int_{C^{2}} \frac{1}{2!} b_{I J} \mathrm{~d} \xi^{\prime} \mathrm{d} \xi^{J}=2 \pi \times \text { integer }
$$

$=2 \pi \times$ Chern number. \quad Spin- $1 / 2$ has a Chern number $=1$

- On shpere the number states $=$ Chern number +1 .

On torus the number states $=$ Chern number (Landau levels counting)

The geometric phase of spin-1

- The geometric connection for spin-1/2 $\left|\boldsymbol{n}_{S_{n=\frac{1}{2}}}\right\rangle$ is
$\left(a_{\theta}^{S=\frac{1}{2}}, a_{\varphi}^{S=\frac{1}{2}}\right)=\left(0, \frac{1-\cos (\theta)}{2}\right)$.
- The geometric connection for spin-1 $\left|\boldsymbol{n}_{S_{n}=1}\right\rangle$ is
$\left(a_{\theta}^{S=1}, a_{\varphi}^{S=1}\right)=2\left(a_{\theta}^{S=\frac{1}{2}}, a_{\varphi}^{S=\frac{1}{2}}\right)=(0,1-\cos (\theta))$.
- This is because we may view $\left|\boldsymbol{n}_{S_{n}=1}\right\rangle=\left|\boldsymbol{n}_{S_{n}=\frac{1}{2}}\right\rangle \otimes\left|\boldsymbol{n}_{S_{n}=\frac{1}{2}}\right\rangle$
$\mathrm{e}^{\mathrm{i} \Delta \phi^{S=1}}=\left\langle\boldsymbol{n}_{S_{n}=1} \mid \boldsymbol{n}_{S_{n}=1}^{\prime}\right\rangle=\left\langle\boldsymbol{n}_{S_{n}=\frac{1}{2}} \left\lvert\, \boldsymbol{n}_{S_{n}=\frac{1}{2}}^{\prime}\right.\right\rangle \times\left\langle\boldsymbol{n}_{S_{n}=\frac{1}{2}} \left\lvert\, \boldsymbol{n}_{S_{n}=\frac{1}{2}}^{\prime}\right.\right\rangle=\mathrm{e}^{\mathrm{i} 2 \Delta \phi^{S=\frac{1}{2}}}$
How to visualize the geometric phase of spin-1
Different arrows in the plan at a point \boldsymbol{n} on the sphere correspond to the different phase choices $\mathrm{e}^{\mathrm{i} \phi}\left|\boldsymbol{n}_{S_{n}=1}\right\rangle$. We try to choose ϕ for the spin-1 states along the loop, such that $\left|\boldsymbol{n}_{S_{n}=1}\right\rangle$ all have the same phase. But after going around the loop,
 the phase miss match is the total geometric phase along the loop.

Classical motion of spin- $1 / 2$: two views

The phase-space action
$S=\int \mathrm{d} t\left[-\frac{1}{2}(1-\cos \theta) \dot{\varphi}-V(\theta, \varphi)\right]=\int \mathrm{d} t\left[\frac{1}{2} \cos \theta \dot{\varphi}-V(\theta, \varphi)\right]+\ldots$

- Near the equator, $\cos \theta=\frac{\pi}{2}-\theta=L_{z}$:

$$
S=\int \mathrm{d} t\left[L_{z} \dot{\varphi}-V\left(\frac{\pi}{2}-L_{z}, \varphi\right)\right]
$$

- The uniform phase-space magnetic field $\rightarrow(-\theta, \varphi)=\left(L_{z}, \varphi\right)=(p, x)$ the usual canonical coordinate-momentum pair.
- A particle moving on S^{2} with a uniform magnetic field $b_{\theta \varphi}$ of total flux 2π. It is the motion in the lowest Landau level assuming $\hbar \omega_{c}$ is large. Modified Newton law $\boldsymbol{F}=\boldsymbol{v} \times \boldsymbol{B}($ not $\boldsymbol{F}=m \boldsymbol{a})$.
- A spin- $S \rightarrow$ a sphere with a uniform magnetic field of $2 \pi N_{\text {Chern }}$ flux, where $N_{\text {Chern }}=2 S \rightarrow$ lowest Landau level has $2 S+1=N_{\text {Chern }}+1$-fold degeneracy on a shere.
Lowest Landau level has $N_{\text {Chern }}$-fold degeneracy on a torus.

Global view of geometric phase: S^{1} fiber bundle

Why the "magnetic field" b is quantuized (ie cannot be deformed to 0)? The physical states are characterized by a point ξ^{i} on the phase-space, only after we pick the phase of $\left|\psi\left(\xi^{i}\right)\right\rangle$. Different choices of phases are equivalent \rightarrow the notion of S^{1} fiber bundle:

- The phase space ξ^{i} is the base space. The equivalent normalized quantum states $\mathrm{e}^{\mathrm{i} \phi}\left|\psi\left(\xi^{i}\right)\right\rangle$ form the fiber S^{1}. cross section - A S^{1} fiber bundle is (locally) $S^{1} \times$ phase-space. base space
- the ξ^{i}-labeled quantum states $\left|\psi\left(\xi^{i}\right)\right\rangle$ is a cross section of the S^{1} bundle. Pick a phase $=$ pick a cross section.
- Trivial S^{1} bundle $=S^{1} \times$ base-space (globally).

Non-trivial S^{1} fiber bundle has different topology from $S^{1} \times$ base-space.
No smooth cross section. Trivial and non-trivial bundles describes different classes of classical systems that cannot deform into each other.

- Vector bundle: fiber $=$ vector space. An example: fiber $=\mathbb{R} \rightarrow$ Möbius strip: a non-trivial \mathbb{R} bundle on base-space S^{1} No non-zero smooth cross section.

Spin-1/2 example: geometric phase and fiber bundle

- All possible spin- $1 / 2$ states (or qubit states)

$$
(a+\mathrm{i} b)|\uparrow\rangle+(c+\mathrm{i} d)|\downarrow\rangle=\binom{a+\mathrm{i} b}{c+\mathrm{i} d}=z, a^{2}+b^{2}+c^{2}+d^{2}=1
$$

form a 3-dimensional sphere S^{3} (a sphere in 4-dimensional space).

- But since $|\psi\rangle \sim \mathrm{e}^{\mathrm{i} \phi}|\psi\rangle$, all possible spin- $1 / 2$ states (or qubit states) actually form a 2-dimensional sphere S^{2}. $z^{\dagger} \sigma z=\boldsymbol{n}:$ a map $S^{3} \rightarrow S^{2} \rightarrow|\boldsymbol{n}\rangle:$ spin-1/2 in n direction.
- S^{3} locally looks like $S^{1} \times S^{2}: S^{3}$ is a non-trivial fiber bundle with fiber S^{1} and base space S^{2} :

$$
p t \rightarrow S^{1} \xrightarrow{\text { inj }} S^{3} \xrightarrow{\text { surj }} S^{2} \rightarrow p t
$$

- If we pick a phase ϕ for each $|\boldsymbol{n}\rangle$, we may get one cross section of the fiber bundle $|\boldsymbol{n}\rangle=\binom{\mathrm{e}^{-\mathrm{i} \varphi / 2} \cos (\theta / 2)}{\mathrm{e}^{\mathrm{i} \varphi / 2} \sin (\theta / 2)}$ or another $|\boldsymbol{n}\rangle=\binom{\cos (\theta / 2)}{\mathrm{e}^{\mathrm{i} \varphi} \sin (\theta / 2)}$
- No smooth cross section \rightarrow non-trivial fiber bundle \neq fiber \times base space.

The patch-picture of fiber bundle

The "megnetic field" b in the phase space of a spin is a closed 2-form, but not a exact 2-form, depite $b=\mathrm{d} a$, since the connection 1-form a has singularities on the sphere S^{2} (the phase space). There is no continous 1 -form a, such that $b=\mathrm{d} a$, since this will imply that

$$
\int_{S^{2}} b=\int_{S^{2}} \mathrm{~d} a=\int_{\partial S^{2}} a=0
$$

- b is exact iff the S^{1}-fiber boundle is trivial (ie Chern number $=0$)
- A fiber boundle is trivial iff it has no continuously defined connection a (ie the vector potential a_{l}).
- Any S^{1}-fiber boundle can be described by collection of continous connections a_{A} on patchs D_{A} that cover the
 whole base space. On the overlap of two patchs, D_{A} and D_{B}, the two gauge connections, a_{A} and a_{B} are gauge equivalent $a_{B}=a_{A}+\mathrm{d} f_{B A}$.
- Locally on each patch, the S^{1}-fiber boundle looks like $D_{A} \times S^{1}$, with cross section $\left|\psi_{A}\left(\xi^{\prime}\right)\right\rangle, \xi^{\prime} \in D_{A}$. On the overlap of two patchs, the two cross sections, $\left|\psi_{A}\left(\xi^{\prime}\right)\right\rangle$ and $\left|\psi_{B}\left(\xi^{\prime}\right)\right\rangle$, are related by $U(1)$ transformation $\left|\psi_{B}\left(\xi^{\prime}\right)\right\rangle=\mathrm{e}^{\mathrm{if} f_{B A}}\left|\psi_{A}\left(\xi^{\prime}\right)\right\rangle \rightarrow U(1)$-bundle.

The obstruction to have globally defined connection

Can we deform the gauge transformations $\mathrm{e}^{\mathrm{i} f_{B A}\left(\xi^{\prime}\right)}$ on the overlaps to 1 , and turn a patchwise defined connection to a globally defined one?

- Consider a $U(1)$-bundle on S^{2}. We divide S^{2} into two patchs with trivial topology (ie two disks). The overlap is the equator S^{1}. The transformation $U(\varphi)=\mathrm{e}^{\mathrm{i} f_{B A}(\varphi)}$ on the S^{1} connects the connections on the two patchs

$$
a_{S}=\underbrace{a_{N}-\mathrm{i} U^{-1} \mathrm{~d} U}_{\text {correct form }}=\underbrace{a_{N}+\mathrm{d} f_{S N}}_{\text {incorrect form }}
$$

The motion of a neutron in a non-uniform magnetic field

Geometric phase is a quantum effect that can affect equation of motion
Consider a spin- $1 / 2$ neutron moving in a strong non-uniform spin magnetic field $B(x)$. The neutron magnetic moment is $\mu_{n}=-1.91304272(45) \mu_{N}$, where $\mu_{N}=\frac{e \hbar}{2 m_{\rho}}$ in SI unit (or $\mu_{N}=\frac{e \hbar}{2 m_{\rho} C}$ in CGS unit). The interaction between the magnetic moment and the magnetic field, $-\mu_{n} \boldsymbol{B} \cdot \boldsymbol{\sigma}$, will force the neutron spin to be anti-parallel to the magnetic field B at low energies.

- What is the classical theroy (such as equation of motion and Lagrangian) that describes the motion of the above low energy neutron?
- What is the quantum Hamiltonian \hat{H} that describes the quantum motion of the above low energy neutron?

Our first guess:

- Classical: $m \ddot{x}=-\partial V(\boldsymbol{x})$ and $L=\boldsymbol{p} \cdot \dot{\boldsymbol{x}}-\frac{1}{2} m \boldsymbol{p}^{2}-\partial V(\boldsymbol{x})$, where $V(\boldsymbol{x})=-\left|\mu_{n} \boldsymbol{B}(\boldsymbol{x})\right|$ is the effective potential energy.
Quantum: $\hat{H}=-\frac{1}{2 m_{n}} \partial^{2}+V(x)$ Is this guess correct?

Schrödinger equation and coordinate basis

- Schrödinger equation (basis independent): $\mathrm{i} \partial_{t}|\psi\rangle=\hat{H}(\hat{\boldsymbol{p}}, \hat{\boldsymbol{x}})|\psi\rangle$
- In a coordinate basis $|\psi\rangle=\int \mathrm{d} \boldsymbol{x} \psi(\boldsymbol{x})|\boldsymbol{x}\rangle$, it becomes

$$
\mathrm{i} \partial_{t} \psi(\boldsymbol{x}, t)=H(-\mathrm{i} \boldsymbol{\partial}, \boldsymbol{x}) \psi(\boldsymbol{x}, t)=\left(-\frac{1}{2 m_{n}} \partial^{2}+V(\boldsymbol{x})\right) \psi(\boldsymbol{x}, t)
$$

- In the above, we have assumed that there is no geometric phase for $|\boldsymbol{x}\rangle$, ie the phase change from $|\boldsymbol{x}\rangle$ to $|\boldsymbol{x}+\delta \boldsymbol{x}\rangle$ is 0 .
- But for our neutron problem, the phase change from $|\boldsymbol{x}\rangle$ to $|\boldsymbol{x}+\delta \boldsymbol{x}\rangle$ is not 0 . How to to compute the phase change?
- For our neutron problem, $|\boldsymbol{x}\rangle$ is actually $|\boldsymbol{x}\rangle \otimes|\boldsymbol{n}(\boldsymbol{x})\rangle$.
- The phase change from $|\boldsymbol{x}\rangle \otimes|\boldsymbol{n}(\boldsymbol{x})\rangle$ to $|\boldsymbol{x}+\delta \boldsymbol{x}\rangle \otimes|\boldsymbol{n}(\boldsymbol{x}+\delta \boldsymbol{x})\rangle$ is given by $a \cdot \delta x$:

$$
\mathrm{e}^{\mathrm{i} \boldsymbol{a}(\boldsymbol{x}) \cdot \delta \boldsymbol{x}}=\langle\boldsymbol{n}(\boldsymbol{x}) \mid \boldsymbol{n}(\boldsymbol{x}+\delta \boldsymbol{x})\rangle \quad \rightarrow \quad \mathrm{i} \boldsymbol{a}(\boldsymbol{x})=\langle\boldsymbol{n}(\boldsymbol{x})| \boldsymbol{\partial}|\boldsymbol{n}(\boldsymbol{x})\rangle
$$

- If there is a geometric phase for $|\boldsymbol{x}\rangle$, ie a phase change $\mathrm{e}^{\mathrm{i} a(x) \cdot \delta \boldsymbol{x}}$ from $|\boldsymbol{x}\rangle$ to $|\boldsymbol{x}+\delta \boldsymbol{x}\rangle$, what will the Schrödinger equation look like?
- The result $\hat{H}=-\frac{1}{2 m_{n}} \partial^{2}-\left|\mu_{n} \boldsymbol{B}(x)\right|$ is valid only when the direction of $B(x)$ does not change.

How geometric phase affects Schrödinger equation?

- If we choose a new basis $|\boldsymbol{x}\rangle_{\text {tw }}=\mathrm{e}^{\mathrm{i} \phi(\boldsymbol{x})}|\boldsymbol{x}\rangle .|\boldsymbol{x}\rangle_{\text {tw }}$ will have an non-zero geometric phase: The phase change from $|\boldsymbol{x}\rangle_{\mathrm{tw}}$ to $|\boldsymbol{x}+\delta \boldsymbol{x}\rangle_{\mathrm{tw}}$ is $\mathrm{e}^{\mathrm{i}[\phi(\boldsymbol{x}+\delta \boldsymbol{x})-\phi(\boldsymbol{x})]}=\mathrm{e}^{\mathrm{i} \boldsymbol{a}(\boldsymbol{x}) \cdot \delta \boldsymbol{x}}$ where $\boldsymbol{a}=\boldsymbol{\partial} \phi(\boldsymbol{x})$.
- What is the Schrödinger equation in the new basis

$$
\begin{aligned}
&|\psi\rangle=\int \mathrm{d} \boldsymbol{x} \psi(\boldsymbol{x})|\boldsymbol{x}\rangle=\int \mathrm{d} \boldsymbol{x} \psi_{\mathrm{tw}}(\boldsymbol{x})|\boldsymbol{x}\rangle_{\mathrm{tw}} \text { or } \mathrm{e}^{\mathrm{i} \phi(\boldsymbol{x})} \psi_{\mathrm{tw}}=\psi(\boldsymbol{x}) \\
& \mathrm{i} \partial_{t} \psi(\boldsymbol{x}, t)=\hat{H} \psi(\boldsymbol{x}, t)=\hat{H} \mathrm{e}^{\mathrm{i} \phi(x)} \psi_{\mathrm{tw}} \\
& \mathrm{e}^{-\mathrm{i} \phi(\boldsymbol{x})} \mathrm{i} \partial_{t} \psi(\boldsymbol{x}, t)=\mathrm{e}^{-\mathrm{i} \phi(\boldsymbol{x})} \hat{H} \mathrm{e}^{\mathrm{i} \phi(\boldsymbol{x})} \psi_{\mathrm{tw}} \\
& \mathrm{i} \partial_{t} \psi_{\mathrm{tw}}(\boldsymbol{x}, t)=\hat{H}_{\mathrm{tw}} \psi_{\mathrm{tw}}, \quad \hat{H}_{\mathrm{tw}}=\mathrm{e}^{-\mathrm{i} \phi(x)} \hat{H} \mathrm{e}^{\mathrm{i} \phi(x)} .
\end{aligned}
$$

- $\hat{H}_{\mathrm{tw}}(\partial, x)$ is obtained from $\hat{H}(\partial, x)$ by replacing ∂ in \hat{H} by $\mathrm{e}^{-\mathrm{i} \phi(x)} \boldsymbol{\partial} \mathrm{e}^{\mathrm{i} \phi(\boldsymbol{x})}=\boldsymbol{\partial}+\mathrm{i} \boldsymbol{\partial} \phi(\boldsymbol{x})=\boldsymbol{\partial}+\mathrm{i} \boldsymbol{a}(\boldsymbol{x})$.

$$
\hat{H}_{\mathrm{tw}}=\hat{H}(\boldsymbol{\partial}+\mathrm{i} \boldsymbol{a}, \boldsymbol{x})=-\frac{1}{2 m_{n}}(\boldsymbol{\partial}+\mathrm{i} \boldsymbol{a})^{2}+V .
$$

The above is derived for $\boldsymbol{a}=\boldsymbol{\partial} \phi$. But we assume it remains valid for general $a \rightarrow$ How geometric phase affects Schrödinger equation

Effective Hamiltonian for neutron in spin magnetic field

$$
\hat{H}_{\mathrm{eff}}=-\frac{1}{2 m_{n}}(\boldsymbol{\partial}+\mathrm{i} \boldsymbol{a})^{2}+V
$$

where

$$
\mathrm{i} a(x)=\langle\boldsymbol{n}(\boldsymbol{x})| \boldsymbol{\partial}|\boldsymbol{n}(\boldsymbol{x})\rangle, \quad \boldsymbol{n}=-\frac{\boldsymbol{B}(\boldsymbol{x})}{|\boldsymbol{B}(\boldsymbol{x})|}, \quad V(\boldsymbol{x})=-\left|\mu_{n} \boldsymbol{B}(\boldsymbol{x})\right| .
$$

$a(x)$ comes from geometric phase and $V(x)$ is potential energy.

- $V(x)$ generates a potential force $F=-\partial V$ on the particle.
- We will see that $\boldsymbol{a}(\boldsymbol{x})$ generates a Lorentz force $\boldsymbol{F} \propto \boldsymbol{v} \times \boldsymbol{b}$ on the particle, as if there is a "orbital magnetic field" $\boldsymbol{b}=\boldsymbol{\partial} \times \boldsymbol{a}$.

The geometric phase gives rise to an effective orbital magnetic field.

Obtain classical equation of motion

- Consider wavepacket with space-time dependent spin

$$
\left|\psi_{\boldsymbol{x}_{0}, \boldsymbol{k}_{0}}\right\rangle=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{0} \boldsymbol{x}} \mathrm{e}^{-\frac{1}{2} \alpha\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{2}}\left|\boldsymbol{n}\left(\boldsymbol{x}_{0}\right)\right\rangle
$$

Phase space Lagrangian $\left(\hat{H}=-\frac{1}{2 m} \partial^{2}-\mu_{n} \boldsymbol{B} \cdot \boldsymbol{\sigma}\right)$

$$
\begin{aligned}
\mathcal{L} & =\left\langle\psi_{\boldsymbol{x}_{0}(t), \boldsymbol{k}_{0}(t)}\right| \mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\left|\psi_{\boldsymbol{x}_{0}(t), \boldsymbol{k}_{0}(t)}\right\rangle-\left\langle\psi_{\boldsymbol{x}_{0}(t), \boldsymbol{k}_{0}(t)}\right| \hat{H}\left|\psi_{\boldsymbol{x}_{0}(t), \boldsymbol{k}_{0}(t)}\right\rangle \\
& =-\underbrace{\boldsymbol{a}^{\prime}}_{=0} \cdot \dot{\boldsymbol{x}}_{0}-\underbrace{\boldsymbol{a}^{\prime \prime}}_{\boldsymbol{x}_{0}} \cdot \dot{\boldsymbol{k}}_{0}-\underbrace{\boldsymbol{a}\left(\boldsymbol{x}_{0}\right)}_{-\mathrm{i}\langle\boldsymbol{n}| \partial_{x_{0}}|\boldsymbol{n}\rangle} \cdot \dot{\boldsymbol{x}}_{0}-\frac{\boldsymbol{k}_{0}^{2}}{2 m_{n}}-\left|\mu_{n} \boldsymbol{B}\left(\boldsymbol{x}_{0}\right)\right| \\
& =-\boldsymbol{x}_{0} \cdot \dot{\boldsymbol{k}}_{0}-\boldsymbol{a}\left(\boldsymbol{x}_{0}\right) \cdot \dot{\boldsymbol{x}}_{0}-\frac{\boldsymbol{k}_{0}^{2}}{2 m_{n}}+\left|\mu_{n} \boldsymbol{B}\left(\boldsymbol{x}_{0}\right)\right| \\
& \approx \boldsymbol{p}_{0} \cdot \dot{\boldsymbol{x}}_{0}-\boldsymbol{a}\left(\boldsymbol{x}_{0}\right) \cdot \dot{\boldsymbol{x}}_{0}-\frac{\boldsymbol{p}_{0}^{2}}{2 m_{n}}-V\left(\boldsymbol{x}_{0}\right) . \quad(\hbar=1 \text { unit })
\end{aligned}
$$

Obtain classical equation of motion

For $S=\int \mathrm{d} t\left[\boldsymbol{p} \cdot \dot{\boldsymbol{x}}-\boldsymbol{a}(\boldsymbol{x}) \cdot \dot{\boldsymbol{x}}-\frac{\boldsymbol{p}^{2}}{2 m_{n}}-V(\boldsymbol{x})\right]$
From $\int \mathrm{d} t \delta\left(a_{i}(\boldsymbol{x}) \dot{x}^{i}\right)=\int \mathrm{d} t\left[\delta x^{j}\left(\partial_{j} a_{i}\right) \dot{x}^{i}-\dot{a}_{i}(\boldsymbol{x}) \delta x^{i}\right]$

$$
\delta S=\int \mathrm{d} t \delta p_{i}\left[\dot{x}^{i}-\frac{p_{i}}{m_{n}}\right]+\delta x^{i}\left[-\dot{p}_{i}-\left(\partial_{i} a_{j}\right) \dot{x}^{j}+\left(\partial_{j} a_{i}\right) \dot{x}^{j}-\partial_{i} V\right]
$$

we obtain the phase space equation of motion

$$
\dot{x}^{i}=\frac{p_{i}}{m_{n}}, \quad \dot{p}_{i}=\underbrace{-\left(\partial_{i} a_{j}-\partial_{j} a_{i}\right) \dot{x}^{j}}_{\text {Lorentz force }}-\partial_{i} V=-b_{i j} \dot{x}^{j}-\partial_{i} V
$$

Spin twist gives rise to simulated vector potential $a(x)=-\mathrm{i}\langle\boldsymbol{n}(x)| \partial|\boldsymbol{n}(x)\rangle \rightarrow$ simulated magnetic field.

Geometric phase orbital magnetic field

- Equation of motion for $x^{3}=z$

$$
m_{n} \ddot{z}=-\partial_{z} V-\dot{x}\left[\partial_{z} a_{x}-\partial_{x} a_{z}\right]-\dot{y}\left[\partial_{z} a_{y}-\partial_{y} a_{z}\right]
$$

- Compare with the equation of motion in a magnetic field B

$$
\begin{aligned}
m_{n} \ddot{z} & =-\partial_{z} V+\frac{e}{c}\left(\dot{x} B_{y}-\dot{y} B_{x}\right) \\
& =-\partial_{z} V+\dot{x}\left(\partial_{z} \frac{e}{c} A_{x}-\partial_{x} \frac{e}{c} A_{z}\right)-\dot{y}\left(\partial_{y} \frac{e}{c} A_{z}-\partial_{z} \frac{e}{c} A_{y}\right) .
\end{aligned}
$$

- We find that $\boldsymbol{a}=-\frac{e}{c} \boldsymbol{A}$ (or $\boldsymbol{a}=-\frac{e}{\hbar c} \boldsymbol{A}$ in $\hbar \neq 1$ unit, $[\boldsymbol{a}]=$ Length $^{-1}$).
- The geometric meaning of magnetic field

$$
\begin{aligned}
\# \text { of flux quanta } & =\int_{S} \mathrm{~d} \boldsymbol{S} \cdot \boldsymbol{B} / \frac{h c}{e}=\oint_{\partial S} \mathrm{~d} \boldsymbol{x} \cdot \frac{e}{h c} \boldsymbol{A}=-\frac{1}{2 \pi} \oint_{\partial S} \mathrm{~d} \boldsymbol{x} \cdot \boldsymbol{a} \\
& =\text { geometric phase around a loop } / 2 \pi
\end{aligned}
$$

Simulate orbital magnetic field by twisted spin

When an electron move in a background twisted spins, the electron spin may following the direction of the background twisted spins \rightarrow geometric phase $=$ simulated magnetic field.
The geometric phase around a loop $2 \pi=$ The number of flux quanta of the simulated magnetic field through the loop.

- Note that $h c / e=4.135667516 \times 10^{-15} \mathrm{~T} \mathrm{~m}^{2}$.
- If there is one flux quantum per $\left(10^{-8} \mathrm{~m}\right)^{2}$, then $B=4.135667516 \times 10^{-15} /\left(10^{-8}\right)^{2}=41 \mathrm{~T}$ (About the highest static magnetic field produced)

- For electron hoping in a non-coplannar magnet, the geometric phase from the spin-twist is of order 1 per unit cell:
There is one flux quantum per $\left(10^{-9} \mathrm{~m}\right)^{2}$, or the simulated magnetic field by the spin-twist geometric phase is
$B_{\text {spin }}=4.135667516 \times 10^{-15} /\left(10^{-9}\right)^{2}=4100 T$

Geometric phases in energy bands of a crystal

- Hopping Hamiltonian

Si

$$
H_{\boldsymbol{m} \alpha ; \boldsymbol{n} \beta}=\sum_{\Delta \boldsymbol{n}}-t_{\alpha \beta}^{\Delta \boldsymbol{n}} \delta_{\boldsymbol{m}, \boldsymbol{n}+\Delta \boldsymbol{n}},
$$

\boldsymbol{n} lable unit cell, α, β label orbitals

- Plane wave state $\left(x_{n}=n_{1} \boldsymbol{a}_{1}+n_{2} \boldsymbol{a}_{2}+n_{3} \boldsymbol{a}_{3}\right)$

(a)

(b)

$$
\psi_{\boldsymbol{k}}(\boldsymbol{n}, \beta)=\psi_{\beta}(\boldsymbol{k}) \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}_{\boldsymbol{n}}}, \quad \sum_{\boldsymbol{n}, \beta} H_{\boldsymbol{m} \alpha ; \boldsymbol{n} \beta} \psi_{\boldsymbol{k}}(\boldsymbol{n}, \beta)=\epsilon_{\boldsymbol{k}} \psi_{k}(\boldsymbol{m}, \alpha)
$$

- The energy bands $\epsilon_{\boldsymbol{k}}$ are eigenvalues of $M_{\alpha \beta}(\boldsymbol{k})$

Si bands

$$
\sum_{\beta} M_{\alpha \beta}(\boldsymbol{k}) \psi_{\beta}(\boldsymbol{k})=\epsilon_{k} \psi_{\alpha}(\boldsymbol{k})
$$

$$
M_{\alpha \beta}(\boldsymbol{k})=-\sum_{\Delta \boldsymbol{n}} t_{\alpha \beta}^{\Delta \boldsymbol{n}} \mathrm{e}^{-\mathrm{i} \boldsymbol{x}_{\Delta \boldsymbol{n}} \cdot \boldsymbol{k}}
$$

- Number of bands $=$ number of orbitals in a unit cell.

Dynamics of an electron in semiconductor

The standard theory

- Quantum dynamics: $H(\hat{\boldsymbol{p}})=\epsilon(\hat{\boldsymbol{p}}), \hat{p}=-\mathrm{i} \partial \rightarrow$

A plane wave $\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} \psi_{\alpha}(\boldsymbol{k})=\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}|\psi(\boldsymbol{k})\rangle$ evolves as $\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} \mathrm{e}^{\left.-\mathrm{i} \frac{\epsilon(\boldsymbol{k}) t}{l} \psi(\boldsymbol{k})\right\rangle}$.
With potential term, the Hamiltonian is changed to $H(\hat{\boldsymbol{p}}, \hat{\boldsymbol{x}})=\epsilon(\hat{\boldsymbol{p}})+V(\hat{\boldsymbol{x}})$, where $\left[\hat{p}^{i}, \hat{x}^{j}\right]=-\mathrm{i} \delta_{i j}$, or $H(\hat{\boldsymbol{p}}, \hat{\boldsymbol{x}})=\epsilon(-\mathrm{i} \boldsymbol{\partial})+V(\hat{\boldsymbol{x}})$

- Classical dynamics: $\frac{\mathrm{d}}{\mathrm{d} t}\langle\hat{O}\rangle=\mathrm{i}\langle[H, \hat{O}]\rangle \rightarrow$

$$
\dot{\boldsymbol{p}}=-\frac{\partial H(\boldsymbol{p}, \boldsymbol{x})}{\partial \boldsymbol{x}}, \quad \dot{\boldsymbol{x}}=\frac{\partial H(\boldsymbol{p}, \boldsymbol{x})}{\partial \boldsymbol{p}}
$$

- The standard theory is wrong.

Obtain classical EOM of an electron in a band

- Consider wavepacket with space-time dependent spin

$$
\left|\psi_{\boldsymbol{x}_{0}, \boldsymbol{k}_{0}}\right\rangle=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{0} \boldsymbol{x}} \mathrm{e}^{-\frac{1}{2} \alpha\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{2}}\left|\boldsymbol{\psi}\left(\boldsymbol{k}_{0}\right)\right\rangle
$$

Phase space Lagrangian ($\hbar \neq 1$ unit)

$$
\begin{aligned}
\mathcal{L} & =\left\langle\psi_{\boldsymbol{x}_{0}(t), \boldsymbol{k}_{0}(t)}\right| i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}-H\left|\psi_{x_{0}(t), \boldsymbol{k}_{0}(t)}\right\rangle \\
& =-\hbar \underbrace{\boldsymbol{a}^{\prime}}_{=0} \cdot \dot{\boldsymbol{x}}_{0}-\hbar \underbrace{\boldsymbol{a}^{\prime \prime}}_{x_{0}} \cdot \dot{\boldsymbol{k}}_{0}-\hbar \underbrace{\tilde{\boldsymbol{a}}\left(\boldsymbol{k}_{0}\right)}_{-\mathrm{i}\langle\boldsymbol{\psi}| \partial_{\boldsymbol{k}_{0}}|\psi\rangle} \cdot \dot{\boldsymbol{k}}_{0}-\frac{\hbar^{2} \boldsymbol{k}_{0}^{2}}{2 m_{n}}-\left|\mu_{n} \boldsymbol{B}\left(x_{0}\right)\right| \\
& =-\hbar \boldsymbol{x}_{0} \cdot \dot{\boldsymbol{k}}_{0}-\hbar \tilde{\boldsymbol{a}}\left(\boldsymbol{k}_{0}\right) \cdot \dot{\boldsymbol{k}}_{0}-\frac{\hbar^{2} \boldsymbol{k}_{0}^{2}}{2 m_{n}}+\left|\mu_{n} \boldsymbol{B}\left(x_{0}\right)\right| \\
& \approx \boldsymbol{p}_{0} \cdot \dot{\boldsymbol{x}}_{0}-\tilde{\boldsymbol{a}}\left(\boldsymbol{p}_{0} / \hbar\right) \cdot \dot{\boldsymbol{p}}_{0}-\frac{\boldsymbol{p}_{0}^{2}}{2 m_{n}}-V\left(x_{0}\right)
\end{aligned}
$$

Obtain classical EOM of an electron in a band

- The \boldsymbol{k}-space connection (vector potential) in Brillouin zone.

$$
\mathrm{i} \tilde{\boldsymbol{a}}(\boldsymbol{k})=\langle\boldsymbol{\psi}(\boldsymbol{k})| \partial_{\boldsymbol{k}}|\psi(\boldsymbol{k})\rangle
$$

- For $S=\int \mathrm{d} t\left[\boldsymbol{p} \cdot \dot{\boldsymbol{x}}-\tilde{\boldsymbol{a}}(\boldsymbol{p} / \hbar) \cdot \dot{\boldsymbol{p}}-\frac{\boldsymbol{p}^{2}}{2 m_{n}}-V(\boldsymbol{x})\right]$

From $\int \mathrm{d} t \delta\left(\tilde{a}_{i}(\boldsymbol{p} / \hbar) \dot{p}^{i}\right)=\int \mathrm{d} t\left[\delta p^{j}\left(\partial_{p_{j}} \tilde{a}_{i}\right) \dot{p}^{i}-\dot{\tilde{a}}_{i}(\boldsymbol{p} / \hbar) \delta p^{i}\right]$
$\delta S=\int \mathrm{d} t \delta p_{i}\left[\dot{x}^{i}-\frac{p_{i}}{m_{n}}-\hbar^{-1}\left(\partial_{k_{i}} \tilde{a}_{j}\right) \dot{p}^{j}+\hbar^{-1}\left(\partial_{k_{j}} \tilde{a}_{i}\right) \dot{p}^{j}\right]+\delta x^{i}\left[-\dot{p}_{i}-\partial_{i} V\right]$
we obtain the phase space equation of motion

$$
\dot{x}^{i}=\frac{p_{i}}{m_{n}}+\underbrace{\hbar^{-1}\left(\partial_{k_{i}} \tilde{a}_{j}-\partial_{k_{j}} \tilde{a}_{i}\right) \dot{p}^{j}}_{\text {Velocity correction }}=\frac{p_{i}}{m_{n}}+\hbar^{-1} \tilde{b}_{I J} \dot{p}^{j}, \quad \dot{p}_{i}=-\partial_{i} V
$$

where $\tilde{b}_{I J}=\partial_{k_{i}} \tilde{a}_{j}-\partial_{k_{j}} \tilde{a}_{i}$ is the k-space "magnetic" field (geometric curvature).
The k-space connection (ie the k-space magnetic field) also modifies the equation of motion

The correct classical EOM of an electron in a band

$$
\begin{aligned}
L & =\boldsymbol{p} \cdot \dot{\boldsymbol{x}}+\frac{e}{c} \boldsymbol{A}(\boldsymbol{x}) \cdot \dot{\boldsymbol{x}}-\tilde{\boldsymbol{a}}(\boldsymbol{p} / \hbar) \cdot \dot{\boldsymbol{p}}-\frac{\boldsymbol{p}^{2}}{2 m_{n}}-V(\boldsymbol{x}) \\
& =\hbar[\boldsymbol{k} \cdot \dot{\boldsymbol{x}}-\boldsymbol{a}(\boldsymbol{x}) \cdot \dot{\boldsymbol{x}}-\tilde{\boldsymbol{a}}(\boldsymbol{k}) \cdot \dot{\boldsymbol{k}}]-\frac{\boldsymbol{p}^{2}}{2 m_{n}}-V(\boldsymbol{x})
\end{aligned}
$$

The real equation of motion in semiconductor

$$
\dot{p}_{i}=-\frac{\partial V}{\partial x^{i}}+\frac{e}{c} B_{i j} \dot{x}^{j}=F_{i}, \quad \dot{x}_{i}=\frac{\partial \epsilon}{\partial p_{i}}+\hbar^{-1} \tilde{b}_{i j}(\boldsymbol{k}) \dot{p}_{j} .
$$

F_{i} include both potential force and Lorentz force.

Compare with Newton's law

From the EOM

$$
\dot{k}_{i}=\hbar^{-1} F_{i}, \quad \dot{x}_{i}=\hbar^{-1} \frac{\partial \epsilon}{\partial k_{i}}+\tilde{b}_{i j}(\boldsymbol{k}) \dot{k}_{j}=\hbar^{-1} \frac{\partial \epsilon}{\partial k_{i}}+\hbar^{-1} \tilde{b}_{i j}(\boldsymbol{k}) F_{j}
$$

and assume $H=\frac{\hbar^{2} \boldsymbol{k}^{2}}{2 m}+V(\boldsymbol{x})$, we obtain

$$
\begin{aligned}
\ddot{x}^{i} & =\hbar^{-2}\left(\partial_{k_{i}} \partial_{k_{j}} H\right) F_{j}+\hbar^{-1} \tilde{b}_{i j} \dot{F}_{j}+\hbar^{-2} \partial_{k_{l}} \tilde{b}_{i j} F_{j} F_{l} \\
\text { or } \quad \ddot{x}^{i} & =\left(\partial_{p_{i}} \partial_{p_{j}} H\right) F_{j}+D_{i j} \dot{F}_{j}+\left(\partial_{p_{l}} D_{i j}\right) F_{j} F_{l} \\
& =m^{-1} F_{i}+D_{i j} \dot{F}_{j}+\left(\partial_{p_{l}} D_{i j}\right) F_{j} F_{l}
\end{aligned}
$$

where $p_{i}=\hbar k_{i}, D_{i j}=\hbar^{-1} \tilde{b}_{i j}$.
We obtain correction to the Newton law $D_{i j} \dot{F}_{j}+\left(\partial_{p l} D_{i j}\right) F_{j} F_{l}$.

$$
\frac{\boldsymbol{p}^{2}}{2 m} \rightarrow \sqrt{m^{2} c^{4}+c^{2} \boldsymbol{p}^{2}} \text { is the relativistic correction. }
$$

AC conductivity (from classical Drude model)

First way to include a friction force

$$
F_{i} \rightarrow F_{i}-\gamma \dot{x}^{i}
$$

We obtain

$$
\ddot{x}^{i}=m^{-1}\left(F_{i}-\gamma \dot{x}^{i}\right)+D_{i j}\left(\dot{F}_{j}-\gamma \ddot{x}^{i}\right)+\partial_{p_{l}} D_{i j}\left(F_{j}-\gamma \dot{x}^{j}\right)\left(F_{l}-\gamma \dot{x}^{\prime}\right)
$$

- Assume $\partial_{p_{l}} D_{i j}=0$ and go to ω-space $x=x_{\omega} \mathrm{e}^{-\mathrm{i} \omega t}$:

$$
\begin{aligned}
& {\left[-\omega^{2}\left(\delta_{i j}+\gamma D_{i j}\right)-\mathrm{i} \omega \gamma m^{-1} \delta_{i j}\right] x_{\omega}^{j}=\left[m^{-1} \delta_{i j}-\mathrm{i} \omega D_{i j}\right] F_{j}} \\
& \boldsymbol{x}_{\omega}=\left[-\omega^{2}(m+\gamma m D)-\mathrm{i} \omega \gamma\right]^{-1}(1-\mathrm{i} \omega m D) \boldsymbol{F}_{\omega} \\
& \boldsymbol{v}_{\omega}=[\gamma-\mathrm{i} \omega m(1+\gamma D)]^{-1}(1-\mathrm{i} \omega m D) \boldsymbol{F}_{\omega}
\end{aligned}
$$

Effect of $D_{i j}$ disappear for $D C$ conductance, for the first way to model dissipation $F_{\text {friction }}=-\gamma \dot{\chi}^{i}$.

AC conductivity (from classical Drude model)

Second way to include a friction force

$$
F_{i} \rightarrow F_{i}-\gamma \partial_{p_{i}} H=F_{i}-\gamma m^{-1} p_{i}
$$

Still assume $\partial_{p_{l}} D_{i j}=0$:

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=\partial_{\boldsymbol{p}} H+D\left(\boldsymbol{F}-\gamma m^{-1} \boldsymbol{p}\right)=(1-\gamma D) m^{-1} \boldsymbol{p}+D \boldsymbol{F} \\
& \dot{\boldsymbol{p}}=\boldsymbol{F}-\gamma m^{-1} \boldsymbol{p} .
\end{aligned}
$$

- Go to ω-space $\boldsymbol{x}=\boldsymbol{x}_{\omega} \mathrm{e}^{-\mathrm{i} \omega t}: \quad-\mathrm{i} \omega \boldsymbol{p}_{\omega}=\boldsymbol{F}_{\omega}-\gamma m^{-1} \boldsymbol{p}_{\omega}$

$$
\begin{aligned}
\boldsymbol{v}_{\omega}=-\mathrm{i} \omega \boldsymbol{x}_{\omega} & =(1-\gamma \boldsymbol{D}) m^{-1} \boldsymbol{p}_{\omega}+D \boldsymbol{F}_{\omega} \\
& =(1-\gamma \boldsymbol{D}) m^{-1} \frac{1}{\gamma m^{-1}-\mathrm{i} \omega} \boldsymbol{F}_{\omega}+D \boldsymbol{F}_{\omega} \\
& =(1-\gamma D) \frac{1}{\gamma-\mathrm{i} \omega m} \boldsymbol{F}_{\omega}+D \boldsymbol{F}_{\omega} \\
& =(1-\mathrm{i} \omega D m)(\gamma-\mathrm{i} \omega m)^{-1} \boldsymbol{F}_{\omega}
\end{aligned}
$$

Effect of $D_{i j}$ also disappear for DC conductance, for the second way to model dissipation $F_{\text {friction }}=-\gamma \partial_{p_{i}} H$. But the result is different from the first way $F_{\text {friction }}=-\gamma \dot{x}^{i}$.

Transport: Boltzmann equation

Hydrodynamics in phase space:

In the third way to model dissipation, we find that $D_{i j}$ has effect on DC conductance!

- Phase space is parametrized by $\xi^{\prime}=x^{1}, x^{2}, x^{3}, k^{1}, k^{2}, k^{3}$

$$
L\left(\dot{\xi}^{\prime}, \xi^{\prime}\right)=-\hbar a_{l} \dot{\xi}^{\prime}-H, \quad \hbar b_{I J} \dot{\xi}^{J}=-\frac{\partial H}{\partial \xi^{\prime}}, \quad b_{I J}=\partial_{I} a_{J}-\partial_{J} a_{l}
$$

where the phase space curvature $\left(I=x^{1}, x^{2}, x^{3}, k^{1}, k^{2}, k^{3}\right)$ is given by

$$
\begin{gathered}
\left(b_{I J}\right)=\left(\begin{array}{cc}
b_{i j} & \delta_{i j} \\
-\delta_{i j} & \tilde{b}_{i j}
\end{array}\right), \quad\left(\begin{array}{cc}
0 & -\delta_{i j} \\
\delta_{i j} & 0
\end{array}\right)\left(\begin{array}{cc}
b_{i j} & \delta_{i j} \\
-\delta_{i j} & \tilde{b}_{i j}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{i j} & \tilde{b}_{i j} \\
b_{i j} & \delta_{i j}
\end{array}\right) \\
\log \operatorname{Det}\left(\begin{array}{cc}
\delta_{i j} & \tilde{b}_{i j} \\
b_{i j} & \delta_{i j}
\end{array}\right)=\operatorname{Tr} \log \left(\begin{array}{cc}
\delta_{i j} & \tilde{b}_{i j} \\
b_{i j} & \delta_{i j}
\end{array}\right)=2 b_{i j} \tilde{b}_{j i}+O\left(b_{i k} \tilde{b}_{k j}\right)^{2} \\
\operatorname{Pf}\left(\begin{array}{cc}
b_{i j} & \delta_{i j} \\
-\delta_{i j} & \tilde{b}_{i j}
\end{array}\right) \equiv \operatorname{Pf}(b, \tilde{b})=1+b_{i j} \tilde{b}_{j i}+O\left(b_{i k} \tilde{b}_{k j}\right)^{2} .
\end{gathered}
$$

Density distribution in phase space

- To set up phase space hydrodynamics, we first introduce phase space density distribution

$$
\mathrm{d} N=g\left(\xi^{\prime}\right) \operatorname{Pf}\left[b\left(\xi^{\prime}\right)\right] \frac{\mathrm{d}^{n} \xi^{\prime}}{(2 \pi)^{n / 2}}
$$

g is the number per orbital.

- Local equilibrium distribution

$$
\begin{array}{ll}
g_{0}\left(\xi^{\prime}\right)=\frac{1}{\mathrm{e}^{\beta\left(\xi^{\prime}\right)}\left[H\left(\xi^{\prime}\right)-\mu\right]+1}, & \\
\text { for fermions } \\
g_{0}\left(\xi^{\prime}\right)=\frac{1}{\mathrm{e}^{\beta\left(\xi^{\prime}\right)\left[H\left(\xi^{\prime}\right)-\mu\right]}-1}, & \\
\text { for bosons } \\
g_{0}\left(\xi^{\prime}\right)=\mathrm{e}^{-\beta\left(\xi^{\prime}\right)\left[H\left(\xi^{\prime}\right)-\mu\right]}, & \\
\text { for classical particles }
\end{array}
$$

Hydrodynamic equation of motion

- Consider a small cluster of gas, that evolve from time t to \tilde{t}

$$
\mathrm{d} N=\mathrm{d} \tilde{N} \quad \text { or } \quad g\left(\xi^{\prime}\right) \operatorname{Pf}\left[b\left(\xi^{\prime}\right)\right] \frac{\mathrm{d}^{n} \xi^{\prime}}{(2 \pi)^{n / 2}}=g\left(\tilde{\xi}^{\prime}\right) \operatorname{Pf}\left[b\left(\tilde{\xi}^{\prime}\right)\right] \frac{\mathrm{d}^{n} \tilde{\xi}^{\prime}}{(2 \pi)^{n / 2}}
$$

Due to Liouville's theorm $\operatorname{Pf}\left[b\left(\xi^{\prime}\right)\right] d^{n} \xi^{\prime}=\operatorname{Pf}\left[b\left(\tilde{\xi}^{\prime}\right)\right] d^{n} \tilde{\xi}^{\prime}$, we have

$$
g\left(\xi^{\prime}\right)=g\left(\tilde{\xi}^{\prime}\right) \quad \text { or } \quad \frac{\mathrm{d}}{\mathrm{~d} t} g\left[\xi^{\prime}(t)\right]=0
$$

We obtain hydrodynamic equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} g\left[\xi^{\prime}(t)\right]=0 \rightarrow \frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{\partial g}{\partial t}-\hbar b^{I J} \partial_{J} H \partial_{I} g=0
$$

- Consistent with the conservation of particle number $\left(\mathcal{J}^{\prime}=g \dot{\xi}^{\prime}\right)$:

$$
\frac{\partial g}{\partial t}+\partial_{I} \mathcal{J}^{\prime}+\frac{1}{\operatorname{Pf}(\hat{b})}\left[\partial_{I} \operatorname{Pf}(\hat{b})\right] \mathcal{J}^{\prime}=\frac{\partial g}{\partial t}+\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{I}\left[\operatorname{Pf}(\hat{b}) \mathcal{J}^{\prime}\right]=0
$$

See Appendix at the end of this note for derivation.

- When $\operatorname{Pf}\left[b\left(\xi^{\prime}\right)\right]=1$, say when either $b_{i j}=0$ or $\tilde{b}_{i j}=0$, the conservation of particle number reduces to $\frac{\partial g}{\partial t}+\partial_{l} \mathcal{J}^{l}=0$.

Go to $\xi^{\prime} \quad x, k$ phase space

$$
\begin{aligned}
L & =\hbar[\boldsymbol{k} \cdot \dot{\boldsymbol{x}}-\boldsymbol{a}(\boldsymbol{x}) \cdot \dot{\boldsymbol{x}}-\tilde{\mathbf{a}}(\boldsymbol{k}) \cdot \dot{\boldsymbol{k}}]-E(\boldsymbol{k}, \boldsymbol{x}), \quad E(\boldsymbol{k}, \boldsymbol{x})=\epsilon(\boldsymbol{k})+V(\boldsymbol{x}) \\
\hbar \dot{k}_{i} & =-\frac{\partial E}{\partial x^{i}}-\underbrace{\hbar b_{i j}}_{=-\frac{e}{c} B_{i j}} \dot{x}^{j}, \quad \hbar \dot{x}_{i}=\frac{\partial E}{\partial k_{i}}+\hbar \tilde{b}_{i j}(\boldsymbol{k}) \dot{k}_{j} .
\end{aligned}
$$

- $(\boldsymbol{x}, \boldsymbol{k})$-density distribution function

$$
g(\boldsymbol{x}, \boldsymbol{k}, t): \mathrm{d} N=g(\boldsymbol{x}, \boldsymbol{k}, t) \operatorname{Pf}(b, \tilde{b}) \frac{\mathrm{d}^{3} \boldsymbol{x} \mathrm{~d}^{3} \boldsymbol{k}}{(2 \pi)^{3}}
$$

g is the number per orbital, and $\operatorname{Pf}(b, \tilde{b})=1+b_{i j} \tilde{b}_{j i}+\cdots$.

- Local equilibrium distribution

$$
\begin{array}{ll}
g_{0}(\boldsymbol{x}, \boldsymbol{k})=\frac{1}{\mathrm{e}^{\beta(\boldsymbol{x})[E(\boldsymbol{k}, \boldsymbol{x})-\mu(\boldsymbol{x})]}+1}, & \\
\text { for fermions } \\
g_{0}(\boldsymbol{x}, \boldsymbol{k})=\frac{1}{\mathrm{e}^{\beta(\boldsymbol{x})[E(\boldsymbol{k}, \boldsymbol{x})-\mu(\boldsymbol{x})]}-1}, & \\
\text { for bosons } \\
g_{0}(\boldsymbol{x}, \boldsymbol{k})=\mathrm{e}^{-\beta(\boldsymbol{x})[E(\boldsymbol{k}, \boldsymbol{x})-\mu(\boldsymbol{x})]}, & \\
\text { for classical particles }
\end{array}
$$

Adding dissipation
 relaxationtime approximation

Impurity scattering \rightarrow dissipation.

- We model large Δk redistribution caused by impurities in k-space by

$$
\frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{\partial g}{\partial t}+\dot{\boldsymbol{x}} \cdot \frac{\partial g}{\partial \boldsymbol{x}}+\dot{\boldsymbol{k}} \cdot \frac{\partial g}{\partial \boldsymbol{k}}=-\frac{1}{\tau}\left(g-g_{0}\right)
$$

- $\frac{\mathrm{d} g}{\mathrm{~d} t}=\frac{1}{\tau}\left(g-g_{0}\right)$ corresponds to the change of g caused by scattering process in k space.
- Local chemical potential $\mu(\boldsymbol{x})$ and local temperature $T(\boldsymbol{x})$:
- $\delta g=\left(g-g_{0}\right) / \tau$ should conserve the x-space particle density $n(\boldsymbol{x})=\int \operatorname{Pf}(b, \tilde{b}) \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} g$. Thus the local chemical potential $\mu(\boldsymbol{x})$ in g_{0} is chosen to make g_{0} to satisfy

$$
\delta n(\boldsymbol{x})=\int \operatorname{Pf}(b, \tilde{b}) \mathrm{d}^{3} \boldsymbol{k}\left(g-g_{0}\right)=0
$$

No particle diffusion in x-space.

- Impurity scattering conserve the energy density in x-space $n_{E}(\boldsymbol{x})=\int \operatorname{Pf}(b, \tilde{b}) \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} E(\boldsymbol{x}, \boldsymbol{k}) g$. The local temperature $T(\boldsymbol{x})$ satisfies

$$
\delta n_{E}(\boldsymbol{x})=\int \operatorname{Pf}(b, \tilde{b}) \mathrm{d}^{3} \boldsymbol{k} E(\boldsymbol{x}, \boldsymbol{k})\left(g-g_{0}\right)=0
$$

Linear responce in steady state

- Steady state: $\frac{\partial g}{\partial t}=0$ or $\dot{x} \cdot \frac{\partial g}{\partial x}+\dot{k} \cdot \frac{\partial g}{\partial k}=-\frac{1}{\tau}\left(g-g_{0}\right)$ with EOM for particles $\hbar \dot{k}_{i}=-\frac{\partial V}{\partial x^{i}}-\hbar b_{i j} \dot{x}^{j}, \hbar \dot{x}_{i}=\frac{\partial \epsilon}{\partial k_{i}}+\hbar \tilde{b}_{i j}(\boldsymbol{k}) \dot{k}_{j}$ and $g_{0}(\boldsymbol{x}, \boldsymbol{k})=1 /\left(\mathrm{e}^{\beta(\boldsymbol{x})[\epsilon(\boldsymbol{k})+V(\boldsymbol{x})-\mu(\boldsymbol{x})]}+1\right)$
- When $\partial_{\boldsymbol{x}} V=0, b_{i j}=0, \partial_{\boldsymbol{x}} \mu=0, \partial_{\boldsymbol{x}} \beta(\boldsymbol{x})=0$,
g_{0} satisfies the EOM, since $\dot{k}=0, \frac{\partial g_{0}}{\partial x}=\frac{\partial g_{0}}{\partial t}=0$
- Linear responce: first order in

$$
\dot{\boldsymbol{k}} \sim \partial_{x} V, b_{i j}, \quad \partial_{x} g_{0} \sim \partial_{x} \underbrace{(V-\mu)}_{-\bar{\mu}}, \partial_{x} \beta, \quad \delta g=g-g_{0} .
$$

- Linear response for steady state

$$
\begin{aligned}
& \delta g+\tau \hbar^{-1} \partial_{k_{i}} \epsilon \partial_{x_{i}} \delta g=-\tau\left[\hbar^{-1} \partial_{k_{i}} \epsilon \partial_{x_{i}} g_{0}+\dot{k}_{i} \partial_{k_{i}} g_{0}\right] \\
& \text { or } \quad \delta g+\tau v^{i} \partial_{x_{i}} \delta g=-\tau\left[v^{i} \partial_{x_{i}} g_{0}+\dot{k}_{i} \partial_{k_{i}} g_{0}\right], \quad v^{i}=\hbar^{-1} \partial_{k_{i}} \epsilon .
\end{aligned}
$$

- Make another assumption $\frac{\partial_{x_{i}} \delta g}{\delta g} \ll \frac{1}{\tau v^{i}}=\frac{1}{T}$. Since $\hbar \dot{k}_{i}=e E_{i}-\hbar b_{i j} v^{j}$:

$$
\begin{aligned}
\delta g=-\tau v^{i} \partial_{x_{i}} g_{0}+\frac{\tau}{\hbar}\left(e E_{i}-\hbar b_{i j} v^{j}\right) \partial_{k_{i}} g_{0}, \quad g_{0}=\frac{1}{\mathrm{e}_{\text {Xiao-Gang Wen (MIT) }}^{\beta(\boldsymbol{x})[\epsilon(\boldsymbol{k})-\bar{\mu}(\boldsymbol{x})]+1}} \underset{\text { Modern quantum many-body physics }}{ } \quad \text { Semi-classical approach }
\end{aligned}
$$

2D conductivity from k-space "magnetic" field $\tilde{b}_{i j}$

Assume real space magnetic field $b_{i j}=0$ and $T(\boldsymbol{x}), \bar{\mu}(\boldsymbol{x})$ are independent of x :

$$
\delta g=\tau e E_{i} \frac{\partial \epsilon}{\hbar \partial k_{i}} \frac{\partial g_{0}}{\partial \epsilon}=\tau e E_{i} v^{i} \frac{\partial g_{0}}{\partial \epsilon}
$$

The current $\left(\operatorname{Pf}\left(b_{i j}, \tilde{b}_{i j}\right)=\operatorname{Pf}\left(0, \tilde{b}_{i j}\right)=1\right)$

$$
J^{i}=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} e \dot{x}^{\dot{ }} g=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}}\left(e v^{i}+e \tilde{b}_{i j} \hbar^{-1} e E_{j}\right)\left(g_{0}+\tau e E_{i} v^{i} \frac{\partial g_{0}}{\partial \epsilon}\right)
$$

Note that (try to show this in 1-dimension)

$$
\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} e v^{i} g_{0}=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} e \frac{\partial \epsilon(\boldsymbol{k})}{\partial k_{i}} g_{0}(\epsilon)=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} e \frac{\partial G_{0}[\epsilon(\boldsymbol{k})]}{\partial k_{i}}=0
$$

where $\partial G_{0}(\epsilon) / \partial \epsilon=g_{0}(\epsilon)$. Keeping only linear E_{i} term

$$
J^{i}=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} e \dot{\chi}^{i} g=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}}\left[\frac{e^{2}}{\hbar} \tilde{b}_{i j} g_{0}+\tau e^{2} v^{j} v^{i} \frac{\partial g_{0}}{\partial \epsilon}\right] E_{j}
$$

- Conductivity:

$$
\sigma_{i j}=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}}\left[\frac{e^{2}}{\hbar} \tilde{b}_{i j} g_{0}+\tau e^{2} v^{j} v^{i} \frac{\partial g_{0}}{\partial \epsilon}\right]
$$

Quantized Hall conductance in 2D

For a filled band, $g_{0}=1$

$$
\sigma_{i j}^{H}=\int \frac{\mathrm{d}^{2} \boldsymbol{k}}{(2 \pi)^{2}} \frac{e^{2}}{\hbar} \tilde{b}_{i j} g_{0}=\epsilon_{i j} n_{\text {Chern }} \frac{e^{2}}{h}
$$

where $\left(\right.$ let $\left.\tilde{b}_{i j}=\epsilon_{i j} \tilde{b}\right)$

$$
\begin{aligned}
& n_{\text {Chern }}=\int_{B . Z .} \frac{\mathrm{d}^{2} k}{2 \pi} \tilde{b}=\int_{B . z .} \frac{\mathrm{d}^{2} k}{2 \pi}\left(\frac{\partial \tilde{a}_{x}}{\partial k_{y}}-\frac{\partial \tilde{a}_{y}}{\partial k_{x}}\right)=\text { integer, } \\
& \text { i } \tilde{a}_{i}=\langle\psi(\boldsymbol{k})| \partial_{k_{i}}|\psi(\boldsymbol{k})\rangle .
\end{aligned}
$$

We have a quantized Hall conductance. $n_{\text {Chern }}$ is Chern number.
We have a Chern insulator if the total Chern number of the filled bands is non-zero.

- How to make a Chern insulator?

Complex hopping to break time-reversal and parity symm.

- Conductance $j_{y}=\sigma_{x y} E_{x}, j_{x}=E_{y}=0$.

Under time reversal $t \rightarrow-t$:

$$
\boldsymbol{E} \rightarrow \boldsymbol{E}, \quad \boldsymbol{j} \rightarrow-\boldsymbol{j}, \quad \sigma_{x y} \rightarrow-\sigma_{x y}
$$

Under parity $(x, y) \rightarrow(x,-y)$:
 $\left(E_{x}, E_{y}\right) \rightarrow\left(E_{x},-E_{y}\right), \quad\left(j_{x}, j_{y}\right) \rightarrow\left(j_{x},-j_{y}\right), \quad \sigma_{x y} \rightarrow-\sigma_{x y}$

- Use complex hopping to generate uniform flux and break time-reversal and parity symmetries.
\rightarrow Chern insulator
Staggered flux breaks time-reversal symmetry but not parity symmetry.

\rightarrow not Chern insulator
- Next we compute the hopping matrix in \boldsymbol{k}-space

$$
M_{\alpha \beta}(\boldsymbol{k})=-\sum_{\Delta \boldsymbol{n}} t_{\alpha \beta}^{\Delta \boldsymbol{n}} \mathrm{e}^{-\mathrm{i} \boldsymbol{x}_{\Delta \boldsymbol{n}} \cdot \boldsymbol{k}}
$$

π-flux, Dirac fermion, and its geometric connection $\tilde{a}(\boldsymbol{k})$

Hopping matrix in k-space ($\left.a_{1}=2 x, \quad a_{2}=y\right)$:
plot $\boldsymbol{n}\left(k_{x}, k_{y}\right)$
$M(\boldsymbol{k})=\left(\begin{array}{cc}-2 t \cos \left(\boldsymbol{a}_{2} \cdot \boldsymbol{k}\right) & -t-t \mathrm{e}^{-\mathrm{i} \mathbf{a}_{1} \cdot \boldsymbol{k}} \\ -t-t \mathrm{e}^{\mathrm{i} \boldsymbol{a}_{1} \cdot \boldsymbol{k}} & 2 t \cos \left(\boldsymbol{a}_{2} \cdot \boldsymbol{k}\right)\end{array}\right)=\left(\begin{array}{cc}-2 t \cos k_{y} & -t-t \mathrm{e}^{2 \mathrm{i} k_{x}} \\ -t-t \mathrm{e}^{-2 \mathrm{i} k_{x}} & 2 t \cos k_{y}\end{array}\right)$

- $M(k)=\boldsymbol{v}(\boldsymbol{k}) \cdot \boldsymbol{\sigma}: \epsilon= \pm|\boldsymbol{v}(\boldsymbol{k})|$. The vector field $\boldsymbol{v}(\boldsymbol{k})$ on B.Z.:
$v_{x}=-t-t \cos \left(2 k_{x}\right), \quad v_{y}=-t \sin \left(2 k_{x}\right), \quad v_{z}=-2 t \cos \left(k_{y}\right)$.
$|\boldsymbol{v}|=t \sqrt{2+2 \cos \left(2 k_{x}\right)+4 \cos ^{2}\left(k_{y}\right)}=t \sqrt{4 \cos ^{2}\left(k_{x}\right)+4 \cos ^{2}\left(k_{y}\right)}$.
- Eigenstate in conduction band $|\boldsymbol{n}(\boldsymbol{k})\rangle$, plot $\boldsymbol{n}\left(k_{x}, k_{y}\right)$. $\boldsymbol{n}(\boldsymbol{k})=\boldsymbol{v}(\boldsymbol{k}) /|\boldsymbol{v}(\boldsymbol{k})|$, has geometric connection
i $\tilde{a}_{i}(\boldsymbol{k})=\langle\boldsymbol{n}(\boldsymbol{k})| \partial_{k_{i}}|\boldsymbol{n}(\boldsymbol{k})\rangle: \tilde{b}_{x y}=\partial_{k_{x}} \tilde{a}_{y}-\partial_{k_{y}} \tilde{a}_{x} \neq 0$
$\oint_{K} \mathrm{~d} \boldsymbol{k} \cdot \tilde{\boldsymbol{a}}=\pi, \oint_{K^{\prime}} \mathrm{d} \boldsymbol{k} \cdot \tilde{\boldsymbol{a}}=\pi \rightarrow$ two π-flux tubes.

$\pi / 2$-flux state: complex hopping \rightarrow Chern insulator

Hopping matrix in k-space ($\left.a_{1}=2 \boldsymbol{x}, \quad a_{2}=\boldsymbol{y}\right): M(k)=$

$$
-2 t \cos \left(\boldsymbol{a}_{2} \cdot \boldsymbol{k}\right)
$$

$\left(-t-t \mathrm{e}^{\mathrm{i} \boldsymbol{a}_{1} \cdot \boldsymbol{k}}-\mathrm{i} t^{\prime} \mathrm{e}^{-\mathrm{i} \boldsymbol{a}_{2} \cdot \boldsymbol{k}}-\mathrm{i} t^{\prime} \mathrm{e}^{\mathrm{i}\left(\boldsymbol{a}_{2} \cdot \boldsymbol{k}+\boldsymbol{a}_{1} \cdot \boldsymbol{k}\right)}\right.$

$$
\begin{gathered}
-t-t \mathrm{e}^{-\mathrm{i} a_{1} \cdot k}-\mathrm{i} t^{\prime} \mathrm{e}^{\mathrm{i} a_{2} \cdot k}+\mathrm{i} t^{\prime} \mathrm{e}^{-\mathrm{i}\left(a_{2} \cdot k+a_{1} \cdot k\right)} \\
2 t \cos \left(a_{2} \cdot \boldsymbol{k}\right)
\end{gathered}
$$

- $M(k)=\boldsymbol{v}(\boldsymbol{k}) \cdot \boldsymbol{\sigma}: \epsilon= \pm|\boldsymbol{v}(\boldsymbol{k})|$. The vector field $\boldsymbol{v}(\boldsymbol{k})$ on B.Z.:
$v_{x}=-t-t \cos \left(2 k_{x}\right)-t^{\prime} \sin \left(k_{y}\right)+t^{\prime} \sin \left(k_{y}+2 k_{x}\right)$,
$v_{y}=-t \sin \left(2 k_{x}\right)-t^{\prime} \cos \left(k_{y}\right)-t^{\prime} \cos \left(k_{y}+2 k_{x}\right), v_{z}=-2 t \cos \left(k_{y}\right)$.
- Eigenstate in conduction band $|\boldsymbol{n}(\boldsymbol{k})\rangle$, $\boldsymbol{n}(\boldsymbol{k})=\boldsymbol{v}(\boldsymbol{k}) /|\boldsymbol{v}(\boldsymbol{k})|$, has geometric connection $\mathrm{i} \tilde{a}_{i}(\boldsymbol{k})=\langle\boldsymbol{n}(\boldsymbol{k})| \partial_{k_{i}}|\boldsymbol{n}(\boldsymbol{k})\rangle: \tilde{b}_{x y}=\partial_{k_{x}} \tilde{a}_{y}-\partial_{k_{y}} \tilde{a}_{x} \neq 0 \begin{gathered}-0.0 \\ -i_{-2} \\ -2\end{gathered}$
\rightarrow The wrapping number (Chern number) $=1$ Chern insulator (IQH state)

How to compute the Chern number

- Geometric phase $\phi=\oint_{\partial D} \mathrm{~d} \boldsymbol{k} \cdot \tilde{\boldsymbol{a}}(\boldsymbol{k})=\frac{1}{2} \Omega$

$$
\phi=\oint_{\partial B, Z} \mathrm{~d} \boldsymbol{k} \cdot \tilde{\boldsymbol{a}}(\boldsymbol{k})=2 \pi \times \text { wraping num. } \quad \sum_{k_{y}} \frac{D_{k_{x}}}{}
$$

- Geometric curvature $\tilde{B}=\partial_{k_{x}} \tilde{a}_{y}-\partial_{k_{y}} \tilde{a}_{x}$.

$$
\begin{aligned}
\phi & =\oint_{\partial D} \mathrm{~d} \boldsymbol{k} \cdot \tilde{\boldsymbol{a}}(\boldsymbol{k})=\int_{D} \mathrm{~d}^{2} k \tilde{B}, \\
\int_{B . Z .} \mathrm{d}^{2} k \tilde{B} & =2 \pi \times \text { Chern number }
\end{aligned}
$$

- Compute geometric curvature:

$$
\begin{gathered}
\tilde{B} \delta k_{x} \delta k_{y}=\frac{1}{2} \boldsymbol{n} \cdot\left(\left[\boldsymbol{n}\left(\boldsymbol{k}+\delta k_{x} \boldsymbol{x}\right)-\boldsymbol{n}(\boldsymbol{k})\right] \times\left[\boldsymbol{n}\left(\boldsymbol{k}+\delta k_{y} \boldsymbol{y}\right)-\boldsymbol{n}(\boldsymbol{k})\right]\right) \\
\tilde{B}(\boldsymbol{k})=\frac{1}{2} \boldsymbol{n} \cdot\left[\partial_{k_{x}} \boldsymbol{n}(\boldsymbol{k}) \times \partial_{k_{y}} \boldsymbol{n}(\boldsymbol{k})\right]
\end{gathered}
$$

- Compute Chern number (the wrapping number):

$$
(4 \pi)^{-1} \int_{\text {B.Z. }} \mathrm{d}^{2} k \boldsymbol{n} \cdot\left[\partial_{k_{x}} \boldsymbol{n}(\boldsymbol{k}) \times \partial_{k_{y}} \boldsymbol{n}(\boldsymbol{k})\right]=\text { Chern number }
$$

Dimmer state

Hopping matrix in k-space ($\left.a_{1}=2 \boldsymbol{x}, \quad a_{2}=y\right)$:
plot $\boldsymbol{n}\left(k_{x}, k_{y}\right)$

$$
M(\boldsymbol{k})=\left(\begin{array}{cc}
-2 t \cos \left(\boldsymbol{a}_{2} \cdot \boldsymbol{k}\right) & -t^{\prime}-t \mathrm{e}^{-\mathrm{i} \boldsymbol{a}_{1} \cdot \boldsymbol{k}} \\
-t^{\prime}-t \mathrm{e}^{\mathrm{i} \mathbf{a}_{1} \cdot \boldsymbol{k}} & 2 t \cos \left(\boldsymbol{a}_{2} \cdot \boldsymbol{k}\right)
\end{array}\right)
$$

- $M(k)=\boldsymbol{v}(\boldsymbol{k}) \cdot \sigma: \epsilon= \pm|\boldsymbol{v}(\boldsymbol{k})|$. The vector field $\boldsymbol{v}(\boldsymbol{k})$ on B.Z.: $v_{x}=-t^{\prime}-t \cos \left(2 k_{x}\right), \quad v_{y}=-t \sin \left(2 k_{x}\right), \quad v_{z}=-2 t \cos \left(k_{y}\right)$.
- Eigenstate in conduction band $|\boldsymbol{n}(\boldsymbol{k})\rangle$, $\boldsymbol{n}(\boldsymbol{k})=\boldsymbol{v}(\boldsymbol{k}) /|\boldsymbol{v}(\boldsymbol{k})|$, has geometric connection $\mathrm{i} \tilde{a}_{i}(\boldsymbol{k})=\langle\boldsymbol{n}(\boldsymbol{k})| \partial_{k_{i}}|\boldsymbol{n}(\boldsymbol{k})\rangle: \tilde{b}_{x y}=\partial_{k_{x}} \tilde{a}_{y}-\partial_{k_{y}} \tilde{a}_{x} \neq 0$ \rightarrow The wrapping number (Cher number) $=0$
Atomic insulator

Chern number of the bands

Appendix: Hydrodynamic equation and continuity equation (for $b_{I J}$ const.)

- Hydrodynamic equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} g\left[\xi^{\prime}(t)\right]=0 \quad \rightarrow \quad \frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{\partial g}{\partial t}-b^{\prime J} \partial_{\jmath} H \partial_{I} g=0
$$

- Continuity equation conservation of particle number ($b_{I J}=$ const.):

$$
\frac{\partial g}{\partial t}+\partial_{l} \mathcal{J}^{\prime}=0, \quad \text { current: } \mathcal{J}^{\prime}=g \dot{\xi}^{\prime}=-g b^{\prime \prime} \partial_{\jmath} H
$$

They are equivalent:

$$
\begin{aligned}
0 & =\frac{\partial g}{\partial t}+\partial_{I} \mathcal{J}^{\prime}=\frac{\partial g}{\partial t}-b^{\prime J} \partial_{I} g \partial_{\jmath} H-\underbrace{b^{\prime J} g \partial_{I} \partial_{\jmath} H}_{=0} \\
& =\frac{\partial g}{\partial t}-b^{\prime J} \partial_{\jmath} g \partial_{\jmath} H
\end{aligned}
$$

Appendix: continuity equation (for $b_{I J}$ const.)

- Assume for phase space coordinates $\tilde{\xi}^{\prime}, \tilde{b}_{I J}=$ const.

Hydrodynamic EOM: $\frac{\partial \tilde{g}}{\partial t}+\dot{\tilde{\xi}}^{\prime} \tilde{\partial}_{I} \tilde{g}=\frac{\partial \tilde{g}}{\partial t}-\tilde{b}^{\prime J} \tilde{\partial}_{J} H \tilde{\partial}_{I} \tilde{g}=0$
Conitnuity equation: $\frac{\partial \tilde{g}}{\partial t}+\tilde{\partial}_{I} \tilde{\mathcal{J}}^{\prime}=0, \quad \tilde{\mathcal{J}}^{\prime}=\tilde{g} \dot{\tilde{\xi}}^{\prime}, \quad \dot{\tilde{\xi}}^{\prime}=-\tilde{b}^{\prime J} \tilde{\partial}_{J} H$

- Change of coordinates $\xi^{\prime}=\xi^{\prime}\left(\tilde{\xi}^{\prime}\right)$: (scaler, vector, tensor)

$$
\begin{aligned}
& g\left(\xi^{\prime}\right)=\tilde{g}\left(\tilde{\xi}^{\prime}\right), \quad \partial_{I}=\frac{\partial \tilde{\xi}^{J}}{\partial \xi^{\prime}} \tilde{\partial}_{J}, \quad \dot{\xi}^{\prime}=\frac{\partial \xi^{\prime}}{\partial \tilde{\xi}^{J}} \dot{\tilde{\xi}}^{J}, \quad \mathcal{J}^{\prime}=\frac{\partial \xi^{\prime}}{\partial \tilde{\xi}^{J}} \tilde{\mathcal{J}}^{J}, \\
& b_{I J}=\frac{\partial \tilde{\xi}^{K}}{\partial \xi^{\prime}} \frac{\partial \tilde{\xi}^{L}}{\partial \xi^{J}} \tilde{b}_{K L}, \quad b^{\prime J}=\frac{\partial \xi^{\prime}}{\partial \tilde{\xi}^{K}} \frac{\partial \xi^{J}}{\partial \tilde{\xi}^{L}} \tilde{b}^{K L}
\end{aligned}
$$

- The subscript and superscript indecate how the quantity transforms under the coordinate transformation.
- The form of the hydrodynamic EOM remain unchanged:

$$
\frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{\partial g}{\partial t}-b^{\prime J} \partial_{\jmath} H \partial_{\lrcorner} g=0
$$

Appendix: continuity equation (for $b_{I J}$ const.)

- The form of the continuity equation is changed:

$$
\begin{aligned}
0 & =\frac{\partial g}{\partial t}+\frac{\partial \xi^{K}}{\partial \tilde{\xi}^{\prime}}\left(\partial_{K} \frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{L}} \mathcal{J}^{L}\right)=\frac{\partial g}{\partial t}+\partial_{I} \mathcal{J}^{\prime}+\frac{\partial \xi^{K}}{\partial \tilde{\xi}^{\prime}}\left(\partial_{K} \frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{L}}\right) \mathcal{J}^{L} \\
& =\frac{\partial g}{\partial t}+\partial_{I} \mathcal{J}^{\prime}+\frac{\partial \xi^{K}}{\partial \tilde{\xi}^{\prime}}\left(\partial_{L} \frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{K}}\right) \mathcal{J}^{L}
\end{aligned}
$$

In fact: $\frac{\partial \xi^{K}}{\partial \tilde{\xi}^{\prime}}\left(\partial_{L} \frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{K}}\right)=\operatorname{Det}^{1 / 2}\left(b^{\prime J}\right) \partial_{K} \operatorname{Det}^{1 / 2}\left(b_{I J}\right)$, since the RHS
$=\operatorname{Det}\left(\frac{\partial \xi^{J}}{\partial \tilde{\xi}^{\prime}}\right) \operatorname{Det}^{1 / 2}\left(\tilde{b}^{\prime J}\right) \partial_{K}\left[\operatorname{Det}\left(\frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{J}}\right) \operatorname{Det}^{1 / 2}\left(\tilde{b}_{I J}\right)\right]=\operatorname{Det}\left(\frac{\partial \tilde{\xi}^{J}}{\partial \tilde{\xi}^{\prime}}\right) \partial_{K} \operatorname{Det}\left(\frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{J}}\right)$
We also have (let $M_{I J}=\frac{\partial \tilde{\xi}^{\prime}}{\partial \xi^{J}}$)
$\operatorname{Det}\left(M^{I J}\right) \delta \operatorname{Det}\left(M_{I J}\right)=\operatorname{Det}\left(M^{I J}\right) \operatorname{Det}\left(M_{I J}+\delta M_{I J}\right)-1$
$=\operatorname{Det}\left(\delta_{I J}+M^{I K} \delta M_{K J}\right)-1=M^{I K} \delta M_{K I}$
Continuity equation: (not just $\frac{\partial g}{\partial t}+\partial_{l} \mathcal{J}^{\prime}=0$)

$$
\frac{\partial g}{\partial t}+\partial_{l} \mathcal{J}^{\prime}+\frac{1}{\operatorname{Pf}(\hat{b})}\left[\partial_{l} \operatorname{Pf}(\hat{b})\right] \mathcal{J}^{\prime}=\frac{\partial g}{\partial t}+\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{l}\left[\operatorname{Pf}(\hat{b}) \mathcal{J}^{\prime}\right]=0
$$

Appendix: continuity equation Hydrodynamic equation

$$
\begin{aligned}
0 & =\frac{\partial g}{\partial t}+\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{I}\left[\operatorname{Pf}(\hat{b}) \mathcal{J}^{\prime}\right]=\frac{\partial g}{\partial t}-\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{l}\left[\operatorname{Pf}(\hat{b}) g b^{\prime J} \partial_{J} H\right] \\
& =\frac{\partial g}{\partial t}-b^{\prime J} \partial_{l} g \partial_{J} H-g \partial_{J} H \underbrace{\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{l}\left[\operatorname{Pf}(\hat{b}) b^{\prime J}\right]}_{=0}
\end{aligned}
$$

We first note that $0=\partial_{M}\left(b^{I K} b_{K L}\right)=\left(\partial_{M} b^{I K}\right) b_{K L}+b^{I K}\left(\partial_{M} b_{K L}\right) \rightarrow$ $0=\partial_{M} b^{I J}+b^{I K}\left(\partial_{M} b_{K L}\right) b^{L J}$
This allows us to obtain

$$
\begin{aligned}
& \frac{\partial_{I}\left[\operatorname{Pf}(\hat{b}) b^{I J}\right]}{\operatorname{Pf}(\hat{b})}=\frac{b^{K L} \partial_{I} b_{L K}}{2} b^{I J}+\partial_{I} b^{\prime J}=\frac{b^{K L} b^{I J} \partial_{I} b_{L K}}{2}-b^{I K}\left(\partial_{I} b_{K L}\right) b^{L J} \\
& =\frac{b^{K L} b^{I J} \partial_{I}\left(\partial_{L} a_{K}-\partial_{K} a_{L}\right)}{2}-b^{I K} b^{L J} \partial_{I}\left(\partial_{K} a_{L}-\partial_{L} a_{K}\right) \\
& =b^{K L} b^{I J} \partial_{I} \partial_{L} a_{K}+b^{I K} b^{L J} \partial_{l} \partial_{L} a_{K}=b^{K L} b^{I J} \partial_{I} \partial_{L} a_{K}+b^{L K} b^{I J} \partial_{L} \partial_{I} a_{K}=0
\end{aligned}
$$

We recover the hydrodynamic equation $\frac{\partial g}{\partial t}-b^{\prime J} \partial_{\rho} g \partial_{\jmath} H=0$.

Appendix: Adding dissipation difffusion in phase space

The enviromental influence only change ξ^{\prime} slightly each time.
Diffusion current

$$
\mathcal{J}_{\text {diff }}^{\prime}=\gamma^{I J} \frac{\partial g}{\partial \xi^{J}}=-\gamma^{I J} \partial_{J} g . \quad \text { (Should } \gamma^{I J} \text { be symmetric?) }
$$

New EOM (new continuity equation)

$$
\begin{aligned}
& \frac{\partial g}{\partial t}+\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{l}\left[\operatorname{Pf}(\hat{b}) g \dot{\xi}^{\prime}\right]-\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{l}\left[\operatorname{Pf}(\hat{b}) \mathcal{J}_{\text {diff }}^{\prime}\right]=0 \\
& \quad \text { or } \quad \frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{l}\left[\operatorname{Pf}(\hat{b}) \gamma^{\prime J} \partial_{J} g\right]
\end{aligned}
$$

- But the above difusion model does not satisfy detail balance. It assume the transition rates caused by environmntal influence between two states A, B to be the same in either direction: $t_{A \rightarrow B}=t_{B \rightarrow A}$. Such a transition rates give rise to equilibrium probability distribution that satisfies $P_{A}=P_{B}$ regardless the energy difference $E_{A}-E_{B}$ of the two states. This coresponds to $T=\infty$ case. Indeed the above diffusion model tends to make g to be uniform in phase space, which is the $T=\infty$ case.

Appendix: Adding dissipation difffusion in phase space

How to find a difussion model that satisfy detail balance?
How to find a difussion model that make g to evolve into the equilibrium distributions for a finite temperature T :

$$
\begin{array}{ll}
g_{0}\left(\xi^{\prime}\right)=\frac{1}{\mathrm{e}^{\beta\left[H\left(\xi^{\prime}\right)-\mu\right]}+1}, & \text { for fermions } \\
g_{0}\left(\xi^{\prime}\right)=\frac{1}{\mathrm{e}^{\beta\left[H\left(\xi^{\prime}\right)-\mu\right]}-1}, & \\
\text { for bosons } \\
g_{0}\left(\xi^{\prime}\right)=\mathrm{e}^{-\beta\left[H\left(\xi^{\prime}\right)-\mu\right]}, & \\
\text { for classical particles }
\end{array}
$$

Diffusion current

$$
\begin{array}{ll}
\mathcal{J}_{\text {diff }}^{\prime}=-\gamma^{I J} g \partial_{J}(\log g+\beta H), & \text { for classical particles } \\
\mathcal{J}_{\text {diff }}^{\prime}=-\gamma^{I J} g(1-g) \partial_{J}\left[-\log \left(g^{-1}-1\right)+\beta H\right], & \text { for fermions } \\
\mathcal{J}_{\text {diff }}^{\prime}=-\gamma^{I J} g(1+g) \partial_{J}\left[-\log \left(g^{-1}+1\right)+\beta H\right], & \text { for bosons }
\end{array}
$$

Appendix: Hydrodynamics in phase space with diffusion

For classical particles (high temperature limit $g \ll 1$)

$$
\frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{I}\left[\operatorname{Pf}(\hat{b}) \gamma^{\prime J} g \partial_{J}(\log g+\beta H)\right]
$$

For fermions

$$
\frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{I}\left[\operatorname{Pf}(\hat{b}) \gamma^{\prime J} g(1-g) \partial_{J}\left(\log \frac{g}{1-g}+\beta H\right)\right]
$$

For bosons

$$
\frac{\partial g}{\partial t}+\dot{\xi}^{\prime} \partial_{I} g=\frac{1}{\operatorname{Pf}(\hat{b})} \partial_{I}\left[\operatorname{Pf}(\hat{b}) \gamma^{\prime J} g(1+g) \partial_{\jmath}\left(\log \frac{g}{1+g}+\beta H\right)\right]
$$

- The equilibrium distribution g_{0} satisfies the above EOM.
- The above diffusion term only incorporates the particle number conservation, not energy conservation, since we consider an open system and assume T to be fixed.
How to include energy conservation for a closed system?

MIT OpenCourseWare
https://ocw.mit.edu

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems

 Fall 2021For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

