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Classical motion of a particle and Newton’s Law 

The motion of electrons or holes in a semiconductor does not follow 
Newton’s law. They follow a generalized Newton law. 

F = ma 

THE MORE FORCE... 
THE MORE ACCELERATION 

This image is in the public domain. 
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First-order equation of motion and phase-space Lagrangian 

• If (x , p) fully characterize the state of a particle, then their equation of 
motion is first-order: 

ẋ = ∂pH(x , p), ṗ = −∂x H(x , p) Why this form? 

which can be obtained via phase-space LagrangianZ 
L(x , ẋ , p, ṗ) = pẋ − H(x , p), S = dt L(x , ẋ , p, ṗ). 

- A classical system is fully characterized by 1) EOM + Hamiltonian, or 
by 2) phase-space Lagrangian. 
- A phase-space point fully characterises a classical state. 
- Phase-space Lagrangian contains only first order time derivative. 
- From S to first-order equation of motionZ 

δS = dt δp [ẋ − ∂pH(x , p)] +δx [−ṗ − ∂x H(x , p)],| {z } | {z } 
=0 =0 

we got that above equation of motion. 
Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach 3 / 66 



–

Phase-space Lagrangian description of Shrödinger equation 

For a quantum system, its state is fully characterized 
by a vector φi in a Hilbert space V:⎞⎛ 

φ1 

φ2 
⎜⎝ ⎟⎠ → first-order E.O.M i φ̇ 

m = Hmnφn|φi = 
. . . 

(Why φm is complex? Why |φm|2 related to probability?) 

• Phase-space Lagrangian (taking ~ = 1 unit) Z 
d˙L = iφ ∗ φm − φ ∗ φn = hφ| i − H|φi, S = dt L.m mHmn 
dt 

• From (Can we have non-linear Shrödinger equation?)Z 
δS = dt δφ ∗ [ i φ̇ 

m − Hmnφn] + δφn[− i φ̇∗ − φ ∗ Hmn]m m m

we get the equation of motion 

i φ̇m = Hmnφn, − i φ̇ ∗ 
n = φ ∗ 

mHmn. 

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach 4 / 66 



–

Quantum → classical: Dynamical variational approach 

• Given a Hamiltonian H, we can use variational approach to get an 
approximate ground state, by minimizing hφξI |H|φξI i, where ξI are the 
variational parameters → approximate ground state |φξI i. 0 
But how to get the low energy excited states? 

• Dynamical variational approach (semi-classical approach): 
- we assume the variational parameters has a time-dependence ξI (t). 
- The variational parameters ξI fully characterize the state, ie ξI 

parametrize a phase-space. 
- The dynamics of ξI (t) is given by the phase-space Lagrangian 

d ¯L(ξI , ξ̇I ) = hφξI (t)| i − H|φξI (t)i = −aI (ξI )ξ̇I − H(ξI )
dt 

where 

iaI (ξ
I ) ≡ hφξI |∂ξI |φξI i, 

which is the vector potential in the phase-space. 
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Most general phase-space description of classical system R R 
¯From S = dt L(ξ̇I , ξI ) = dt [−aI ξ̇I − H], we getZ 
¯δS = dt [−(∂J aI )δξ

J ξ̇I + ȧI δξ
I − δξI ∂I H(ξ

I )] Z Z 
= dt δξI [−(∂I aJ )ξ̇

J + (∂J aI )ξ̇
J − ∂I H̄] = dt δξI [−bIJ ξ̇

J − ∂I H̄] 

and the equation of motion 
∂H̄ 

ξ̇JbIJ = − , bIJ = ∂I aJ − ∂J aI = “magnetic field” in phase-space
∂ξI 

¯ - The above EOM conserve energy ∂t H(ξI (t)) = 0. 
i θ(ξI )|ψξI i:• Choose an equivalent (redundant) trial wave function e

L(ξ̇I , ξI ) = −aI ξ̇I − θ̇(ξI ) − H̄(ξI ) = [−aI − ∂I θ]ξ̇
I − H̄(ξI ) 

which gives rise to the same EOM. Phase space Lagrangian is a way to 
lable/describe a physical system. Two phase space Lagrangians, 
differing by a total time derivative of any function, label/describe 
the same system → Gauge redundancy 
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Gauge “symmetry” and symmetry 

Gauge redundancy (also called gauge symmetry by mistake) 
and symmetry (real physical symmetry) in quantum system: 

- If we give a single quantum state two names |ai and |bi, then |ai and 
|bi will have the same properties (since |ai = |bi). We say there is a 
gauge redundancy or gauge symmetry, and the theory of |ai and |bi is a 
gauge theory. 

- If two orthogonal states |ai and |bi same properties, then we say there 
is a symmetry between |ai and |bi (since ha|bi = 0). 

Gauge “symmetry” is indeed a symmetry in classical system 
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Differential form 

• The phase space “vector potential” aI gives rise to a differential 1-form, 
a = aI dξI . 
The phase space “magnetic field” bIJ gives rise to a differential 2-form, 
b = bIJ dξ

I ∧ dξJ /2! (assuming the sum of indices), where ∧ is the 
wedge product dξI ∧ dξJ = −dξJ ∧ dξI . 

• The physical meaning of the 2-form: for any 2-dimensional submanifold 
M2 ⊂ Mphase space, the pair b, M2 give rise to a number: Z Z Z 
hb, M2i = b = bIJ dξ

I dξJ /2! = bxy dx dy = number = flux. 
M2 M2 M2 

which is called evaluate 2-form b on 2-manifiold M2 . 
So the 2-form b describes a “magnetic field” in the phase space 
Mphase space. 

• n-form: ωn = ωI1···In dξ
I1 ∧ · · · ∧ dξIn /n! R 

Evaluate n-form ωn on n-manifiold Mn: hωn, Mni = Mn ωn = number 

• For a m-form and a n-form, we have ωm ∧ ωn = (−)m+nωn ∧ ωm. 
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Generalized Stokes theorem in differential form 

• Exterior derivative d maps a n-form to a n + 1-form: ωn → νn+1 

νn+1 ≡ dωn = (∂I0 ωI1···In )dξ
I0 ∧ · · · ∧ dξIn /(n + 1)! (with sum of indices) 

νn+1 = νI0···In dξ
I0 ∧ · · · ∧ dξIn /(n + 1)!,� � 

νI0···In = ∂I0 ωI1···In − ∂I1 ωI0···In ± · · · /(n + 1)! 
anti-symmetrize 

- bIJ = ∂I aJ − ∂J aI → b = (∂I aJ − ∂J aI )dξ
I dξJ /2! = ∂I aJ dξ

I dξJ = da. 
- dωnνm = (dωn)νm + (−)nωn(dνm). Z Z 
• Generalized Stokes theorem dωn = ωn 

Mn+1 ∂Mn+1 

• Definition: ωn is closed if dωn = 0. 
Definition: ωn is exact there is a n − 1-form µn−1 such that 
ωn = dνn−1. Since dd = 0, an exact form is also a closed form. 
- Two vector potential 1-forms differing by an exact 1-from are equivalentR 
• ωn is exact iff ωn = 0 for any closed manifold Mn . ωn is closed iff Mn 

ωn = 0 for any contractible closed manifold Mn . 
R 
Mn 

• A magnetic field is described by a closed (or exact?) 2-form b. 
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Generalized Liouville’s theorm 

• Generalized Liouville’s theorem 
Consider a time evolution from t → t̃, ξI → ξ̃I , determined by the 
equation of motion ∂H̄ 

ξ̇JbIJ = − 
∂ξI 

Then Pf(bIJ (ξ
I ))dnξI = Pf(bIJ (ξ̃

I ))dnξ̃I (bxp dx dp = bx̃ p̃  dx̃ dp̃) 

In other words, the sympletic volume Pf(bIJ (ξ
I ))dnξI is invariant 

under time evolution. 

- The phase space is a sympletic manifold characterized by 
anti-symmetric tensor bIJ : area element dS2 = bIJ dξ

I ∧ dξJ /2!. 

- It is different from the usual manifold characterized by symmetric 
2matrics tensor gIJ : distance2 element ds = gIJ dξ

I · dξJ . � � 
• A classical system is described by pair Mphase space, H(ξI ) , 
a sympletic manifold and a function (Hamiltonian) on it. 
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Change of variables 

If we change the variables to ηI = ηI (ξI ), we get Z 
∂H̄ 

η η η η ηL(η̇I , ηI ) = dt [−a η̇I − H̄(ηI )], b η̇J = − , b = ∂ηI a − ∂ηJ aI IJ IJ j I∂ηI 

where 

η ∂ξJ ∂ξJ 
η a = − ihφ|∂ηI |φi = − ihφ|∂ξJ |φi = aJ . a dηI = aI dξ

I .I ∂ηI ∂ηI I 

η ∂ξK ∂ξK ∂ξK ∂ξK 

b = ∂ηI (aK ) − ∂ηJ (aK ) = (∂ηI aK ) − (∂ηJ aK )IJ ∂ηJ ∂ηI ∂ηJ ∂ηI | {z } | {z } 
η η a aJ I 

∂ξL ∂ξK ∂ξL ∂ξK ∂ξL ∂ξK 

= (∂ξL aK ) − (∂ξL aK ) = (∂ξL aK − ∂ξK aL)
∂ηI ∂ηJ ∂ηJ ∂ηI ∂ηI ∂ηJ | {z } 

exchange K ↔L 

∂ξL ∂ξK 
η = bLK . b dηI dηJ = bIJ dξ

I dξJ . 
∂ηI ∂ηJ IJ 
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Derive generalized Liouville’s theorm 

• For the time evolution from t → t̃, ξI → ξ̃I , we have 

∂ξ̃I 
dnξ̃I = Det(Ĵ)dnξI , JIJ = 

∂ξJ 

˜ = ξI − bIK ∂H̄ 
For t̃ = t + δt, ξI 

∂ξK δt, where bIJ b
JK = δIK . 

= δIJ − ∂J (b
IK ) ∂H̄

 
δt − bIK H H∂2 ¯ trace

JIJ δt −→ Det(Ĵ) = 1 − ∂I (bIK ) ∂ ¯ 
δt

∂ξK ∂ξK ∂ξJ ∂ξK 

η• Assume for ηI variable, b is indenpendent of ηI . Then, ∂I (bIK ) = 0IJ 

and Det(Ĵ) = 1. We have the Liouville’s theorm q q
η ηdnηI = dnη̃I or Det(b (ηI ))dnηI = Det(b (η̃I ))dnη̃I (bη ind. of ηI )IJ IJ 

• Change variables → Generalized Liouville’s theorem q q
η ∂ηI ∂ξI η ∂η̃I ∂ξ̃I 

Det(b )Det( )Det( )dnηI = Det(b̃ )Det( )Det( )dnη̃I IJ IJ∂ξJ ∂ηJ ∂ξ̃J ∂η̃J q q 
Det(bIJ (ξI ))d

nξI = Det(bIJ (ξ̃I ))d
nξ̃I 

→ Pf(bIJ (ξ
I ))dnξI = Pf(bIJ (ξ̃

I ))dnξ̃I 
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Phase-space volume occupied by a quantum state 

• For a classical theory every phase-space point represents a distinct 
state. There is an ∞ number of states for a finite phase space. 

• For a quantum system, |φξI (t)i and |φ˜ i are ξI (t) 

orthogonal (ie are different quantum states) only 
when ξI and ξ̃I are different enough → 
uncertainty of ξI . There is a finite number of 
states for a finite phase space. 

ξ2

ξ1

t

t=0

• How many quantum states does a phase space region Dn contain? 
From the generalized Liouville’s theorm and conservation of degrees of 
freedom, we guess Z 

dnξI 
N = Pf(bIJ ) 

Dn (2π)n/2 

We will confirm it later. 
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Density of quantum states and the sympletic structure 

• The number of quantum state in a region Dn in n-dimensional phase 
space can also be written in term of diferetial 2-form, b = bIJ dξ

I dξJ /2!, 
that defines the sympletic structure of the phase space: Z Z 

dnξI bn/2 

N = Pf(bIJ ) = 
Dn (2π)n/2 

Dn (2π)n/2 

Example: For 2-dimensional phase space Z Z Z 
b bIJ dξ

I dξJ /2! b12 dξ
1 dξ2 

= = 
D2 (2π) D2 2π D2 2π 

The number of quantum state in the region D2 is equal to the number 
of flux quantum (also called Chern number) through D2 for the phase 
space “magnetic” field bIJ . 

• Quantization of “magnetic” field: If Dn is closed (ie is the whole 
phase space) Z 

bn/2 

∈ Z (higher Chern number) 
Dn (2π)n/2 
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An example: an anharmonic oscillator 

• What is low energy spectrum of 

k2 1 1 
H = + vx 2 + x 4 , k = − i∂x

2 2 4 

• Trial ground state: �α�1/4 − 1 2αx|ψ0i = e 2 

π 

The value of α is determined by minimizing the average energy 

3 + 4α2 + 4αv hψ0 
α|Ĥ|ψ0 

αi = . 
16α2 

We find � � 2 
2 1 √ 

32 × 6 3 v + 6 3 27 + 729 − 48 v 
3 

α = = 
√ 
v +

3
+ O(1/v 2)� � 1√ 3 4v 

36 27 + 729 − 48 v 

1√ 3 hĤi = v + + O(1/v 2)
2 16v 
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An anharmonic oscillator 

• Dynamical trial ground state �α�1/4 
i ξ2x − 1 α(x−ξ1)2 |ψξI i = e e 2 

π 

a state with position x = ξ1 and momentum k = ξ2 fluctuations. 
d ¯L(ξ̇I , ξI ) = hψξI (t)| i − H|ψξI (t)i = −aI (ξI )ξ̇I − H(ξI )
dt 

¯where aI = − ihψξI | ∂ |ψξI i, H(ξI ) = hψξI |Ĥ|ψξI i∂ξI 

• The resulting equation of motion is given by 

∂H̄ 
ξ̇JbIJ = − , bIJ = ∂I aJ − ∂J aI

∂ξI 

• Calculate aI = ihψξI | ∂ |ψξI i:∂ξIZ �α�1/2 − i ξ2x − 1 α(x−ξ1)2 i ξ2x − 1 α(x−ξ1)2 
a1 = − i dx e e 2 α(x − ξ1)e e 2 = 0 

πZ � �1/2 − i ξ2x − 1 α(x−ξ1)2 i ξ2x − 1 α(x−ξ1)2 
a2 = − i dx 

α 
e e 2 ix e e 2 = ξ1 

π 
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An anharmonic oscillator 

We find bIJ = �ij and � �1 1 3 1 3 + 4 α3 + 4 α v
H̄(ξI ) = (ξ2)2 + v 1 + (ξ1)2 + (ξ1)4 + 

2 2 2αv 4 16 α2 

• The corresponding equation of motion 
has a form 

ξ̇1 = ξ2 , ξ̇2 = −v 
� 
1 + 

3 � 
ξ1 − (ξ1)3 

2αv 

• The number of quantum states in a phase space region D2 Z Z Z 
dξ1 dξ2 dξ1 dξ2 dx dk 

N = Pf(bIJ ) = = 
D2 2π D2 2π D2 2π 

which is what we expected. 
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An anharmonic oscillator 

• The small motions around the ground state ξI → A collection of0 
Harmonic oscillators → low energy spectrum. 
- This is why for many interacting systems, the low energy excitations are 
non-interacting (like phonons in interacting crystals). 
- This is why semi-classical approach works well for many systems. 

• For small motion around the ground state ξ1 = 0, ξ2 = 0: � �3 
ξ̇1 = ξ2 ξ̇2 ξ1 , = −v 1 + 

2αv 

A harmonic oscillator with mass m = 1, 
3α+2α2vspring constant K = ,q 2α2� � 

and frequency ω = v 1 + 3 .2αv 

• Re-quantizing the harmonic oscillator → 
low energy spectrum for the Hamiltonian 

E

v
−10

−5

 0

 5

 10

−6 −4 −2  0  2  4

k2 1 2 1 4H = + vx + x , k = − i∂x
2 2 4 
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Geometric phase and related mathematics 

δφ = aI dξI = − ihψξI | ∂ |ψξI idξI is the so call geometric phase.
∂ξI 

• What is the geometric phase? 
Consider |ψξI i and |ψξI +δξI i, what is the phase difference between |ψξI i 
and |ψξI +δξI i? 

• But |ψξI i and |ψξI +δξI i are not parallel: |ψξI +δξI i 6= e i δφ|ψξI i. 
They differnce cannot be characterized by a phase. 

• But for small δξI , the leading difference is just a phase factor 
hψξI |ψξI +δξI i ≈ 1 + iO(δξI ), hψξI +δξI |ψξI i ≈ 1 − iO(δξI ) 

since, to the first order in δ 

0 = δhψξI |ψξI i = (hψξI +δξI | − hψξI |)|ψξI i + hψξI |(|ψξI +δξI i − |ψξI i) 
= [hψξI +δξI |ψξI i − 1] + [hψξI |ψξI +δξI i − 1] → [hψξI +δξI |ψξI i − 1] = imag 

i O(δξ)Therefore hψξI |ψξI +δξI i ≈ e , or 
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Is the geometric phase meaningless? 

. 

i δφ i aI δξI • Geometric phase e = hψξI |ψξI +δξI i = e . But we can always 
− i aI δξI change the phase of |ψξI +δξI i → |ψξI +δξI i1 = e |ψξI +δξI i, to make 

− i aI δξI i aI δξI the geometric phase to be zero: hψξI |ψξI +δξI i0 = e e = 1. 
- The move |ψξI i → |ψξI +δξI i is a generic transportation. 
- The move |ψξI i → |ψξI +δξI i0 is a parallel transportation. 
It appears that we can always make geometric phase = 0, 
and the geometric phase is meaningless. This is wrong! 

• As we change the phase of |ψξI i: |ψξI i → e i f (ξ
I )|ψξI i, the 

Igeometric phase (ie the connection) also changes: a → aI + ∂ξI f 
I- We can always choose a f to make a = 0 along a particular path ξI (t), 

to make |ψξI (t)i to have the same phase for all t → parallel 
transportation along the path. 

I- But, we cannot find a f to make a = 0 for all ξI , ie to make all |ψξI i’s 
to have the same phase. Some part of geometric phase (or vector 
potential) aI is physical, and other part is not. The meaningful part is 
the “magnetic field”: bIJ = ∂ξI aJ − ∂ξJ aI , which is quantized. 
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What is the geometric phase for spin-1/2? � � 
e− i ϕ/2 cos(θ/2)

Consider a spin-1/2 state in n-direction |ni = 
e i ϕ/2 sin(θ/2) 

• Let us compare the phase of |n(θ, ϕ)i and |n(θ + δθ, ϕ + δϕ)i: 

hn(θ, ϕ)|n(θ + δθ, ϕ + δϕ)i 
∂ ∂ 

= 1 + hn(θ, ϕ)| |n(θ, ϕ)i δθ + hn(θ, ϕ)| |n(θ, ϕ)i δϕ 
∂θ ∂ϕ | {z } | {z }
i aθ i aϕ 

i (aθδθ+aϕδϕ)= 1 + iaθδθ + iaϕδϕ ≈ e , 

where iaθ = hn(θ, ϕ)| ∂ |n(θ, ϕ)i and iaϕ = hn(θ, ϕ)| ∂ |n(θ, ϕ)i∂θ ∂ϕ 

i (aθ δθ+aϕδϕ) i aI δξI - e = e is the geometric phase as we change |n(θ, ϕ)i 
to |n(θ + δθ, ϕ + δϕ)i = |n +Δni. 
- a = (aθ, aϕ) is the connection (vector potential) of the geometric 
phase. (Like the vector potential in electromagnetism.) 
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The notion of the“flux” of the geometric phase 

• Consider a loop |n(t)i, t ∈ [0, 1], n(0) = n(1). The total geometric 
phase of the loop P 

i δϕ(t)e = hn(0)|n(t1)ihn(t1)|n(t2)ihn(t2)|n(t3)i · · · hn(tN−1)|n(1)i P R R dn(t)
i a(t)·δn(t) i a(t)· dn(t) i a(t)· 

dt dt = e = e = e 

• If we change the phase of |ni: |ni → e i f (n)|ni, the total geometric 
phase for a loop – the geometric flux – does not change. 

• Computing the geometric flux:H R H R R 
aθ dθ + aϕ dϕ = (∂θaϕ − ∂ϕaθ)dθ dϕ or a = da = b.C D C D D 

where C = ∂D, ie the loop C is the boundary of the disk D. 

- b = ∂θaϕ − ∂ϕaθ is called the geometric curvature (magnetic field): 
bΔθΔϕ = the total geometric phase for a small loop 
(θ, ϕ) → (θ +Δθ, ϕ) → (θ +Δθ, ϕ +Δϕ) → (θ, ϕ +Δϕ) → (θ, ϕ). H 
• The total geometric phase for a loop a · dn and the geometricC 
curvature b are meaningful, since they are invariant under the gauge 
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The geometric phase (the flux) for spin-1/2 

From iaθ = hn(θ, ϕ)| ∂ |n(θ, ϕ)i and iaϕ = hn(θ, ϕ)| ∂ |n(θ, ϕ)i and∂θ ∂ϕ � � 
cos(θ/2) 1−cos(θ)|ni = → aθ = 0, aϕ = sin(θ/2) sin(θ/2) = 

e i ϕ sin(θ/2) 2 

“Flux” of geometric phase: total geometric phase around a loop 
For a loop (θ, ϕ) → (θ +Δθ, ϕ) → (θ +Δθ, ϕ +Δϕ) → (θθ, ϕ +Δϕ) → (θ, ϕ):I 

1 − cos(θ +Δθ) 1 − cos(θ) 
aθ dθ + aϕ dϕ = 0 + Δϕ + 0 − Δϕ 

2 2[Δθ,Δϕ] 

1 1 
= sin(θ)ΔθΔϕ = bθϕ dθ dϕ = 
2 2 

• The total “flux” of the geometric phase on 
any campact space S2 must be quantized Z 

1 
bIJ dξ

I dξJ = 2π × integer 
C 2 2! 

Ω([Δθ, Δϕ]) = half solid angle. 

= 2π × Chern number. Spin-1/2 has a Chern number = 1 

• On shpere the number states = Chern number +1. 
On torus the number states = Chern number (Landau levels counting) 
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. 

The geometric phase of spin-1 

• The geometric connection for spin-1/2 |n 1 i isSn =2 
1 1S= S= 1−cos(θ)(a 2 , aϕ 

2 ) = (0, ).θ 2 

• The geometric connection for spin-1 |nSn =1i is 
1 1S= S= S=1 S=1 2 2(a , a ) = 2(a , aϕ ) = (0, 1 − cos(θ)).θ ϕ θ 

- This is because we may view |nSn =1i = |n 1 i ⊗ |n 1 iSn =2 Sn =2 
1 

i ΔφS=1 = 0 0 0 i 2ΔφS 
e = hnSn =1|nSn =1i = hnSn =

1 |n
Sn =

1 i × hnSn =
1 |n

Sn =
1 i = e 2 

2 22 2 

How to visualize the geometric phase of spin-1 

Different arrows in the plan at a point n 
on the sphere correspond to the different 
phase choices e i φ|nSn =1i. We try to 
choose φ for the spin-1 states along the 
loop, such that |nSn =1i all have the same 
phase. But after going around the loop, 
the phase miss match is the total geometric phase along the loop. 
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Classical motion of spin-1/2: two views 

The phase-space action Z Z 
1 1 

S = dt[− (1 − cos θ)ϕ̇ − V (θ, ϕ)] = dt[ cos θϕ̇ − V (θ, ϕ)] + ... 
2 2 

π• Near the equator, cos θ = − θ = Lz :R 2 
S = dt[Lz ϕ̇ − V (π − Lz , ϕ)]2 

- The uniform phase-space magnetic field → (−θ, ϕ) = (Lz , ϕ) = (p, x) 
the usual canonical coordinate-momentum pair. 
• A particle moving on S2 with a uniform magnetic field bθϕ of total flux 
2π. It is the motion in the lowest Landau level assuming ~ωc is large. 
Modified Newton law F = v × B (not F = ma). 
- A spin-S → a sphere with a uniform magnetic field of 2πNChern flux, 
where NChern = 2S → lowest Landau level has 2S + 1 = NChern + 1-fold 
degeneracy on a shere. 

Lowest Landau level has NChern-fold degeneracy on a torus. 
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Global view of geometric phase: S1 fiber bundle 

Why the “magnetic field” b is quantuized (ie cannot be deformed to 0)? 
The physical states are characterized by a point ξi on the phase-space, 
only after we pick the phase of |ψ(ξi )i. Different choices 

fiber

base space

cross section

.

. 

of 
phases are equivalent → the notion of S1 fiber bundle: 
• The phase space ξi is the base space. The equivalent 
normalized quantum states e i φ|ψ(ξi )i form the fiber S1 

- A S1 fiber bundle is (locally) S1 × phase-space. 
- the ξi -labeled quantum states |ψ(ξi )i is a cross section of the S1 

bundle. Pick a phase = pick a cross section. 
• Trivial S1 bundle = S1 × base-space (globally). 
Non-trivial S1 fiber bundle has different topology from S1 × base-space. 
No smooth cross section. Trivial and non-trivial bundles describes 

• Vector bundle: fiber = vector space. 
An example: fiber = R → Möbius strip: 
a non-trivial R bundle on base-space S1 

No non-zero smooth cross section. 

different classes of classical systems that cannot deform into each other. 

. 
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Spin-1/2 example: geometric phase and fiber bundle 

• All possible spin-1/2 states (or qubit states)� � 
a + ib 2 2(a + ib)| ↑i + (c + id)| ↓i = = z , a + b2 + c + d2 = 1 
c + id 

form a 3-dimensional sphere S3 (a sphere in 4-dimensional space). 

• But since |ψi ∼ e i φ|ψi, all possible spin-1/2 states 
(or qubit states) actually form a 2-dimensional sphere 
S2 †σz. z = n: a map S3 → S2 → |ni: spin-1/2 
in n direction. 

• S3 locally looks like S1 × S2: S3 is a non-trivial 
fiber bundle with fiber S1 and base space S2: 

inj surj
pt → S1 −→ S3 −−→ S2 → pt 

• If we pick a phase �φ for each |ni, we� may get one cross section� of the� 
e− i ϕ/2 cos(θ/2) cos(θ/2)

fiber bundle |ni = or another |ni = 
e i ϕ/2 sin(θ/2) e i ϕ sin(θ/2) 

- No smooth cross section → non-trivial fiber bundle 6= fiber × base space. 
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The patch-picture of fiber bundle 
The “megnetic field” b in the phase space of a spin is a closed 2-form, 
but not a exact 2-form, depite b = da, since the connection 1-form a 
has singularities on the sphere S2 (the phase space). There is no 
continous 1-form a, such that b = da, since this will imply thatZ Z Z 

b = da = a = 0 
S2 S2 ∂S2 

- b is exact iff the S1-fiber boundle is trivial (ie Chern number = 0) 
- A fiber boundle is trivial iff it has no continuously 
defined connection a (ie the vector potential aI ). 

• Any S1-fiber boundle can be described by collection of 
continous connections aA on patchs DA that cover the 
whole base space. On the overlap of two patchs, DA and DB , the two 
gauge connections, aA and aB are gauge equivalent aB = aA + dfBA. 
- Locally on each patch, the S1-fiber boundle looks like DA × S1 , with 
cross section |ψA(ξ

I )i, ∈ DA. On the overlap of two patchs, the two ξI 

cross sections, |ψA(ξ
I )i and |ψB (ξ

I )i, are related by U(1) 
|

Xiao-Gang Wen (MIT) 

|
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I )i = e i fBA ψA(ξ

I )i → U(1)-bundle. 



–

. 

The obstruction to have globally defined connection 
i fBA(ξI )Can we deform the gauge transformations e on the overlaps to 1, 

and turn a patchwise defined connection to a globally defined one? 

• Consider a U(1)-bundle on S2 . We divide S2 into 
two patchs with trivial topology (ie two disks). 
The overlap is the equator S1 . The transformation 
U(ϕ) = e i fBA(ϕ) on the S1 connects the connections 
on the two patchs aS = aN − iU−1 dU = aN + dfSN| {z } | {z } 

correct form incorrect form 

• The non-trivial winding number of the transformation U : S1 → U(1), 
due to π1(U(1)) = Z, is the obstruction to have globally defined 
connection → non-trivial U(1)-bundle on S2 with 

Chern number = winding number. 

- On S3 there is no non-trivial U(1)-bundle, but on S2 × S1 or 
S1 × S1 × S2 there is non-trivial U(1)-bundle. 

- On S4 there is non-trivial SU(2)-bundle, since π3(SU(2) = S3) = Z. 
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The motion of a neutron in a non-uniform magnetic field 

Geometric phase is a quantum effect that can affect equation of motion 

Consider a spin-1/2 neutron moving in a strong non-uniform spin 
magnetic field B(x). The neutron magnetic moment is 

e~ e~ µn = −1.91304272(45)µN , where µN = in SI unit (or µN = 2mp 2mpc 

in CGS unit). The interaction between the magnetic moment and the 
magnetic field, −µnB · σ, will force the neutron spin to be anti-parallel 
to the magnetic field B at low energies. 

• What is the classical theroy (such as equation of motion and 
Lagrangian) that describes the motion of the above low energy neutron? 

ˆ• What is the quantum Hamiltonian H that describes the quantum 
motion of the above low energy neutron? 

Our first guess: 

• Classical: mẍ = −∂V (x) and L = p · ẋ − 1 mp2 − ∂V (x),2 
where V (x) = −|µnB(x)| is the effective potential energy. 

ˆ 1Quantum: H = −2mn 
∂2 + V (x) Is this guess correct? 
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Schrödinger equation and coordinate basis 

ˆ• Schrödinger equation (basis independent): i∂t |ψi = H(p̂, x̂)|ψiR 
• In a coordinate basis |ψi = dx ψ(x)|xi, it becomes � � 

i∂t ψ(x , t) = H(− i∂, x)ψ(x , t) = − 
1 
∂2 + V (x) ψ(x , t)

2mn 

• In the above, we have assumed that there is no geometric phase for 
|xi,ie the phase change from |xi to |x + δxi is 0. 
• But for our neutron problem, the phase change from |xi to |x + δxi is 
not 0. How to to compute the phase change? 
- For our neutron problem, |xi is actually |xi ⊗ |n(x)i. 
- The phase change from |xi ⊗ |n(x)i to |x + δxi ⊗ |n(x + δx)i is given 
by a · δx : 

i a(x)·δx e = hn(x)|n(x + δx)i → ia(x) = hn(x)|∂|n(x)i 
i a(x)·δx• If there is a geometric phase for |xi, ie a phase change e from 

|xi to |x + δxi , what will the Schrödinger equation look like? 
ˆ 1 - The result H = − ∂2 − |µnB(x)| is valid only when the direction of2mn 

B(x) does not change. 
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How geometric phase affects Schrödinger equation? 

• If we choose a new basis |xitw = e i φ(x)|xi. |xitw will have an non-zero 
geometric phase: The phase change from |xitw to |x + δxitw is 
i [φ(x+δx)−φ(x)] i a(x)·δxe = e where a = ∂φ(x). 

• What is the Schrödinger equation in the new basis R R 
|ψi = dx ψ(x)|xi = dx ψtw(x)|xitw or e i φ(x)ψtw = ψ(x) 

i∂t ψ(x , t) = Ĥψ(x , t) = Ĥ e i φ(x)ψtw 

e − i φ(x) i∂t ψ(x , t) = e − i φ(x)Ĥ e i φ(x)ψtw 

− i φ(x ) ˆ i φ(x)ˆ ˆi∂t ψtw(x , t) = Htwψtw, Htw = e H e . 

ˆ ˆ ˆ• Htw(∂, x) is obtained from H(∂, x) by replacing ∂ in H by 
− i φ(x)∂ e i φ(x)e = ∂ + i∂φ(x) = ∂ + ia(x). 

Ĥ 
tw = Ĥ(∂ + ia, x) = − 

1
(∂ + ia)2 + V . 

2mn 

The above is derived for a = ∂φ. But we assume it remains valid for 
general a → How geometric phase affects Schrödinger equation 
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Effective Hamiltonian for neutron in spin magnetic field 

Ĥeff = − 
1
(∂ + ia)2 + V 

2mn 

where 

ia(x) = hn(x)|∂|n(x)i, n = − 
B(x) 

, V (x) = −|µnB(x)|. |B(x)| 

a(x) comes from geometric phase and V (x) is potential energy. 

• V (x) generates a potential force F = −∂V on the particle. 

• We will see that a(x) generates a Lorentz force F ∝ v × b on the 
particle, as if there is a “orbital magnetic field” b = ∂ × a. 

The geometric phase gives rise to an effective orbital magnetic 
field. 
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Obtain classical equation of motion 

• Consider wavepacket with 
space-time dependent spin�α�1/4 − 1i k0x α(x−x0)2 |ψx0,k0 i = e e 2 |n(x0)i 

π 

Phase space Lagrangian (Ĥ = − 1 ∂2 − µnB · σ)2m 
d L = hψx0(t),k0(t)| i |ψx0(t),k0(t)i − hψx0(t),k0(t)|Ĥ|ψx0(t),k0(t)i dt 

k2 
0 00 ˙ 0 = − a ·ẋ0 − a ·k0 − a(x0) ·ẋ0 − − |µnB(x0)||{z} |{z} | {z } 2mn 

=0 x0 − i hn|∂x0 |ni 

k2 
˙ 0 = −x0 · k0 − a(x0) · ẋ0 − + |µnB(x0)|

2mn 
2p0≈ p0 · ẋ0 − a(x0) · ẋ0 − − V (x0). (~ = 1 unit)

2mn 
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Obtain classical equation of motion 

R 2 
For S = dt [p · ẋ − a(x) · ẋ − 2 

p 
mn 
− V (x)]R R 

From dt δ(ai (x)ẋ i ) = dt [δx j (∂j ai )ẋ i − ȧi (x)δx i ]Z 
δS = dt δpi [ẋ i − 

pi 
] + δx i [−ṗi − (∂i aj )ẋ

j + (∂j ai )ẋ
j − ∂i V ] 

mn 

we obtain the phase space equation of motion 

ẋ i = 
pi 
, ṗi = −(∂i aj − ∂j ai )ẋ

j −∂i V = −bij ẋ j − ∂i V 
mn | {z } 

Lorentz force 

Spin twist gives rise to simulated vector potential 
a(x) = − ihn(x)|∂|n(x)i → simulated magnetic field. 
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–

Geometric phase orbital magnetic field 

- Equation of motion for x3 = z 

mnz̈ = −∂z V − ẋ [∂z ax − ∂x az ] − ẏ [∂z ay − ∂y az ] 

- Compare with the equation of motion in a magnetic field B 

e 
mnz̈  V + xBy yBx = −∂z ( ˙ − ˙ ) 

c 
e e e e 

= −∂z V + ẋ(∂z Ax − ∂x Az ) − ẏ(∂y Az − ∂z Ay ). 
c c c c 

• We find that a = − e A (or a = − e A in ~ =6 1 unit, [a] = Length−1).c ~c 

• The geometric meaning of magnetic field Z I I.hc e 1 
# of flux quanta = dS · B = dx · A = − dx · a 

e hc 2πS ∂S ∂S 

= geometric phase around a loop/2π 
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Simulate orbital magnetic field by twisted spin 

When an electron move in a background twisted spins, the electron spin 
may following the direction of the background twisted spins → 
geometric phase = simulated magnetic field. 

The geometric phase around a loop/2π = The number of flux 
quanta of the simulated magnetic field through the loop. 

2• Note that hc/e = 4.135667516 × 10−15T m . 

- If there is one flux quantum per (10−8m)2 , then 
B = 4.135667516 × 10−15/(10−8)2 = 41T 
(About the highest static magnetic field produced) 

- For electron hoping in a non-coplannar magnet, the geometric phase 
from the spin-twist is of order 1 per unit cell: 
There is one flux quantum per (10−9m)2 , or the simulated magnetic 
field by the spin-twist geometric phase is 
Bspin = 4.135667516 × 10−15/(10−9)2 = 4100T 
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Geometric phases in energy bands of a crystal 

. 

• Hopping Hamiltonian Si X 
ΔnHmα;nβ = −tαβ δm,n+Δn , 

Δn 
n lable unit cell, α, β label orbitals 

• Plane wave state (xn = n1a1 + n2a2 + n3a3)X 
i k·xnψk (n, β) = ψβ (k)e , Hmα;nβ ψk (n, β) = �k ψk (m, α). 

n,β 

• The energy bands �k are eigenvalues of Mαβ(k) Si bandsX 
Mαβ (k)ψβ (k) = �k ψα(k), 

β X 
Δn − i xΔn ·kMαβ(k) = − tαβ e 

Δn 

• Number of bands = 
number of orbitals 
in a unit cell. . 
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Dynamics of an electron in semiconductor 

The standard theory 

• Quantum dynamics: H(p̂) = �(p̂), p̂ = − i∂ → 
i k i kA plane wave e ·x ψα(k) = e ·x |ψ(k)i 

�(k )t− i ψ(k)ii k·xevolves as e e | . 

With potential term, the Hamiltonian is changed to 
iH(p̂, x̂) = �(p̂) + V (x̂), where [p̂ , x̂ j ] = − iδij , or 

H(p̂, x̂) = �(− i∂) + V (x̂) 

• Classical dynamics: d hÔi = ih[H, Ô]i →dt 

∂H(p, x) ∂H(p, x) 
ṗ = − , ẋ = . 

∂x ∂p 

• The standard theory is wrong. 
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Obtain classical EOM of an electron in a band 

• Consider wavepacket with 
space-time dependent spin�α�1/4 − 1i k0x α(x−x0)2 |ψx0,k0 i = e e 2 |ψ(k0)i 

π 

Phase space Lagrangian (~ 6= 1 unit) 
d L = hψx0(t),k0(t)| i~ − H|ψx0(t),k0(t)i dt 

~2k2 
0 00 ˙ ˙ 0 = −~ a ·ẋ0 − ~ a ·k0 − ~ ã(k0) ·k0 − − |µnB(x0)||{z} |{z} | {z } 2mn 

=0 x0 − i hψ|∂k0 
|ψi 

~2k2 
˙ ˙ 0 = −~x0 · k0 − ~ã(k0) · k0 − + |µnB(x0)|

2mn 
2p0≈ p0 · ẋ0 − ã(p0/~) · ṗ0 − − V (x0)

2mn 
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Obtain classical EOM of an electron in a band 

• The k-space connection (vector potential) in Brillouin zone. 

i ã(k) = hψ(k)|∂k |ψ(k)i R 
p2 

• For S = dt [p · ẋ − ã(p/~) · ṗ − 2mn 
− V (x)]R R 

From dt δ(ãi (p/~)ṗi ) = dt [δpj (∂pj ãi )ṗ
i − ȧ̃i (p/~)δpi ] R 

δS = dt δpi [ẋ i − pi − ~−1(∂ki ãj )ṗj + ~−1(∂kj ãi )ṗj ] + δx i [−ṗi − ∂i V ]mn 

we obtain the phase space equation of motion 

pi pii j −1 ̃  jẋ = + ~−1(∂ki ãj − ∂kj ãi )ṗ = + ~ bIJ ṗ , ṗi = −∂i V 
mn | {z } mn 

Velocity correction 

where b̃IJ = ∂ki ãj − ∂kj ãi is the k-space 
“magnetic” field (geometric curvature). 

The k-space connection (ie the k-space magnetic 
field) also modifies the equation of motion 
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The correct classical EOM of an electron in a band 

2e p
L = p · ẋ + A(x) · ẋ − ã(p/~) · ṗ − − V (x) 

c 2mn 
2p˙= ~[k · ẋ − a(x) · ẋ − ã(k) · k] − − V (x)

2mn 

The real equation of motion in semiconductor 

∂V e ∂� j −1 ̃ṗi = − + Bij ẋ = Fi , ẋi = + ~ bij (k)ṗj . 
∂x i c ∂pi 

Fi include both potential force and Lorentz force. 
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Compare with Newton’s law 

From the EOM 

−1 ∂� −1 ∂� k̇i = ~−1Fi , ẋi = ~ + b̃ij (k)k̇j = ~ + ~−1b̃ij (k)Fj
∂ki ∂ki 

and assume H = ~ 
2

2 

m 
k2 
+ V (x), we obtain 

i −1 ̃  ˜ẍ = ~−2(∂ki ∂kj H)Fj + ~ bij Ḟj + ~−2∂kl bij Fj Fl 
i or ẍ  = (∂pi ∂pj H)Fj + Dij Ḟj + (∂pl Dij )Fj Fl 

= m −1Fi + Dij Ḟj + (∂pl Dij )Fj Fl 

where pi = ~ki , Dij = ~−1b̃ij . 
We obtain correction to the Newton law Dij Ḟj + (∂pl Dij )Fj Fl . 

p 
2p2 

→ m2c4 + c p2 is the relativistic correction. 2m 

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach 43 / 66 



–

AC conductivity (from classical Drude model) 

First way to include a friction force 

Fi → Fi − γẋ i 

We obtain 

i ẍ = m −1(Fi − γẋ i ) + Dij (Ḟj − γẍ i ) + ∂pl Dij (Fj − γẋ j )(Fl − γẋ l ) 

− i ωt :- Assume ∂pl Dij = 0 and go to ω-space x = xω e 

[−ω2(δij + γDij ) − iωγm −1δij ]xω 
j = [m −1δij − iωDij ]Fj 

xω = [−ω2(m + γmD) − iωγ]−1(1 − iωmD)Fω 

vω = [γ − iωm(1 + γD)]−1(1 − iωmD)Fω 

Effect of Dij disappear for DC conductance, for the first way to model 
idissipation Ffriction = −γẋ . 
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AC conductivity (from classical Drude model) 

Second way to include a friction force 
−1Fi → Fi − γ∂pi H = Fi − γm pi 

Still assume ∂pl Dij = 0: 
−1 −1 ẋ = ∂p H + D(F − γm p) = (1 − γD)m p + DF 

ṗ = F − γm −1 p. 
− i ωt : −1- Go to ω-space x = xω e − iωpω = Fω − γm pω 

vω = − iωxω = (1 − γD)m −1 pω + DFω 

1 
= (1 − γD)m −1 Fω + DFω

γm−1 − iω 
1 

= (1 − γD) Fω + DFω
γ − iωm 

= (1 − iωDm)(γ − iωm)−1Fω 

Effect of Dij also disappear for DC conductance, for the second way to 
model dissipation Ffriction = −γ∂pi H. But the result is different from 

ithe first way Ffriction = −γẋ . 
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Transport: Boltzmann equation 

Hydrodynamics in phase space: 
In the third way to model dissipation, we find that Dij has effect on DC 
conductance! 

1 2 3• Phase space is parametrized by ξI = x , x , x , k1 , k2 , k3 

L(ξ̇I , ξI ) = −~aI ξ̇I − H, ~bIJ ξ̇
J = − 

∂H 
, bIJ = ∂I aJ − ∂J aI

∂ξI 

1 2 3where the phase space curvature (I = x , x , x , k1 , k2 , k3) is given by � � � �� � � � 
bij δij 0 −δij bij δij δij b̃ij(bIJ ) = , = −δij b̃ij δij 0 −δij b̃ij bij δij � � � � 
δij b̃ij δij b̃ij ˜ ˜log Det = Tr log = 2bij bji + O(bik bkj )

2 

bij δij bij δij� � 
bij δij ˜ ˜ ˜Pf ≡ Pf(b, b) = 1 + bij bji + O(bik bkj )

2 . −δij b̃ij 
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Density distribution in phase space 

• To set up phase space hydrodynamics, we first introduce phase space 
density distribution 

dnξI 
dN = g(ξI )Pf[b(ξI )]

(2π)n/2 

g is the number per orbital. 

• Local equilibrium distribution 

g0(ξ
I ) = 

1 
, for fermions 

eβ(ξI )[H(ξI )−µ] + 1 

g0(ξ
I ) = 

1 
, for bosons 

β(ξI )[H(ξI )−µ] − 1e 
−β(ξI )[H(ξI )−µ]g0(ξ

I ) = e , for classical particles 
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Hydrodynamic equation of motion 

• Consider a small cluster of gas, that evolve from time t to t̃  

dnξI dnξ̃I 
dN = dÑ or g(ξI )Pf[b(ξI )] = g(ξ̃I )Pf[b(ξ̃I )]

(2π)n/2 (2π)n/2 

Due to Liouville’s theorm Pf[b(ξI )]dnξI = Pf[b(ξ̃I )]dnξ̃I , we have 

g(ξI ) = g(ξ̃I ) or 
d 
g [ξI (t)] = 0 

dt 

We obtain hydrodynamic equation 
d ∂g ∂g − ~bIJ ∂J H∂I gg [ξI (t)] = 0 → + ξ̇I ∂I g = = 0 
dt ∂t ∂t 

• Consistent with the conservation of particle number (J I = g ξ̇I ): 
∂g 1 � � ∂g 1 � � 
+ ∂I J I + ∂I Pf(b̂) J I = + ∂I Pf(b̂)J I = 0 

∂t Pf(b̂) ∂t Pf(b̂) 
See Appendix at the end of this note for derivation. 

- When Pf[b(ξI )] = 1, say when either bij = 0 or b̃ij = 0, the conservation 
of particle number reduces to ∂g + ∂I J I = 0.∂t 
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Go to ξI x , k phase space 

˙L = ~[k · ẋ − a(x) · ẋ − ã(k) · k] − E (k , x), E (k , x) = �(k) + V (x) 

∂E ∂E 
~k̇i = − − ~bij ẋ j , ~ẋi = + ~b̃ij (k)k̇j .i∂x |{z} ∂ki 

=− e Bijc 

• (x , k)-density distribution function 

d3x d3k˜g(x , k , t) : dN = g(x , k , t) Pf(b, b) 
(2π)3 

g is the number per orbital, and Pf(b, b̃) = 1 + bij b̃ji + · · ·. 
• Local equilibrium distribution 

1 
g0(x , k) = , for fermions 

eβ(x )[E (k,x)−µ(x)] + 1 
1 

g0(x , k) = , for bosons 
β(x )[E (k,x)−µ(x)] − 1e 
−β(x )[E (k,x)−µ(x)]g0(x , k) = e , for classical particles 
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–

Adding dissipation relaxationtime approximation 

Impurity scattering → dissipation. 
• We model large Δk redistribution caused by impurities in k-space by 

∂g ∂g ∂g ∂g 1 
+ ξ̇I ∂I g = + ẋ · + k̇ · = − (g − g0)

∂t ∂t ∂x ∂k τ 
dg 1- = (g − g0) corresponds to the change of g caused by scatteringdt τ 
process in k space. 

• Local chemical potential µ(x) and local temperature T (x): 
- δg = (g − g0)/τ should conserve the x-space particle density R 

b) d
3k˜n(x) = Pf(b, g . Thus the local chemical potential µ(x) in g0(2π)3 

is chosen to make g0 to satisfyZ 
δn(x) = Pf(b, b̃)d3k (g − g0) = 0. 

No particle diffusion in x-space. 
- Impurity scattering conserve the energy density in x-space 
nE (x) = 

R 
Pf(b, b̃) d

3k E (x , k)g . The local temperature T (x) satisfies
(2π)3Z 

δnE (x) = Pf(b, b̃)d3k E (x , k)(g − g0) = 0. 
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Linear responce in steady state 
∂g ∂g ∂g• Steady state: = 0 or ẋ · + k̇ · = − 1 (g − g0)∂t ∂x ∂k τ 

with EOM for particles ~k̇i = − ∂V − ~bij ẋ j , ~ẋi = ∂� + ~b̃ij (k)k̇j∂xi ∂ki 

and g0(x , k) = 1/(eβ(x )[�(k)+V (x)−µ(x)] + 1) 

• When ∂x V = 0, bij = 0, ∂x µ = 0, ∂x β(x) = 0, 
˙ ∂g0 ∂g0g0 satisfies the EOM, since k = 0, = = 0∂x ∂t 

• Linear responce: first order in 

k̇ ∼ ∂x V , bij , ∂x g0 ∼ ∂x (V − µ), ∂x β, δg = g − g0.| {z } 
−µ̄ 

• Linear response for steady state 

δg + τ~−1∂ki �∂xi δg = −τ [~−1∂ki �∂xi g0 + k̇i ∂ki g0] 
i or δg + τv i ∂xi δg = −τ [v i ∂xi g0 + k̇i ∂ki g0], v = ~−1∂ki �. 

∂xi δg 1 1 - Make another assumption � = l . Since ~k̇i = eEi − ~bij v j :δg τ v i 

τ 1 
δg = −τv i ∂xi g0 + (eEi − ~bij v j )∂ki g0, g0 = 

β(x)[�(k)−¯~ e µ(x)] + 1 
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2D conductivity from k -space “magnetic” field b̃ij 

Assume real space magnetic field bij = 0 and T (x), µ̄(x) are 
independent of x : ∂� ∂g0 i ∂g0δg = τeEi = τeEi v 

~∂ki ∂� ∂� 

The current (Pf(bij , b̃ij ) = Pf(0, b̃ij ) = 1)Z Z 
i ∂g0d3k i d3k i ˜J i = eẋ g = (ev + ebij ~−1eEj )(g0 + τeEi v )

(2π)3 (2π)3 ∂� 

Note that (try to show this in 1-dimension)Z Z Z 
d3k d3k ∂�(k) d3k ∂G0[�(k)] 

ev i g0 = e g0(�) = e = 0 
(2π)3 (2π)3 ∂ki (2π)3 ∂ki 

where ∂G0(�)/∂� = g0(�). Keeping only linear Ei term Z Z h 2 id3k i d3k e 2 j i ∂g0˜J i = eẋ g = bij g0 + τe v v Ej
(2π)3 (2π)3 ~ ∂� 

• Conductivity: Z h 2 id3k e i ∂g0σij = b̃ij g0 + τe 2 v j v 
(2π)3 ~ ∂� 
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Quantized Hall conductance in 2D 

For a filled band, g0 = 1 Z 2 2d2k e e 
σH ˜= bij g0 = �ij nChernij (2π)2 ~ h 

where (let b̃ij = �ij b̃) Z Z � �d2k ˜ d2k ∂ãx ∂ãy
nChern = b = − = integer,

2π 2π ∂ky ∂kxB.Z . B.Z . 

i ãi = hψ(k)|∂ki |ψ(k)i. 

We have a quantized Hall conductance. nChern is Chern number. 

We have a Chern insulator if the total Chern number of the filled 
bands is non-zero. 

• How to make a Chern insulator? 
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Complex hopping to break time-reversal and parity symm. 

• Conductance jy = σxy Ex , jx = Ey = 0. 

Under time reversal t → −t: 
E → E , j → −j , σxy → −σxy 

Under parity (x , y) → (x , −y): 
b b

−t t

it’

(Ex , Ey ) → (Ex , −Ey ), (jx , jy ) → (jx , −jy ), σxy → −σxy 

• Use complex hopping to generate uniform flux 
and break time-reversal and parity symmetries. 
→ Chern insulator 

Staggered flux breaks time-reversal symmetry 
but not parity symmetry. 
→ not Chern insulator 

• Next we compute the hopping matrix in k-space X 
Δn − i xΔn ·kMαβ(k) = − tαβ e 

Δn 

b b

t

it’
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π-flux, Dirac fermion, and its geometric connection ã(k ) 

π

1

1

1

1 1−1 −1

a2

a1
π

π

−π

−π

K

K’

k = π/2x

k = π/2y

z
y

x

Hopping matrix in k-space (a1 = 2x , a2 = y): plot n(kx , ky )� � � �− i a1·k 2 i kx−2t cos(a2 · k) −t − t e −2t cos ky −t − t e 
M(k) = = i a1·k −2 i kx−t − t e 2t cos(a2 · k) −t − t e 2t cos ky 

• M(k) = v(k) · σ: � = ±|v(k)|. The vector field v (k) on B.Z.: 

vx = −t − t cos(2kx ), vy = −t sin(2kx ), vz = −2t cos(ky ). 
|v | = t 

p
2 + 2 cos(2kx ) + 4 cos2(ky ) = t 

p
4 cos2(kx ) + 4 cos

) 

2(ky ). 

• Eigenstate in conduction band |n(k)i, plot n(kx , ky 

n(k) = v(k)/|v (k)|, has geometric connection 
˜i ãi (k) = hn(k)|∂ki |n(k)i: bxy = ∂kx ãy − ∂ky ãx =6 0H H 

dk · ã  = π, dk · ã  = π → two π-flux tubes. K K 0 

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach 55 / 66 



−2.5−2−1.5−1−0.5 0 0.5 1 1.5 2 −3
−2

−1
 0

 1
 2

 3

−2
−1.5

−1
−0.5

 0
 0.5

 1
 1.5

 2

–

π/2-flux state: complex hopping → Chern insulator 

π/2

π/2

1

1

1

1 1−1 −1

a2

a1

i

π

π

−π

−π

K

K’

k = π/2x

k = π/2y

x
y

z

Hopping matrix in k-space (a1 = 2x , a2 = y): M(k) = � �− i a1 ·k 0 i a2 ·k 0 − i (a2 ·k +a1 ·k )−2t cos(a2 · k ) −t − t e − i t e + i t e 
i a1 ·k 0 − i a2 ·k 0 i (a2 ·k +a1 ·k )−t − t e − i t e − i t e 2t cos(a2 · k ) 

• M(k) = v(k) · σ: � = ±|v(k)|. The vector field v (k) on B.Z.: 

vx = −t − t cos(2kx ) − t 0 sin(ky ) + t 0 sin(ky + 2kx ), 
vy = −t sin(2kx ) − t 0 cos(ky ) − t 0 cos(ky + 2kx ), vz = −2t cos(ky ). 

• Eigenstate in conduction band |n(k)i, t = t 0 

n(k) = v(k)/|v (k)|, has geometric connection 
i ãi (k) = hn(k)|∂ki |n(k)i: b̃ 

xy = ∂kx ãy − ∂ky ãx =6 0 
→ The wrapping number (Chern number) = 1 
Chern insulator (IQH state) . 
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How to compute the Chern number H 
1• Geometric phase φ = ∂D dk · ã(k) = 2 ΩI 

φ = dk · ã(k) = 2π × wraping 
δ

δ

D

n
Ω

kx

ky

num. 
∂B.Z . 

• Geometric curvature B̃ = ∂kx ãy − ∂ky ãx .I Z 
φ = dk · ã(k) = d2kB̃, Z ∂D D 

d2kB̃ = 2π × Chern number 
B.Z . 

• Compute geometric curvature:� � 
B̃δkx δky = 1 n · [n(k + δkx x) − n(k)] × [n(k + δky y) − n(k)]2 

1 
B̃(k) = n · [∂kx n(k) × ∂ky n(k)]2 

• Compute Chern number (the wrapping number): Z 
(4π)−1 d2k n · [∂kx n(k) × ∂ky n(k)] = Chern number 

B.Z . 
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Dimmer state 

π

1

1

1

1 1−1 −1

a2

a1
π

π

−π

−π

K

K’

k = π/2x

k = π/2y

x

z
y

Hopping matrix in k-space (a1 = 2x , a2 = y): plot n(kx , ky )� �− i a1 ·k−2t cos(a2 · k ) −t0 − t e 
M(k ) = i a1 ·k−t0 − t e 2t cos(a2 · k ) 

• M(k) = v(k) · σ: � = ±|v(k)|. 
vx = −t 0 − t cos(2kx ), vy = −t sin(2kx ), vz 

• Eigenstate in conduction band |n(k)i, 
n(k) = v(k)/|v (k)|, has geometric connection 

˜i ãi (k) = hn(k)|∂ki |n(k)i: bxy = ∂kx ãy − ∂ky ãx 6= 0 
→ The wrapping number (Chern number) = 0 

Atomic insulator 

The vector field v (k) on B.Z.: 

= −2t cos(ky ). 

k = π/2x

k = π/2y

x

z
y

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach 58 / 66 



–

Chern number of the bands 
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Appendix: Hydrodynamic equation and continuity equation 
(for bIJ const.) 

• Hydrodynamic equation 

d ∂g ∂g − bIJ ∂J H∂I gg [ξI (t)] = 0 → + ξ̇I ∂I g = = 0 
dt ∂t ∂t 

• Continuity equation conservation of particle number (bIJ = const.): 

∂g 
= −g bIJ ∂J H+ ∂I J I = 0, current: J I = g ξ̇I 

∂t 

They are equivalent: 

∂g ∂g − bIJ ∂I g∂J H − bIJ0 = + ∂I J I = g∂I ∂J H 
∂t ∂t | {z } 

=0 

∂g − bIJ ∂I g∂J H= 
∂t 
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Appendix: continuity equation (for bIJ const.) 

• Assume for phase space coordinates ξ̃I , b̃IJ = const. 

∂g̃ ˙ ∂g̃ 
bIJ ˜Hydrodynamic EOM: + ξ̃I ∂̃I g̃ = − ˜ ∂J H ∂̃I g̃ = 0 

∂t ∂t 
∂g̃ ˙ ˙ bIJ ˜+ ˜ J̃ I J̃ I ξ̃I ξ̃I = −˜Conitnuity equation: ∂I = 0, = g̃ , ∂J H 
∂t 

• Change of coordinates ξI = ξI (ξ̃I ): (scaler, vector, tensor) 

∂ξ̃J ∂ξI ˙ ∂ξI 
g(ξI ) = g̃(ξ̃I ), ∂I = ∂̃J , ξ̇I = ξ̃J , J I = J̃ J ,

∂ξI ∂ξ̃J ∂ξ̃J 

∂ξ̃K ∂ξ̃L ∂ξI ∂ξJ 
˜ bIJ b̃KLbIJ = bKL, = 

∂ξI ∂ξJ ∂ξ̃K ∂ξ̃L 

- The subscript and superscript indecate how the quantity transforms 
under the coordinate transformation. 

• The form of the hydrodynamic EOM remain unchanged: 

∂g ∂g − bIJ ∂J H∂I g+ ξ̇I ∂I g = = 0 
∂t ∂t 
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Appendix: continuity equation (for bIJ const.) 

• The form of the continuity equation is changed: � � � �∂g ∂ξK ∂ξ̃I ∂g ∂ξK ∂ξ̃I 
0 = + ∂K J L = + ∂I J I + ∂K J L 

∂t ∂ξ̃I ∂ξL ∂t ∂ξ̃I ∂ξL � �∂g ∂ξK ∂ξ̃I 
= + ∂I J I + ∂L J L 

∂t ∂ξ̃I ∂ξK � � 
∂ξK ∂ξ̃I In fact: ∂L = Det1/2(bIJ )∂K Det1/2(bIJ ), since the RHS 
∂ξ̃I ∂ξK h i 

bIJ )∂K 
ξI ξI = Det(∂ξ

J 
)Det1/2(˜ Det( ∂ ̃  

)Det1/2(b̃IJ ) = Det(∂ξ
J 
)∂K Det( ∂ ̃  

)
∂ξ̃I ∂ξJ ∂ξ̃I ∂ξJ 

∂ξ̃I We also have (let MIJ = 
∂ξJ ) 

Det(M IJ )δDet(MIJ ) = Det(M IJ )Det(MIJ + δMIJ ) − 1 
= Det(δIJ + M IK δMKJ ) − 1 = M IK δMKI 

Continuity equation: (not just ∂g + ∂I J I = 0)∂t 

∂g 1 � � ∂g 1 � � 
+ ∂I J I + ∂I Pf(b̂) J I = + ∂I Pf(b̂)J I = 0 

∂t Pf(b̂) ∂t Pf(b̂) 
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Appendix: continuity equation Hydrodynamic equation 

∂g 1 � � ∂g 1 � 
b) g bIJ ∂J H 

� 
0 = + ∂I Pf(b̂)J I = − ∂I Pf(ˆ 

∂t Pf(b̂) ∂t Pf(b̂) 
∂g − bIJ ∂I g∂J H − g∂J H 

1 � 
b)bIJ � = ∂I Pf(ˆ 

∂t Pf(b̂)| {z } 
=0 

We first note that 0 = ∂M (b
IK bKL) = (∂M b

IK )bKL + bIK (∂M bKL) → 
0 = ∂M b

IJ + bIK (∂M bKL)b
LJ 

This allows us to obtain � � 
b)bIJ∂I Pf(ˆ bKL∂I bLK bKLbIJ ∂I bLK

bIJ + ∂I b
IJ − bIK (∂I bKL)b

LJ = = 
Pf(b̂) 2 2 

bKLbIJ ∂I (∂LaK − ∂K aL) − bIK bLJ ∂I (∂K aL − ∂LaK )= 
2 

= bKLbIJ ∂I ∂LaK + bIK bLJ ∂I ∂LaK = bKLbIJ ∂I ∂LaK + bLK bIJ ∂L∂I aK = 0 

− bIJ ∂I g∂J HWe recover the hydrodynamic equation ∂g = 0.∂t 
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Appendix: Adding dissipation difffusion in phase space 

The enviromental influence only change ξI slightly each time. 
Diffusion current 

J I = γIJ ∂g 
= −γIJ ∂J g . (Should γIJ be symmetric?)diff ∂ξJ 

New EOM (new continuity equation) 
∂g 1 � � 1 � � 
+ Pf(b̂) g ξ̇I − Pf(b̂)J I = 0∂I ∂I diff ∂t Pf(b̂) Pf(b̂)

∂g 1 � 
b)γIJ ∂J g 

� 
or + ξ̇I ∂I g = ∂I Pf(ˆ 

∂t Pf(b̂) 
- But the above difusion model does not satisfy detail balance. It assume 
the transition rates caused by environmntal influence between two 
states A, B to be the same in either direction: tA→B = tB→A. Such a 
transition rates give rise to equilibrium probability distribution that 
satisfies PA = PB regardless the energy difference EA − EB of the two 
states. This coresponds to T = ∞ case. Indeed the above diffusion 
model tends to make g to be uniform in phase space, which is the 
T = ∞ case. 
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Appendix: Adding dissipation difffusion in phase space 

How to find a difussion model that satisfy detail balance? 

How to find a difussion model that make g to evolve into the 
equilibrium distributions for a finite temperature T : 

g0(ξ
I ) = 

1 
, for fermions 

eβ[H(ξI )−µ] + 1 

g0(ξ
I ) = 

1 
, for bosons 

β[H(ξI )−µ] − 1e 
−β[H(ξI )−µ]g0(ξ

I ) = e , for classical particles 

Diffusion current 

= −γIJJ I g∂J (log g + βH), for classical particles diff 

J I = −γIJ g(1 − g)∂J [− log(g −1 − 1) + βH], for fermions diff 

= −γIJJ I g(1 + g)∂J [− log(g −1 + 1) + βH], for bosons diff 
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Appendix: Hydrodynamics in phase space with diffusion 

For classical particles (high temperature limit g � 1) 

∂g 1 � 
b)γIJ � 

+ ξ̇I ∂I g = ∂I Pf(ˆ g∂J (log g + βH)
∂t Pf(b̂) 

For fermions 

∂g 1 � 
b)γIJ g � 

+ ξ̇I ∂I g = ∂I Pf(ˆ g(1 − g)∂J (log + βH)
∂t Pf(b̂) 1 − g 

For bosons 

∂g 1 � 
b)γIJ g � 

+ ξ̇I ∂I g = ∂I Pf(ˆ g(1 + g)∂J (log + βH)
∂t Pf(b̂) 1 + g 

• The equilibrium distribution g0 satisfies the above EOM. 

• The above diffusion term only incorporates the particle number 
conservation, not energy conservation, since we consider an open 
system and assume T to be fixed. 
How to include energy conservation for a closed system? 
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