Highly entangled quantum many-body systems — Topological order

Xiao-Gang Wen

Our world is very rich with all kinds of materials

© Source unknown.

© Source unknown.

© mindat.org.

© mindat.org.

© mindat.org. © mindat.org.

© mindat.org.

All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

In middle school, we learned ...

there are four states of matter:

Solid
© Source unknown.

Gas © Adobe.

Liquid

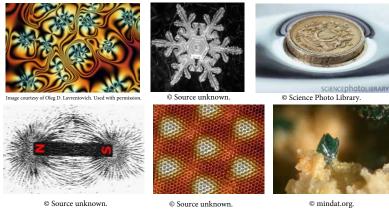
© Source unknown.

Plasma

© Source unknown.

All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

In university, we learned



All rights reserved. This content is excluded from our Creative Commons license. For more information, see $\frac{\text{https://ocw.mit.edu/help/faq-fair-use.}}{\text{https://ocw.mit.edu/help/faq-fair-use.}}$

- ullet Rich forms of matter \ullet rich types of **order**
- A deep insight from Landau: different orders come from different symmetry breaking.
- A corner stone of condensed matter physics

Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry breaking classify all phases of matter

• Symm. breaking phases are classified by a pair $G_{\Psi} \subset G_{H}$

 G_H = symmetry group of the Hamiltonian H.

 G_{Ψ} = symmetry group of the ground states Ψ .

• 230 crystals from group theory

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Can symmetry breaking describes all phases of matter?

A **spin-liquid theory** of high T_c superconductors:

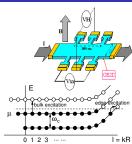
• It was proposed that a 2d spin liquid can have **spin-charge separation**: An electron can change into two topological quasi particles:

```
electron = holon \otimes spinon,
holon: charge-1 spin-0 boson,
spinon: charge-0 spin-1/2 fermion.
Holon condensation \rightarrow high T_c superconductivity.
```

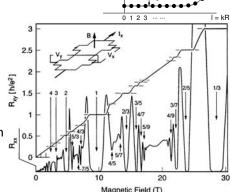
- Does such a strnge spin liquid exist? How to characterize it? A spin liquid was explicitly constructed Kalmeyer-Laughlin, PRL 59 2095 (87), and we found that it is a state that break time reversal and parity symmetry, but not spin rotation symmetry, with order parameter $S_1 \cdot (S_2 \times S_3) \neq 0 \rightarrow$ Chiral spin liquid Wen, Wilczek, Zee, PRB 39 11413 (89)
- However, we also discovered several different chiral spin states with identical symmetry breaking pattern.
 How distinguish those chiral spin states with the same symmetry

Topological orders in quantum Hall effect

• Quantum Hall (QH) states $R_{xy}=V_y/I_x=\frac{m}{n}\frac{2\pi\hbar}{e^2}$ vonKlitzing Dorda Pepper, PRL 45 494 (1980) Tsui Stormer Gossard, PRL 48 1559 (1982)



- Fractional quantum Hall (FQH) states have different phases even when the only U(1) symmetry is not broken for those states.
- Chiral spin and FQH liquids must contain a new kind of order, which was named as topological order
 Wen, PRB 40 7387 (89); IJMP 4 239 (90)



What is topological order?

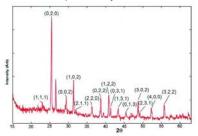
- Three kinds of quantum matter:
 - (1) no low energy excitations (Insulator) ightarrow trivial
 - (2) some low energy excitations (Superfluid) \rightarrow interesting
 - (3) a lot of low energy excitations (Metal) \rightarrow messy

Topological orders belong to the "trivial" class (*ie* have an energy gap and no low energy excitations)

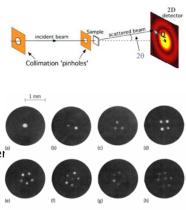
Topological orders are trivial state of matter?!

Every physical concept is defined by experiment

• The concept of crystal order is defined via X-ray scattering



 The concept of superfuild order no low energy excitations is defined via zer quantization of vorticity



What is topological order? How to characterize it?

How to extract universal information (topological invariants) from complicated many-body wave function Ψ(x₁, ··· , x_{10²⁰})
 Put the gapped system on space with various topologies, and measure the ground state degeneracy.

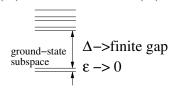
(The dynamics of a quantum many-body system is controlled by a hermitian operator, Hamiltonian H, acting on the many-body wave functions. The spectrum of the Hamiltonian has a gap)

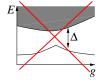
The name topological order was motivated by Witten's topological quantum field theory (field theories that do not depend on spacetime metrics), such as Chern-Simons theories which happen to be the low energy effective theories for both chiral spin states and QH states.

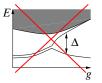
Witten CMP 121 351 (1989)

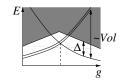
The ground state degeneracy is a topological invariant

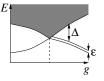
- At first, some people objected that the ground state degeneracies are finite-size effects or symmetry effect, not reflecting the intrinsic order of a phase of matter.
- The ground state degeneracies are robust against any local perturbations that can break any symmetries.
 - → **topological degeneracy** (another motivation for the name **topological**) Wen Int. J. Mod. Phys. B **04** 239 (90); Wen Niu PRB **41** 9377 (90)
- The ground state degeneracies can only vary by some large changes of Hamiltonian
 → gap-closing phase transition.





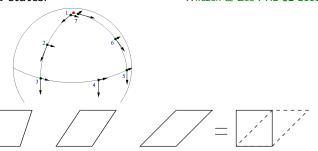






How to fully characterize topological order?

Deform the space and measure the **non-Abelian geometric phase** of the deg. ground states. Wilczek & Zee PRL **52** 2111 (84)



- For 2d torus $\Sigma_2 = S^1 \times S^1$:
 - Dehn twist: $|\Psi_i\rangle \rightarrow |\Psi_i'\rangle = T_{ij}|\Psi_j\rangle$ 90° rotation $|\Psi_i\rangle \rightarrow |\Psi_i'\rangle = S_{ij}|\Psi_j\rangle$
 - S, T generate a representation of modular group: $S^2 = (ST)^3 = C$, $C^2 = 1$

12 / 69

How to fully characterize topological order?

Conjecture: The non-Abelian geometric phases of the degenerate ground states for closed spaces with all kinds of topologies can fully characterize topological orders.

Wen, IJMPB 4 239 (1990);

KeskiVakkuri & Wen, IJMPB 7 4227 (1993)

 Non-Abelian geometric phases = Projective representations of the mapping class group of closed spaces with all kinds of topologies

An modern understanding of topological degeneracy

 In 2005, we discovered that topological order has topological entanglement entropy

Kitaev-Preskill hep-th/0510092

Levin-Wen cond-mat/0510613

and long range quantum entanglement

Chen-Gu-Wen arXiv:1004.3835

 For a long-range entangled many-body quantum system, knowing every overlapping local parts still cannot determine the whole.

- In other words, there are different "wholes".

WHOLE = \(\sum_{\text{parts}} + \(\sum_{\text{parts}} \)

that their every local parts are identical (Like fiber bundle in math).

- Local interactions/impurities can only see the local parts \rightarrow those different "wholes" (the whole quantum states) have the same energy.

Topological degeneracy comes from long range entanglement.

The pseudo-gauge transformations \rightarrow different "wholes" with identical local "parts". Long-range entanglement → Chern-Simons theory

Why knowing every part does not imply knowing whole?

• What is a "whole"?, what is "part"? whole = many-body wave function $|\Psi\rangle = \Psi(m_1, m_2, \cdots, m_N)$ where m_i label states on site-i part = local entanglement density matrix:

$$\begin{split} & \rho_{\mathsf{site-1,2,3}} = \mathrm{Tr}_{\mathsf{site-3,\cdots,N}} |\Psi\rangle\langle\Psi|, \\ & \rho_{m_1,m_2,m_3;m_1',m_2',m_3'} \\ & = \sum_{m_4,\cdots,m_N} \Psi^*(m_1,m_2,m_3,m_4,\cdots,m_N) \Psi(m_1',m_2',m_3',m_4,\cdots,m_N) \end{split}$$

• The energy only depends on the local parts $\rho_{\text{site-1,2,3}}$ due to the local interaction $H_{1,2,3}$

$$\langle H_{1,2,3} \rangle = \text{Tr}(H_{1,2,3}\rho_{\text{site-1,2,3}})$$

15 / 69

• $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)

- $|\uparrow\rangle \otimes |\downarrow\rangle =$ direct-product state \rightarrow unentangled (classical)
- $\bullet \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{entangled (quantum)}$

- $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)
- $\bullet \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{entangled (quantum)}$
- $\bullet \mid \uparrow \rangle \otimes \mid \uparrow \rangle + \mid \downarrow \rangle \otimes \mid \downarrow \rangle + \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{more entangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)
- $\bullet \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)
- $\bullet \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{entangled (quantum)}$
- $\begin{array}{l} \bullet \mid \uparrow \rangle \otimes \mid \uparrow \rangle + \mid \downarrow \rangle \otimes \mid \downarrow \rangle + \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \\ = \left(\mid \uparrow \rangle + \mid \downarrow \rangle \right) \otimes \left(\mid \uparrow \rangle + \mid \downarrow \rangle \right) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\bullet \ \, \stackrel{\downarrow}{\circ} \ \, \stackrel{\downarrow}{\circ} \ \, \stackrel{\downarrow}{\circ} \ \, \stackrel{\downarrow}{\circ} \ \, = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle ... \ \, \rightarrow \ \, \text{unentangled}$

- $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)
- $\bullet \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\bullet \ \, \uparrow \hspace{-0.5cm} \stackrel{\downarrow}{\hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0.5cm} \uparrow} = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle ... \to unentangled$

- $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)
- $\bullet \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\bullet \ \, \uparrow \hspace{-0.5cm} \stackrel{\downarrow}{\hspace{-0.5cm} } \hspace{-0.5cm} \uparrow \hspace{-0.5cm} \stackrel{\downarrow}{\hspace{-0.5cm} } \hspace{-0.5cm} = \hspace{-0.5cm} |\downarrow\rangle \otimes \hspace{-0.5cm} |\uparrow\rangle \otimes \hspace{-0.5cm} |\downarrow\rangle \otimes \hspace{-0.5cm} |\downarrow\rangle \ldots \rightarrow \text{unentangled}$
- Crystal order: $|\Phi_{\text{crystal}}\rangle = |0\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$
 - = direct-product state \rightarrow unentangled state (classical)

16 / 69

- $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)
- $\bullet \mid \uparrow \rangle \otimes \mid \downarrow \rangle + \mid \downarrow \rangle \otimes \mid \uparrow \rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\bullet \ \, \uparrow \hspace{-0.5cm} \stackrel{\downarrow}{\hspace{-0.5cm} } \hspace{-0.5cm} \uparrow \hspace{-0.5cm} \stackrel{\downarrow}{\hspace{-0.5cm} } \hspace{-0.5cm} = \hspace{-0.5cm} | \downarrow \rangle \otimes | \uparrow \rangle \otimes | \downarrow \rangle \otimes | \uparrow \rangle \otimes | \downarrow \rangle ... \to \text{unentangled}$
- $\textcircled{0-0-0-0-0-0} = (|\downarrow\uparrow\rangle |\uparrow\downarrow\rangle) \otimes (|\downarrow\uparrow\rangle |\uparrow\downarrow\rangle) \otimes ... \rightarrow \text{short-range entangled (SRE) entangled}$
- Crystal order: $|\Phi_{\text{crystal}}\rangle = |0\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$ = direct-product state \rightarrow unentangled state (classical)
- Particle condensation (superfluid)

16 / 69

- $|\uparrow\rangle \otimes |\downarrow\rangle$ = direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle \rightarrow \text{entangled (quantum)}$
- $|\uparrow\rangle \otimes |\uparrow\rangle + |\downarrow\rangle \otimes |\downarrow\rangle + |\uparrow\rangle \otimes |\downarrow\rangle + |\downarrow\rangle \otimes |\uparrow\rangle$ = $(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) = |x\rangle \otimes |x\rangle \rightarrow \text{unentangled}$
- $\bullet \ \, \uparrow \hspace{-0.5cm} \stackrel{\downarrow}{\hspace{-0.5cm} \hspace{-0.5cm} } \stackrel{\downarrow}{\hspace{-0.5cm} \hspace{-0.5cm} } \stackrel{\downarrow}{\hspace{-0.5cm} \hspace{-0.5cm} } = |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle ... \to \text{unentangled}$
- Crystal order: $|\Phi_{\text{crystal}}\rangle = |0\rangle_{x_1} \otimes |1\rangle_{x_2} \otimes |0\rangle_{x_3}...$
 - = direct-product state \rightarrow unentangled state (classical)
- Particle condensation (superfluid)

$$|\Phi_{\mathsf{SF}}\rangle = \sum_{\mathsf{all\ conf.}} \left| \bigotimes \right\rangle = (|0\rangle_{x_1} + |1\rangle_{x_1} + ..) \otimes (|0\rangle_{x_2} + |1\rangle_{x_2} + ..)...$$

= direct-product state \rightarrow unentangled state (classical)

What is long-range entanglement?

 The above example are all unentangled or short-range entangled.

17 / 69

What is long-range entanglement?

- The above example are all unentangled or short-range entangled.
- Define long range entanglement via local unitary (LU) transformations (ie local quantum circuit)

$$|LRE\rangle \neq |SRE\rangle$$

| Docal unitary transformation | LRE | SRE | State | product | State | State

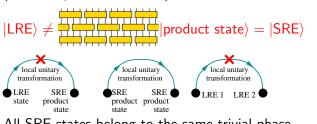
Chen-Gu-Wen arXiv:1004.3835

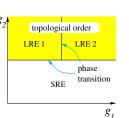
17 / 69

What is long-range entanglement?

- The above example are all unentangled or short-range entangled.
- Define long range entanglement via local unitary (LU) transformations (ie local quantum circuit)

Chen-Gu-Wen arXiv:1004.3835





- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases
 - = different patterns of long-range entanglements
 - = different topological orders Wen PRB 40 7387 (89)

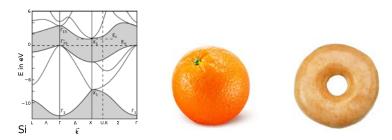
Macroscopic characterization \rightarrow microscopic origin

- From macroscopic characterization of topological order (1989) (topological ground state degeneracies, mapping class group representations)
 - \rightarrow microscopic origin (**long range entanglement** 2010) took 20+ years

Macroscopic characterization \rightarrow microscopic origin

- From macroscopic characterization of topological order (1989) (topological ground state degeneracies, mapping class group representations)
 - \rightarrow microscopic origin (long range entanglement 2010) took 20+ years
- From macroscopic characterization of **superconductivity** (1911) (zero-resistivity, quantized vorticity)
 - → microscopic origin (**BSC electron-pairing** 1957) took 46 years

This **topology** is not that *topology*



Topology in topological insulator/superconductor (2005) corresponds to the twist in the band structure of orbitals, which is similar to the topological structure that distinguishes a sphere from a torus. This kind of topology is *classical topology*.

Kane-Mele cond-mat/0506581

This **topology** is not that *topology*



Topology in topological order (1989) corresponds to pattern of many-body entanglement in many-body wave function $\Psi(m_1, m_2, \cdots, m_N)$, that is robust against any local perturbations that can break any symmetry. Such robustness is the meaning of **topological** in topological order. This kind of topology is **quantum topology**.

Wen PRB **40** 7387 (1989)

20 / 69

How to make long range entanglement? (Mechanism of topological order)

A mechanism of superconductivity: electron pairing

 $\rightarrow \ boson \ condensation \rightarrow superconductivity$

To make topological order, we need to sum over many different product states, but we should not sum over everything.

$$\sum_{\text{all spin config.}} |\uparrow\downarrow..\rangle = |\rightarrow\rightarrow..\rangle$$

How to make long range entanglement? (Mechanism of topological order)

A mechanism of superconductivity: electron pairing

ightarrow boson condensation ightarrow superconductivity

To make topological order, we need to sum over many different product states, but we should not sum over everything.

$$\sum_{\text{all spin config.}} |\uparrow\downarrow..\rangle = |\rightarrow\rightarrow..\rangle$$

A mechanism:

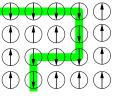
Sum over a subset of spin configurations:

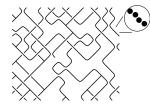
$$|\Phi_{loops}^{Z_2}
angle = \sum \left| \stackrel{\sim}{\circlearrowleft} \stackrel{\sim}{\circlearrowleft} \stackrel{\sim}{\circlearrowleft}
ight
angle$$

$$|\Phi_{\mathsf{loops}}^{DS}\rangle = \sum (-)^{\# \;\mathsf{of} \;\mathsf{loops}} \left| \stackrel{\sim}{\bigcirc} \stackrel{\sim}{\bigcirc} \stackrel{\sim}{\bigcirc} \right|$$

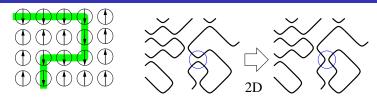
$$|\Phi^{\theta}_{\text{loops}}\rangle = \sum (e^{\hspace{1pt}\mathrm{i}\hspace{1pt} \theta})^{\#} \hspace{1pt} \text{of loops} \hspace{1pt} \left| \stackrel{\textstyle \swarrow \searrow}{\searrow} \right\rangle$$

 Can the above wavefunctions be the ground states of local Hamiltonians?





Local dance rule (Hamiltonian) \rightarrow global dance pattern



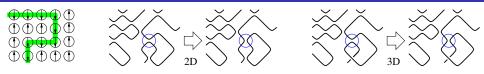
- Local rules of a string liquid (for ground state):
 - (1) Dance while holding hands (no open ends)

$$(2) \Phi_{\mathsf{str}} \left(\square \right) = \Phi_{\mathsf{str}} \left(\square \right), \ \Phi_{\mathsf{str}} \left(\square \right) = \Phi_{\mathsf{str}} \left(\square \right)$$

- \rightarrow Global wave function of loops $\Phi_{\mathsf{str}}\left(\overset{\sim}{\nwarrow} \overset{\sim}{\circlearrowleft} \right) = 1$
- There is a local Hamiltonian H:
 - (1) Open ends cost energy
 - (2) string can hop and reconnect freely. ie H contains terms causing
 - \rightarrow \rightarrow with negative coefficient.

The ground state of H gives rise to the above string lquiid wave function. (For the explicite H, see page 33).

Local dance rule \rightarrow global dance pattern

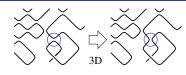


- Local rules of another string liquid (ground state):
 - (1) Dance while holding hands (no open ends)

$$(2) \Phi_{\mathsf{str}} \left(\square \right) = \Phi_{\mathsf{str}} \left(\square \right), \Phi_{\mathsf{str}} \left(\square \right) = -\Phi_{\mathsf{str}} \left(\square \right)$$

 \rightarrow Global wave function of loops $\Phi_{\sf str}\left({\stackrel{\sim}{\otimes}} \stackrel{\sim}{\otimes} \right) = (-)^{\# \ \sf of \ \sf loops}$

Local dance rule \rightarrow global dance pattern



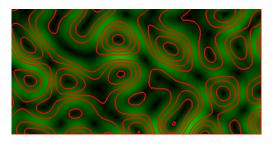
- Local rules of another string liquid (ground state):
 - (1) Dance while holding hands (no open ends)

$$(2) \Phi_{\mathsf{str}} \left(\square \right) = \Phi_{\mathsf{str}} \left(\square \right), \Phi_{\mathsf{str}} \left(\square \right) = -\Phi_{\mathsf{str}} \left(\square \square \right)$$

- \rightarrow Global wave function of loops $\Phi_{\sf str}\left({\stackrel{{}_{\sim}}{\nwarrow}} {\stackrel{{}_{\sim}}{\nwarrow}} \right) = (-)^{\# \ \sf of \ loops}$
- The second string liquid $\Phi_{\text{str}}\left(\bigotimes_{i}\right) = (-)^{\# \text{ of loops}}$ can exist only in 2-dimensions.
- The first string liquid $\Phi_{\text{str}}\left(\bigotimes\right) = 1$ can exist in both 2- and 3-dimensions.
- The thirsd string liquid $\Phi_{\sf str}\left(\bigotimes_{i}\right) = (e^{i\,\theta})^{\#}$ of loops can exist in neither 2- nor 3-dimensions.

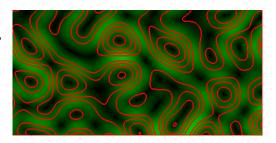
Knowing all the parts \neq knowing the whole

 Do those two string liquids really have topological order?
 Do they have topological ground state degenercy?

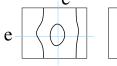


Knowing all the parts \neq knowing the whole

 Do those two string liquids really have topological order?
 Do they have topological ground state degenercy?

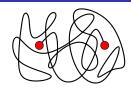


- 4 locally indistinguishable states on torus for both liquids → topological order
- Ground state degeneracy cannot distinguish them.



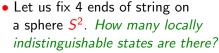
Topological excitations

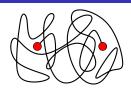
- Ends of strings behave like point objects.
- They cannot be created alone → topological
- Let us fix 4 ends of string on a sphere S^2 . How many locally indistinguishable states are there?
- There are 2 sectors \rightarrow 2 states.



Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone → topological



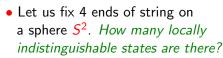


- There are 2 sectors > 2 states.
- In fact, there is only 1 sector \to 1 state, due to the string reconnection fluctuations $\Phi_{\text{str}}\left(\bigcirc \right) = \pm \Phi_{\text{str}}\left(\bigcirc \right)$.
- For our string liquids, in general, fixing 2N ends of string $\to 1$ state. Each end of string has no degeneracy \to no internal degrees of freedom.

25 / 69

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone → topological



- There are 2 sectors > 2 states.
- In fact, there is only 1 sector \to 1 state, due to the string reconnection fluctuations $\Phi_{\text{str}}\left(\bigcirc \right) = \pm \Phi_{\text{str}}\left(\bigcirc \right)$.
- For our string liquids, in general, fixing 2N ends of string $\to 1$ state. Each end of string has no degeneracy \to no internal degrees of freedom.
- Another type of topological excitation **vortex** at \times (by modifying the string wave function): $|m\rangle = \sum (-)^{\# \text{ of loops around } \times}$

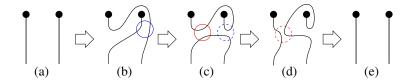
Emergence of fractional spin

- Ends of strings are point-like. Are they bosons or fermions? Two ends = a small string = a boson, but each end can still be a fermion. Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583
- $\Phi_{\mathsf{str}}\left(\bigotimes_{i}\right) = 1$ string liquid $\Phi_{\mathsf{str}}\left(\bigotimes_{i}\right) = \Phi_{\mathsf{str}}\left(\bigotimes_{i}\right)$
- The string near the end is totally fixed, since the end is determined by a trapping Hamiltonian δH which can be chosen to fix the string. The string alway from the end is not fixed, since they are determined by the bluk Hamiltonian H which gives rise to a string liquid.
- 360° rotation: $\uparrow \rightarrow \uparrow \uparrow$ and $\uparrow = \uparrow \uparrow$: $R_{360°} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- We find four types of topological exitations

$$(1) |e\rangle = +$$
 spin 0

(1)
$$|e\rangle = |+9\rangle \text{ spin 0.}$$
 (2) $|f\rangle = |-9\rangle \text{ spin } 1/2.$

Spin-statistics theorem: Emergence of Fermi statistics



- (a) \rightarrow (b) = exchange two string-ends.
- (d) \rightarrow (e) = 360° rotation of a string-end.
- Amplitude (a) = Amplitude (e)
- Exchange two string-ends plus a 360° rotation of one of the string-end generate no phase.

→ Spin-statistics theorem

27 / 69

Z_2 topological order and its physical properties

- $\Phi_{\text{str}}\left(\bigotimes \right) = 1$ string liquid has Z_2 -topological order.
- 4 **types** of topological excitations: (*f* is a fermion) (1) $|e\rangle = \uparrow + \stackrel{\bullet}{?}$ spin 0. (2) $|f = e \otimes m\rangle = \uparrow - \stackrel{\bullet}{?}$ spin 1/2.
 - (1) $|e\rangle = |+ \% \text{ spin } 0.$ (2) $|f = e \otimes m\rangle = |-\% \text{ spin } 1/2.$
- (3) $|m = e \otimes f\rangle = \times \otimes \text{ spin } 0.$ (4) $|1\rangle = \times + \otimes \text{ spin } 0.$
- The type-1 excitation is the tirivial excitation, that can be created by local operators.
 - The type-e, type-m, and type-f excitations are non-tirivial excitation, that cannot be created by local operators.
- 1, e, m are bosons and f is a fermion. e,m, and f have π mutual statistics between them.
- Fusion rule:
 - $e \otimes e = 1$; $f \otimes f = 1$; $m \otimes m = 1$;
 - $e \otimes m = f$; $f \otimes e = m$; $m \otimes f = e$;
 - $1 \otimes e = e$; $1 \otimes m = m$; $1 \otimes f = f$:

Z_2 topological order is described by Z_2 gauge theory

Physical properties of Z_2 gauge theory

- = Physical properties of \mathbb{Z}_2 topological order
- Z_2 -charge (a representation of Z_2) and Z_2 -vortex (π -flux) as two bosonic point-like excitations.
- Z_2 -charge and Z_2 -vortex bound state \to a fermion (f), since Z_2 -charge and Z_2 -vortex has a π mutual statistics between them (charge-1 around flux- π).
- Z_2 -charge, Z_2 -vortex, and their bound state has a π mutual statistics between them.
- Z_2 -charge $\rightarrow e$, Z_2 -vortex $\rightarrow m$, bound state $\rightarrow f$.
- Z_2 gauge theory on torus also has 4 degenerate ground states

29 / 69

Emergence of fractional spin and semion statistics

Consider another string wave function:

$$\Phi_{str}\left(\overset{\sim}{\nwarrow} \overset{\sim}{\searrow} \right) = (-)^{\# \text{ of loops}} \text{ string liquid. } \Phi_{str}\left(\overset{\frown}{\square} \overset{\frown}{\square} \right) = -\Phi_{str}\left(\overset{\frown}{\square} \overset{\frown}{\square} \right)$$

- Types of topological excitations:

Types of topological excitations:
$$(s_{\pm} \text{ are semions})$$

(1) $|s_{+}\rangle = |+i|$ spin $\frac{1}{4}$. (2) $|s_{-}\rangle = |-i|$ spin $-\frac{1}{4}$

- (3) $|m = s_- \otimes s_+\rangle = \times \otimes \text{spin } 0.$ (4) $|1\rangle = \times + \otimes \text{spin } 0.$
- double-semion topological order = $U^2(1)$ Chern-Simon gauge theory $L(a_{\mu}) = \frac{2}{4\pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu\nu\lambda} - \frac{2}{4\pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu\nu\lambda}$

Emergence of fractional spin and semion statistics

Consider another string wave function:

$$\Phi_{\text{str}}\left(\overset{\sim}{\circ}\overset{\sim}{\circ}\right) = (-)^{\# \text{ of loops}} \text{ string liquid. } \Phi_{\text{str}}\left(\overset{\sim}{\triangleright}\overset{\sim}{\circ}\right) = -\Phi_{\text{str}}\left(\overset{\sim}{\triangleright}\right)$$

- Types of topological excitations:

Types of topological excitations:
$$(s_{\pm} \text{ are semions})$$

(1) $|s_{+}\rangle = |+i|$ spin $\frac{1}{4}$. (2) $|s_{-}\rangle = |-i|$ spin $-\frac{1}{4}$

- (3) $|m = s_- \otimes s_+\rangle = \times \otimes \text{spin } 0.$ (4) $|1\rangle = \times + \otimes \text{spin } 0.$
- double-semion topological order = $U^2(1)$ Chern-Simon gauge theory $L(a_{\mu}) = \frac{2}{4\pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu\nu\lambda} - \frac{2}{4\pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu\nu\lambda}$
- Two string Iquids → Two topological orders:

Z₂ topological order Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91),

Moessner-Sondhi PRL 86 1881 (01) and double-semion topo. order Freedman etal cond-mat/0307511, Levin-Wen cond-mat/0404617

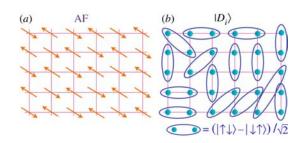
Lattice Hamiltonians to realize Z_2 topological order

Frustrated spin-1/2 model on square lattice (slave-particle meanfield theory)
 Read Sachdev, PRL 66 1773 (91); Wen, PRB 44 2664 (91).

$$H = J \sum_{nn} \sigma_i \cdot \sigma_j + J' \sum_{nnn} \sigma_i \cdot \sigma_j$$

Dimer model on triangular lattice (Mont Carlo numerics)

Moessner Sondhi, PRL 86 1881 (01)

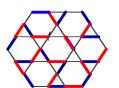


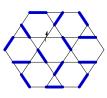
Why dimmer liquid has topological order

- Dimmer liquid ∼ string liquid:
- Non-bipartite lattice: unoritaded string $\to Z_2$ topological order $=\!\!Z_2$ gauge theory
- Bipartite lattice: oriented string o U(1) gauge theory
- Which local Hamiltonians can realize the following string wavefunctions:

$$|\Phi^{Z_2}_{\mathsf{loops}}
angle = \sum \left| \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \right
angle$$

$$|\Phi_{\mathsf{loops}}^{\mathit{DS}}
angle = \sum (-)^{\# \ \mathsf{of} \ \mathsf{loops}} \left| \stackrel{\sim}{ \nwarrow} \stackrel{\sim}{ \nwarrow} \right\rangle$$



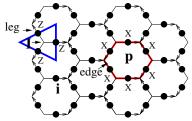


Toric-code model: Z_2 topological order, Z_2 gauge theory

Local Hamiltonian enforces local rules on any lattice:
$$\hat{P}\Phi_{str}=0$$
 $\Phi_{str}\left(\square\right)-\Phi_{str}\left(\square\right)=\Phi_{str}\left(\square\right)-\Phi_{str}\left(\square\right)=0$

The Hamiltonian to enforce the local rules:

Kitaev quant-ph/9707021



$$H = -U \sum_{\boldsymbol{l}} \hat{Q}_{\boldsymbol{l}} - g \sum_{\boldsymbol{p}} \hat{F}_{\boldsymbol{p}}, \quad \hat{Q}_{\boldsymbol{l}} = \prod_{\text{legs of } \boldsymbol{l}} \sigma_{\boldsymbol{i}}^{z}, \quad \hat{F}_{\boldsymbol{p}} = \prod_{\text{edges of } \boldsymbol{p}} \sigma_{\boldsymbol{i}}^{x}$$

- The Hamiltonian is a sum of commuting operators $[\hat{F}_{\pmb{p}},\hat{F}_{\pmb{p}'}]=0,\ [\hat{Q}_{\pmb{l}},\hat{Q}_{\pmb{l}'}]=0,\ [\hat{F}_{\pmb{p}},\hat{Q}_{\pmb{l}}]=0.\ \hat{F}_{\pmb{p}}^2=\hat{Q}_{\pmb{l}}^2=1$
- Ground state $|\Psi_{\text{grnd}}\rangle$: $\hat{F}_{\boldsymbol{p}}|\Psi_{\text{grnd}}\rangle = \hat{Q}_{\boldsymbol{l}}|\Psi_{\text{grnd}}\rangle = |\Psi_{\text{grnd}}\rangle$ $\rightarrow (1 - \hat{Q}_{\boldsymbol{l}})\Phi_{\text{grnd}} = (1 - \hat{F}_{\boldsymbol{p}})\Phi_{\text{grnd}} = 0$.

Physical properties of exactly soluble model

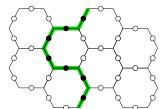
A string picture

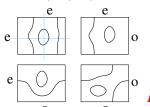
- The $-U\sum_{l}\hat{Q}_{l}$ term enforces closed-string ground state.
- \hat{F}_{p} adds a small loop and deform the strings ightarrow

permutes among the loop states $\left| \stackrel{\textstyle <}{ \bigcirc} \stackrel{\textstyle <}{ \bigcirc} \right> \rightarrow$ Ground states

$$|\Psi_{\sf grnd}
angle = \sum_{\sf loops} \left|\widetilde{\diamondsuit}\right> \rightarrow {\sf highly\ entangled}$$

• There are four degenerate ground states $\alpha = ee, eo, oe, oo$



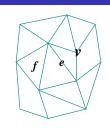


• On genus g surface, ground state degeneracy $D_g = 4^g$

Exactly soluble model on any graph

On every link i, we degrees of freedom ↑,↓.

$$\begin{split} H &= -U \sum_{\mathbf{v}} \hat{Q}_{\mathbf{v}} - g \sum_{\mathbf{f}} \hat{F}_{\mathbf{f}}, \\ \hat{Q}_{\mathbf{v}} &= \prod_{\text{legs of } \mathbf{v}} \sigma_{\mathbf{e}}^{z}, \quad \hat{F}_{\mathbf{f}} = \prod_{\text{edges of } \mathbf{f}} \sigma_{\mathbf{e}}^{x} \end{split}$$



The Hamiltonian is a sum of commuting operators

$$[\hat{F}_{\mathbf{f}}, \hat{F}_{\mathbf{p}'}] = 0, \ [\hat{Q}_{\mathbf{v}}, \hat{Q}_{\mathbf{v}'}] = 0, \ [\hat{F}_{\mathbf{f}}, \hat{Q}_{\mathbf{v}}] = 0. \ \hat{F}_{\mathbf{f}}^2 = \hat{Q}_{\mathbf{v}}^2 = 1$$

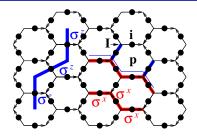
- Identities $\otimes_{\mathbf{v}} \hat{Q}_{\mathbf{v}} = 1$, $\otimes_{\mathbf{f}} \hat{F}_{\mathbf{f}} = 1$.
- Ground state degeneracy (GSD) Number of degrees of freedom = E. Number of constraints = V + F - 2.

 $GSD = 2^{E}/2^{V+F-2} = 2^{2-\chi}$, $\chi = V - E + F$ – Euler characteristic.

• GSD on genus g Riemann surface Σ_g : from $\chi(\Sigma_g) = 2 - 2g$ we obtain $GSD = 2^{2g}$. In fact, the degeneracy of any eigenstates is 2^g .

The string operators and topological excitations

- Topological excitations:
 - e-type: $\hat{Q}_{\pmb{l}}=1
 ightarrow \hat{Q}_{\pmb{l}}=-1$ m-type: $\hat{F}_{\pmb{p}}=1
 ightarrow \hat{F}_{\pmb{p}}=-1$
- e-type and m-type excitations cannot be created alone due to identiy: $\prod_{l} \hat{Q}_{l} = \prod_{p} \hat{F}_{p} = 1$



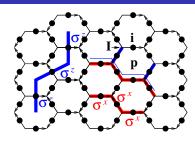
The string operators and topological excitations

Topological excitations:

e-type:
$$\hat{Q}_{\pmb{l}}=1 \rightarrow \hat{Q}_{\pmb{l}}=-1$$

m-type: $\hat{F}_{\pmb{p}}=1 \rightarrow \hat{F}_{\pmb{p}}=-1$

• e-type and m-type excitations cannot be created alone due to identiy: $\prod_{l} \hat{Q}_{l} = \prod_{p} \hat{F}_{p} = 1$

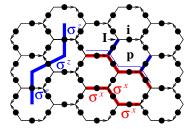


- Type-e string operator: $W_e = \prod_{\text{string}} \sigma_i^{x}$
- Type-m string operator: $W_m = \prod_{\text{string}^*} \sigma_i^z$
- Type-f string operator: $W_f = \prod_{\text{string}} \sigma_i^{x} \prod_{\text{legs}} \sigma_i^{z}$
- $[H, W_e^{\text{close}}] = [H, W_m^{\text{close}}] = [H, W_f^{\text{closed}}] = 0.$ \rightarrow Closed strings cost no energy (\rightarrow higher symmetry)
- $[\hat{Q}_{\pmb{l}}, W_e^{\text{open}}] \neq 0 \rightarrow W_e^{\text{open}}$ flip $\hat{Q}_{\pmb{l}} \rightarrow -\hat{Q}_{\pmb{l}}$, $[\hat{F}_{\pmb{p}}, W_m^{\text{open}}] \neq 0 \rightarrow W_m^{\text{open}}$ flip $\hat{F}_{\pmb{p}} \rightarrow -\hat{F}_{\pmb{p}}$ An open-string creates a pair of topo. excitations at its ends

Three types of topological excitations and their fusion

- Type-e string operator $W_e = \prod_{\text{string}} \sigma_i^x$
- Type-m string operator $W_m = \prod_{\text{string}^*} \sigma_i^z$
- Type-f string operator $W_f = \prod_{\text{string}} \bar{\sigma}_i^x \prod_{\text{legs}} \sigma_i^z$
- Fusion algebra of string operators $W_e^2 = W_m^2 = W_\epsilon^2 = W_e W_m W_\epsilon = 1$ when strings are parallel
- Fusion of topo. excitations: e-type. $e \times e = 1$ m-type. $m \times m = 1$
- 4 types of excitations: 1, e, m, f

f-type = $e \times m$



37 / 69

What are bosons? What are fermions?

Statistical distribution

Boson: $n_b = \frac{1}{e^{\epsilon/k_BT}-1}$ Fermion: $n_f = \frac{1}{e^{\epsilon/k_BT}+1}$ They are just properties of non-interacting bosons or fermions

• Pauli exclusion principle

Only works for non-interacting bosons or fermions

• Symmtric/anti-symmetric wave function.

For identical particles $|x,y\rangle$ and $|y,x\rangle$ are just differnt names of same state. A generic state $\sum_{x,y} \psi(x,y)|x,y\rangle$ is always described symmetric wave function $\psi(x,y)=\psi(y,x)$ regardless the statistics of the identical particles.

• Commuting/anti-commuting operators

Boson: $[a_x, a_y] = 0$ Fermiion: $\{c_x, c_y\} = 0$

• C-number-field/Grassmann-field

Boson: $\phi(x)$ Fermion: $\psi(x)$

"Exchange" statistics and Braid group

Quantum statistics is defined via phases induced by exchanging

identical particles.

 Quantum statistics is not defined via exchange, but via braiding.

Yong-Shi Wu, PRL **52** 2103 (84)

- Braid group:
- Representations of braid group (not permutation group) define quantum statistics:
- Trivial representation of braid group → Bose statistics.
- 1-dimensional representation of braid group → Fermi/fractional statistics → anyon.
- higher dimensional representation of braid group → non-Abelian statistics → non-Abelian anyon.

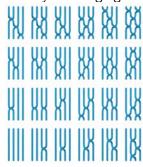


Image courtesy of Claudio Rocchini on Wikimedia. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

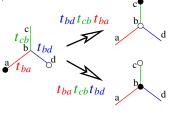
Leinaas-Myrheim 77; Wilczek 82

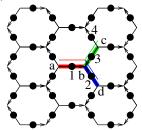
Wen 91; More-Read 91

Statistics of ends of strings

The statistics is determined by particle hopping operators

Levin-Wen cond-mat/0302460:





- An open string operator is a hopping operator of the 'ends'.
 The algebra of the open string op. determines the statistics.
- For type-e string: $t_{ba} = \sigma_1^{\mathsf{x}}$, $t_{cb} = \sigma_3^{\mathsf{x}}$, $t_{bd} = \sigma_2^{\mathsf{x}}$ We find $t_{bd}t_{cb}t_{ba} = t_{ba}t_{cb}t_{bd}$

The ends of type-e string are bosons

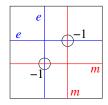
• For type-f strings: $t_{ba} = \sigma_1^{\mathsf{X}}$, $t_{cb} = \underline{\sigma_3^{\mathsf{X}}} \sigma_4^{\mathsf{Z}}$, $t_{bd} = \sigma_2^{\mathsf{X}} \underline{\sigma_3^{\mathsf{Z}}}$ We find $t_{bd}t_{cb}t_{ba} = -t_{ba}t_{cb}t_{bd}$

The ends of type-f strings are fermions

Topological ground state degeneracy and code distance

- When strings cross, $W_e W_m = (-)^{\# \text{ of cross}} W_m W_e$
 - \rightarrow 4^g degeneracy on genus g surface
 - → Topological degneracy

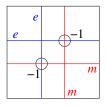
Degeneracy remain exact for any perturbations localized in a finite region.



Topological ground state degeneracy and code distance

- When strings cross, $W_e W_m = (-)^{\# \text{ of cross }} W_m W_e$
 - \rightarrow 4^g degeneracy on genus g surface
 - \rightarrow Topological degneracy

Degeneracy remain exact for any perturbations localized in a finite region.



- The above degenerate ground states form a "code", which has a large code distance of order L (the size of the system).
- Two states $|\psi\rangle$ and $|\psi'\rangle$ that can be connected by first-order local perturbation δH : $\langle \psi' | \delta H | \psi \rangle > O(|\delta H|), \quad L \to \infty$ \to code distance = 1.

Two states $|\psi\rangle$ and $|\psi'\rangle$ that can be connected by n^{th} -order local perturbation \rightarrow code distance = n.

• Symmetry breaking ground states in d-dim have code distance $\sim L^d$ respected to symmetry preserving perturbation. code distance ~ 1 respected to symmetry breaking perturbation.

Higher symmetry

• The toric code model has higher symmetry (1-symmetry), whose symmetry transformation is generated the loop operators W_e^{loop} and W_m^{loop} :

$$HW_e(S^1) = W_e(S^1)H, \qquad HW_m(S^1) = W_m(S^1)H.$$

for any loops S^1 . If the transformation is n-dimensional, the symmetry is (d-n)-symmetry, in d-dimensional space. The transformation is d-dimensional for the usual global symmetry, which is a 0-symmetry.

• Charged operator (for Abelian symmetry):

$$WO_{\mathsf{charged}} = \mathrm{e}^{\mathrm{i}\, \varphi} O_{\mathsf{charged}} W$$

For U(1) symmetry, $\varphi = q\theta$ if W generate θ -rotation. For Z_2 symmetry, $\varphi = \pi$ if W is the generator.

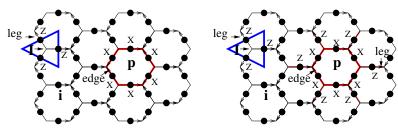
- W_m (open-string) is the charged operators for the $W_e(S^1)$ 1-symmetry:

$$W_e(S^1)W_m$$
(open-string) = $\pm W_m$ (open-string) $W_e(S^1)$.

Spontaneous breaking of higher symmetry

- Defintion: A (higher) symmetry is spontaneously **broken** if the symmetry transformations have Δ ->finite gap non-trivial actions on the ground states, ie is subspace €-3 ≛ not proportional to an identity operator $W \neq e^{i\varphi} id$ in the ground state subspace, for any closed space.
- The toric code model has a W_e 1-symmetry (Z_2^e 1-symmetry). Its ground states spontaneously breaks the Z_2^e 1-symmetry.
- The toric code model has a W_m 1-symmetry (Z_2^m 1-symmetry). Its ground states spontaneously breaks the \mathbb{Z}_2^m 1-symmetry.
- Spondtaneous breaking of higher symmetry \rightarrow topological order But, topological order \neq Spondtaneous breaking of higher symmetry
- The toric code model has a $Z_2^e \vee Z_2^m$ 1-symmetry. Its ground states must spontaneously break the $Z_2^e \vee Z_2^m$ 1-symmetry → Enforaced spontaneous symmetry breaking when ends of the symmetry transformation operators (ie the strings W_e , W_m) have non-trivial (mutual) statistics.

Toric-code model in terms of closed string operators



Toric-code Hmailtonian

$$H = -U \sum_{l} W_{m}^{\text{closed}} - g \sum_{p} W_{e}^{\text{closed}}$$

A new Hamitonian

$$H = -U \sum_{I} W_{m}^{\text{closed}} - g \sum_{P} W_{f}^{\text{closed}}$$

which realizes the same Z_2 topological order.

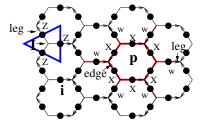
Double-semion model: taking square root of fermion string

Local rules:

Levin-Wen cond-mat/0404617

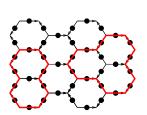
$$\Phi_{str}\left(\square\right) = \Phi_{str}\left(\square\right), \ \Phi_{str}\left(\square\right) < \square\right) = -\Phi_{str}\left(\square\right)$$

• The Hamiltonian to enforce the local rules:



$$H = -U \sum_{I} \hat{Q}_{I} - \frac{g}{2} \sum_{p} (\hat{F}_{p} + h.c.),$$

$$\hat{Q}_{l} = \prod_{\text{legs of } l} \sigma_{l}^{z}, \quad \hat{F}_{p} = (\prod_{\text{edges of } p} \sigma_{j}^{x})(-\prod_{\text{legs of } p} i^{\frac{1-\sigma_{l}^{z}}{2}})$$



$$\mathrm{i}^{\frac{1-\sigma_i^z}{2}} = \begin{pmatrix} 1 & 0 \\ 0 & \mathrm{i} \end{pmatrix} = w_i \sim \sqrt{\sigma_i^z}$$

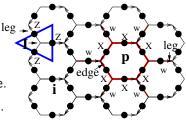
Double-semion model

- The action of operator $\hat{F}_{p} = (\prod_{\text{edges of } p} \sigma_{j}^{x})(-\prod_{\text{legs of } p} i^{\frac{1-\sigma_{j}^{z}}{2}})$:
 - (1) flip string around the loop;
 - (2) add a phase $-(i^{\# \text{ of strings attatched to the loop})}$, which is ± 1 in the closed-string subspace.

Combine the above two in the closed-string subspace: \hat{F}_{p} adds a loop and a sign $(-)^{\text{change in } \# \text{ of loops}}$

This allows us to conclude:

- \hat{F}_p is hermitian in the closed-string subspace.
- $\hat{F}_{p}\hat{F}_{p'} = \hat{F}_{p'}\hat{F}_{p}$ in the closed-string subspace.
- Ground state wave function $\Phi(X) = (-)^{\# \text{ of loops}}$.



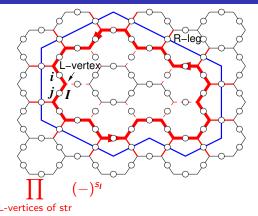
Dressed string operators and topological excitations

- To create a pair of topological excitations, we need find closed string operators that commute with \hat{Q}_{l} and \hat{F}_{p} terms in the Hamiltonian.
- We find 4 types of string operators

operators
$$W_1 = \operatorname{id},$$
 $W_{s_1} = \prod_{i \in \operatorname{str}} \sigma_i^{\mathsf{x}} \prod_{\mathsf{R-legs} \text{ of str}} \operatorname{id}^{\frac{1-\sigma_i^{\mathsf{z}}}{2}} \prod_{\mathsf{L-vertices} \text{ of str}} \operatorname{Id}^{\frac{1-\sigma_i^{\mathsf{z}}}{2}}$

$$W_{s_2} = \prod_{i \in \text{str}} \sigma_i^{\mathsf{X}} \prod_{\mathsf{R}\text{-legs of str}} (-\mathrm{i})^{\frac{1-\sigma_j^{\mathsf{Z}}}{2}} \prod_{\mathsf{L}\text{-vertices of str}} (-)^{s_l} = W_{s_1} W_b$$

$$W_b = \prod_{ ext{R-legs of str}} \sigma^z_{m j} = W_m,$$



$$\prod_{i=1}^{\frac{\sigma_{i}^{2}}{2}} \qquad \prod_{j=1}^{\infty} (-)^{s_{j}} = W_{s_{1}}W_{b}$$

$$W_b = \prod_{\text{R-legs of str}} \sigma_j^z = W_m,$$
 where $s_l = \frac{1}{4}(1 - \sigma_{l-}^z)(1 + \sigma_{l+}^z)$

Levin-Wen cond-mat/0404617

Commutators of dressed string operators W_{s_1}

Overlapped strings are in the same direction: $\left[\sigma_1^{\mathsf{X}}\sigma_2^{\mathsf{X}} \mathrm{i}^{\frac{1-\sigma_3^{\mathsf{Z}}}{2}}\right] \left[\sigma_1^{\mathsf{X}}\sigma_3^{\mathsf{X}}(-)^{\frac{(1-\sigma_1^{\mathsf{Z}})(1+\sigma_3^{\mathsf{Z}})}{4}}\right]$ $= \left[\sigma_1^{\mathsf{x}} \sigma_2^{\mathsf{x}} \, \mathrm{i}^{\frac{1+\sigma_3^{\mathsf{x}}}{2}} \, \mathrm{i}^{-\sigma_3^{\mathsf{x}}} \right] \left[\sigma_1^{\mathsf{x}} \sigma_3^{\mathsf{x}} (-)^{\frac{(1+\sigma_1^{\mathsf{x}})(1+\sigma_3^{\mathsf{x}})}{4}} (-)^{-\frac{\sigma_1^{\mathsf{x}} (1+\sigma_3^{\mathsf{x}})}{2}} \right]$ $= \left[\sigma_1^{\mathsf{X}} \sigma_3^{\mathsf{X}} (-)^{\frac{(1-\sigma_1^{\mathsf{X}})(1+\sigma_3^{\mathsf{X}})}{4}}\right] \left[\sigma_1^{\mathsf{X}} \sigma_2^{\mathsf{X}} \mathrm{i}^{\frac{1-\sigma_3^{\mathsf{X}}}{2}}\right] \, \mathrm{i}^{\sigma_3^{\mathsf{X}}} (-)^{-\frac{(1+\sigma_3^{\mathsf{X}})}{2}}$ $= \left[\sigma_1^{\mathsf{x}} \sigma_3^{\mathsf{x}} \left(-\right)^{\frac{\left(1 - \sigma_1^{\mathsf{x}}\right)\left(1 + \sigma_3^{\mathsf{x}}\right)}{4}}\right] \left[\sigma_1^{\mathsf{x}} \sigma_2^{\mathsf{x}} \, \mathrm{i}^{\frac{1 - \sigma_3^{\mathsf{x}}}{2}}\right] \, \mathrm{i}$ $\left[\sigma_2^{\mathsf{x}}\sigma_1^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{z}})(1+\sigma_1^{\mathsf{z}})}{4}}\right]\left[\sigma_3^{\mathsf{x}}\sigma_1^{\mathsf{x}}\mathrm{i}^{\frac{1-\sigma_2^{\mathsf{z}}}{2}}\right] \qquad \qquad \underbrace{\sigma_2^{\mathsf{x}}\sigma_1^{\mathsf{x}}}_{\mathsf{L-vertex}} \overset{\mathsf{2}}{\underset{\mathsf{10}}{\mathsf{N}}}$ $= \left\lceil \sigma_2^x \sigma_1^x (-)^{\frac{(1-\sigma_2^z)(1-\sigma_1^z)}{4}} (-)^{\frac{\sigma_1^z(1-\sigma_2^z)}{2}} \right\rceil \left\lceil \sigma_3^x \sigma_1^x \, \mathrm{i}^{\frac{1+\sigma_2^z}{2}} \, \mathrm{i}^{-\sigma_2^z} \right\rceil$ $= \left\lceil \sigma_3^x \sigma_1^x \mathrm{i}^{\frac{1-\sigma_2^z}{2}} \right\rceil \left\lceil \sigma_2^x \sigma_1^x (-)^{\frac{(1-\sigma_2^z)(1+\sigma_1^z)}{4}} \right\rceil \ (-)^{-\frac{\sigma_1^z(1-\sigma_2^z)}{2}} \mathrm{i}^{\,-\sigma_2^z}$

 $= \left[\sigma_3^{\mathsf{x}} \sigma_1^{\mathsf{x}} \mathrm{i}^{\frac{1 - \sigma_2^{\mathsf{z}}}{2}} \right] \left[\sigma_2^{\mathsf{x}} \sigma_1^{\mathsf{x}} (-)^{\frac{(1 - \sigma_2^{\mathsf{z}})(1 + \sigma_1^{\mathsf{z}})}{4}} \right] (-\mathrm{i})$

Commutators of dressed string operators W_{s_1}

Overlapped strings are in opposite direction:

is all in opposite direction.
$$\begin{bmatrix} \sigma_1^x \sigma_2^x i^{\frac{1-\sigma_3^z}{2}} \end{bmatrix} \begin{bmatrix} \sigma_1^x \sigma_3^x i^{\frac{1-\sigma_2^z}{2}} \end{bmatrix} \qquad \text{In } \qquad \text{R-leg} \qquad \text{R-leg}$$

$$\begin{bmatrix} \sigma_2^{\mathsf{x}} \sigma_1^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{x}})(1+\sigma_1^{\mathsf{x}})}{4}} \end{bmatrix} \begin{bmatrix} \sigma_1^{\mathsf{x}} \sigma_3^{\mathsf{x}}(-)^{\frac{(1-\sigma_1^{\mathsf{x}})(1+\sigma_3^{\mathsf{x}})}{4}} \end{bmatrix} \xrightarrow{\mathbf{L}-\text{vertex } \mathbf{L}-\text{vertex } \mathbf{L}} \\ = \begin{bmatrix} \sigma_2^{\mathsf{x}} \sigma_1^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{x}})(1-\sigma_1^{\mathsf{x}})}{4}} (-)^{\frac{\sigma_1^{\mathsf{x}}(1-\sigma_2^{\mathsf{x}})}{2}} \end{bmatrix} \begin{bmatrix} \sigma_1^{\mathsf{x}} \sigma_3^{\mathsf{x}}(-)^{\frac{(1+\sigma_1^{\mathsf{x}})(1+\sigma_3^{\mathsf{x}})}{4}} (-)^{-\frac{\sigma_1^{\mathsf{x}}(1+\sigma_3^{\mathsf{x}})}{2}} \end{bmatrix} \\ = \begin{bmatrix} \sigma_1^{\mathsf{x}} \sigma_3^{\mathsf{x}}(-)^{\frac{(1-\sigma_1^{\mathsf{x}})(1+\sigma_3^{\mathsf{x}})}{4}} \end{bmatrix} \begin{bmatrix} \sigma_2^{\mathsf{x}} \sigma_1^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{x}})(1+\sigma_1^{\mathsf{x}})}{4}} \end{bmatrix} (-)^{-\frac{\sigma_1^{\mathsf{x}}(1-\sigma_2^{\mathsf{x}})}{2}} (-)^{-\frac{\sigma_1^{\mathsf{x}}(1+\sigma_3^{\mathsf{x}})}{2}} \\ = \begin{bmatrix} \sigma_1^{\mathsf{x}} \sigma_3^{\mathsf{x}}(-)^{\frac{(1-\sigma_1^{\mathsf{x}})(1+\sigma_3^{\mathsf{x}})}{4}} \end{bmatrix} \begin{bmatrix} \sigma_2^{\mathsf{x}} \sigma_1^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{x}})(1+\sigma_1^{\mathsf{x}})}{4}} \end{bmatrix} \sigma_2^{\mathsf{x}} \sigma_3^{\mathsf{x}} \end{aligned}$$

Commutators of dressed string operators W_{s_1}

$$\begin{split} & \left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{2}^{x}\sigma_{1}^{x}(-)^{\frac{(1-\sigma_{2}^{z})(1+\sigma_{1}^{z})}{4}}\right] \\ & = \left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right]\left[\sigma_{2}^{x}\sigma_{1}^{x}(-)^{\frac{(1+\sigma_{2}^{z})(1-\sigma_{1}^{z})}{4}}(-)^{\frac{\sigma_{1}^{z}-\sigma_{2}^{z}}{2}}\right] \\ & = \left[\sigma_{2}^{x}\sigma_{1}^{x}(-)^{\frac{(1-\sigma_{2}^{z})(1+\sigma_{1}^{z})}{4}}\right]\left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right](-)^{\frac{\sigma_{1}^{z}-\sigma_{2}^{z}}{2}} \\ & = \left[\sigma_{1}^{x}\sigma_{3}^{x}(-)^{\frac{(1-\sigma_{1}^{z})(1+\sigma_{3}^{z})}{4}}\right]\left[\sigma_{1}^{x}\sigma_{2}^{x}i^{\frac{1-\sigma_{3}^{z}}{2}}\right]\sigma_{1}^{z}\sigma_{2}^{z} \end{split}$$

Overlapped strings are in opposite direction

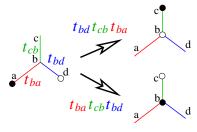
- Different loops of W_{s_1} -string operators commute in the closed string subspace, shown by collecting the "phase factors" $\sigma_i^z = Z_i$.
- Loops of W_{s_1} -string operators commute with \hat{Q}_I .

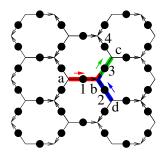
We can use \hat{Q}_l and loops of W_{s_1} -string operators to construct a soluble Hamiltonian, and which is what we have before.

Statistics of ends of dressed strings

The statistics is determined by particle hopping operators

Levin-Wen cond-mat/0302460:





• For dressed strings: $t_{ba}=\sigma_1^{\rm X}{\rm i}^{\frac{1-\sigma_2^{\rm Z}}{2}},\ t_{cb}=\sigma_3^{\rm X},\ t_{bd}=\sigma_2^{\rm X}(-)^{\frac{(1-\sigma_2^{\rm Z})(1+\sigma_3^{\rm Z})}{4}}$ We find $t_{bd}t_{cb}t_{ba}=-{\rm i}\,t_{ba}t_{cb}t_{bd}$ via

$$[\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{z}})(1+\sigma_3^{\mathsf{z}})}{4}}][\sigma_3^{\mathsf{x}}][\sigma_1^{\mathsf{x}}\mathrm{i}^{\frac{1-\sigma_2^{\mathsf{z}}}{2}}] = [\sigma_1^{\mathsf{x}}\mathrm{i}^{\frac{1-\sigma_2^{\mathsf{z}}}{2}}][\sigma_3^{\mathsf{x}}][\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{z}})(1+\sigma_3^{\mathsf{z}})}{4}}](-\mathrm{i})$$

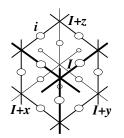
The end of string is a semion.

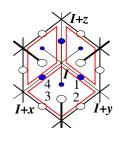
Statistics of ends of dressed strings

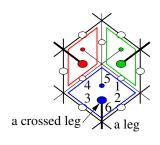
The computation

$$\begin{split} & [\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{y}})(1+\sigma_3^{\mathsf{x}})}{4}}] [\sigma_3^{\mathsf{x}}] [\sigma_1^{\mathsf{x}} \, \mathrm{i}^{\frac{1-\sigma_2^{\mathsf{y}}}{2}}] \\ &= [\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{y}})(1-\sigma_3^{\mathsf{x}})}{4}} (-)^{\frac{\sigma_3^{\mathsf{x}}(1-\sigma_2^{\mathsf{y}})}{2}}] [\sigma_3^{\mathsf{x}}] [\sigma_1^{\mathsf{x}} \, \mathrm{i}^{\frac{1+\sigma_2^{\mathsf{y}}}{2}} \, \mathrm{i}^{-\sigma_2^{\mathsf{y}}}] \\ &= [\sigma_1^{\mathsf{x}} \, \mathrm{i}^{\frac{1-\sigma_2^{\mathsf{y}}}{2}}] [\sigma_3^{\mathsf{x}}] [\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{y}})(1+\sigma_3^{\mathsf{y}})}{4}}] \, (-)^{-\frac{\sigma_3^{\mathsf{x}}(1-\sigma_2^{\mathsf{y}})}{2}} \, \mathrm{i}^{-\sigma_2^{\mathsf{y}}} \\ &= [\sigma_1^{\mathsf{x}} \, \mathrm{i}^{\frac{1-\sigma_2^{\mathsf{y}}}{2}}] [\sigma_3^{\mathsf{x}}] [\sigma_2^{\mathsf{x}}(-)^{\frac{(1-\sigma_2^{\mathsf{y}})(1+\sigma_3^{\mathsf{y}})}{4}}] \, (-\mathrm{i}) \end{split}$$

3D Z_2 topological order on Cubic lattice







• Untwisted-string model:
$$H = -U \sum_{l} Q_{l} - g \sum_{p} F_{p}$$

$$Q_I = \prod_{i \text{ next to } I} \sigma_i^z, \quad F_{\rho} = \sigma_1^x \sigma_2^x \sigma_3^x \sigma_4^x$$

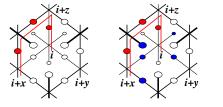
Can get 3D fermions for free (almost) Levin-Wen cond-mat/0302460

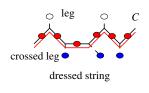
Just add a little twist

• Twisted-string model: $H = U \sum_{l} Q_{l} - g \sum_{p} F_{p}$ $F_{p} = \sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x} \sigma_{5}^{x} \sigma_{6}^{z}$

String operators and Z_2 charges Levin-Wen cond-mat/0302460

• A pair of Z_2 charges is created by an open string operator which commute with the Hamiltonian except at its two ends. Strings cost no energy and is unobservable.





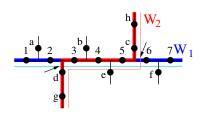
• In untwisted-string model – untwisted-string operator

$$\sigma_{\pmb{i}_1}^x\sigma_{\pmb{i}_2}^x\sigma_{\pmb{i}_3}^x\sigma_{\pmb{i}_4}^x...$$

• In twisted-string model - twisted-string operator

$$(\sigma_{i_1}^{\mathsf{x}}\sigma_{i_2}^{\mathsf{x}}\sigma_{i_3}^{\mathsf{x}}\sigma_{i_4}^{\mathsf{x}}...)\prod_{i \text{ on crossed legs of } C}\sigma_{i}^{\mathsf{x}}$$

Twisted string operators commute $[W_1, W_2] = 0$



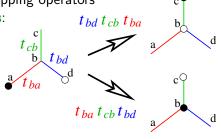
$$\begin{aligned} W_1 &= \left(\sigma_1^x \sigma_2^x \sigma_3^x \sigma_4^x \sigma_5^x \boldsymbol{\sigma}_6^x \sigma_7^x\right) \left[\boldsymbol{\sigma}_d^z \sigma_e^z \sigma_f^z\right] \\ W_2 &= \left(\sigma_h^x \sigma_c^x \sigma_5^x \sigma_4^x \sigma_3^x \boldsymbol{\sigma}_d^x \sigma_g^x\right) \left[\boldsymbol{\sigma}_6^z \sigma_e^z\right] \end{aligned}$$

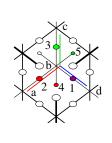
• We also have $[W, Q_I] = 0$ for closed string operators W, since W only create closed strings.

Statistics of ends of twisted strings

The statistics is determined by particle hopping operators

Levin-Wen 03:





- An open string operator is a hopping operator of the 'ends'.
 The algebra of the open string op. determine the statistics.
- For untwisted-string model: $t_{ba} = \sigma_2^{\mathsf{x}}$, $t_{cb} = \sigma_3^{\mathsf{x}}$, $t_{bd} = \sigma_1^{\mathsf{x}}$ We find $t_{bd}t_{cb}t_{ba} = t_{ba}t_{cb}t_{bd}$

The ends of untwisted-string are bosons

• For twisted-string model: $t_{ba} = \sigma_4^z \sigma_1^z \sigma_2^x$, $t_{cb} = \sigma_5^z \sigma_3^x$, $t_{bd} = \sigma_1^x$ We find $t_{bd}t_{cb}t_{ba} = -t_{ba}t_{cb}t_{bd}$

The ends of twisted-string are fermions

String-net liquid

Ground state:

String-net liquid: allow three strings to join, but do

not allow a string to end Φ_{str} (Levin-Wen cond-mat/0404617

• The dancing rule : $\Phi_{\mathsf{str}}\left(\square\right) = \Phi_{\mathsf{str}}\left(\square\right)$ $\Phi_{\mathsf{str}}\left(\bigotimes\right) = a \; \Phi_{\mathsf{str}}\left(\bigotimes\right) + b \; \Phi_{\mathsf{str}}\left(\bigotimes\right)$ $\Phi_{\mathsf{str}}\left(\bigotimes\right) = c \; \Phi_{\mathsf{str}}\left(\bigotimes\right) + d \; \Phi_{\mathsf{str}}\left(\bigotimes\right)$

- The above is a relation between two orthogonal basis: two local resolutions of how four strings join (quantum geometry)

(), and (), (), $(a \ b)$ = orthogonal matrix $a^2 + b^2 = 1$, ac + bd = 0, ca + db = 0, $c^2 + d^2 = 1$

Self consistent dancing rule

Apply reconnection rule twice:

$$\Phi_{\rm str}\left(\sum\right) = a(a\Phi_{\rm str}\left(\sum\right) + b\Phi_{\rm str}\left(\sum\right))$$

$$+ b(c\Phi_{\rm str}\left(\sum\right) + d\Phi_{\rm str}\left(\sum\right))$$

$$\Phi_{\rm str}\left(\sum\right) = c(a\Phi_{\rm str}\left(\sum\right) + b\Phi_{\rm str}\left(\sum\right))$$

$$+ d(c\Phi_{\rm str}\left(\sum\right) + d\Phi_{\rm str}\left(\sum\right))$$

We find

$$a^{2} + bc = 1$$
, $ab + bd = 0$, $ac + dc = 0$, $bc + d^{2} = 1$
 $bc + d^{2} = 1$.

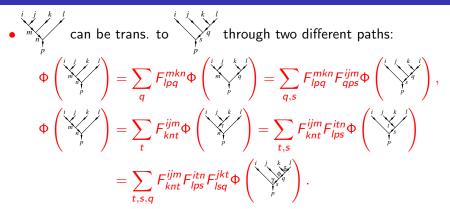
More self consistency condition

Rewrite the string reconnection rule (0→no-string, 1→string)

$$\Phi\left(\bigvee_{m}^{i}\bigvee_{l}^{k}\right) = \sum_{n=0}^{1} F_{kln}^{ijm} \Phi\left(\bigvee_{l}^{i}\bigvee_{l}^{k}\right), \qquad i, j, k, l, m, n = 0, 1$$

The 2-by-2 matrix $F_{kl}^{ij} \rightarrow (F_{kl}^{ij})_n^m$ is unitary. We have

More self consistency condition



• The two paths should lead to the same relation

$$\sum_{i}F_{knt}^{ijm}F_{lps}^{itn}F_{lsq}^{jkt}=F_{lpq}^{mkn}F_{qps}^{ijm}$$

Such a set of non-linear algebraic equations is the famous pentagon identity.

The pentagon identity

- $i, j, k, l, p, m, n, q, s = 0, 1 \rightarrow$ $2^9 = 512 + \text{ non-linear equations with } 2^6 = 64 \text{ unknowns.}$
- Solving the pentagon identity: choose i, j, k, l, p = 1

$$\sum_{t=0,1} F_{1nt}^{11m} F_{11s}^{1tn} F_{1sq}^{11t} = F_{11q}^{m1n} F_{q1s}^{11m}$$

choose n, q, s = 1, m = 0

$$\sum_{t=0,1} F_{11t}^{110} F_{111}^{1t1} F_{111}^{11t} = F_{111}^{011} F_{111}^{110}$$

$$\rightarrow a \times 1 \times b + b \times (-a) \times (-a) = 1 \times b$$

$$\rightarrow a + a^2 = 1, \qquad \rightarrow a = (\pm \sqrt{5} - 1)/2$$

Since $a^2 + b^2 = 1$, we find

$$a = (\sqrt{5} - 1)/2 \equiv \gamma$$
, $b = \sqrt{a} = \sqrt{\gamma}$



String-net dancing rule

• The dancing rule : $\Phi_{str}\left(\square\right) = \Phi_{str}\left(\square\right)$

$$\Phi_{\mathsf{str}}\left(\widecheck{\bigcirc} \right) = \gamma \Phi_{\mathsf{str}}\left(\widecheck{\bigcirc} \right) + \sqrt{\gamma} \Phi_{\mathsf{str}}\left(\widecheck{\bigcirc} \right)$$

$$\Phi_{\mathsf{str}}\left(\bigotimes\right) = \sqrt{\gamma}\Phi_{\mathsf{str}}\left(\bigotimes\right) - \gamma\Phi_{\mathsf{str}}\left(\bigotimes\right)$$

String-net dancing rule

• The dancing rule : $\Phi_{str}\left(\square\right) = \Phi_{str}\left(\square\right)$

$$\Phi_{\mathsf{str}}\left(\bigotimes \right) = \gamma \Phi_{\mathsf{str}}\left(\bigotimes \right) + \sqrt{\gamma} \Phi_{\mathsf{str}}\left(\bigotimes \right)$$

$$\Phi_{\mathsf{str}}\left(\bigotimes\right) = \sqrt{\gamma} \Phi_{\mathsf{str}}\left(\bigotimes\right) - \gamma \Phi_{\mathsf{str}}\left(\bigotimes\right)$$

Topological excitations:

For fixed 4 ends of string-net on a sphere S^2 , how many locally indistinguishable states are there?

String-net dancing rule

• The dancing rule : $\Phi_{\mathsf{str}}\left(\square\right) = \Phi_{\mathsf{str}}\left(\square\right)$

$$\Phi_{\mathsf{str}}\left(\bigotimes \right) = \gamma \Phi_{\mathsf{str}}\left(\bigotimes \right) + \sqrt{\gamma} \Phi_{\mathsf{str}}\left(\bigotimes \right)$$

$$\Phi_{\mathsf{str}}\left(\bigotimes\right) = \sqrt{\gamma} \Phi_{\mathsf{str}}\left(\bigotimes\right) - \gamma \Phi_{\mathsf{str}}\left(\bigotimes\right)$$

• Topological excitations:

For fixed 4 ends of string-net on a sphere S^2 , how many locally indistinguishable states are there? **four states?**

Topological degeneracy with 4 fixed ends of string-net

To get linearly independent states, we fuse the end of the string-net in a particular order:



- → There are only **two** locally indistinguishable states
- = a qubit

This is a quantum memory that is robust angainst any environmental noise.

- → The defining character of topological order:
- a material with robust quantum memory.

$\mathsf{Direct}\;\mathsf{sum}\;\oplus = \mathsf{accidental}\;\mathsf{degeneracy}$

- Consider two spin- $\frac{1}{2}$ particles. If we view the two particle as one particle spin- $\frac{1}{2} \otimes \text{spin-}\frac{1}{2} =$? What is the spin of the bound state?
- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

$$\mathsf{spin}\text{-}\frac{1}{2}\otimes\mathsf{spin}\text{-}\frac{1}{2}=\mathsf{spin}\text{-}0\oplus\mathsf{spin}\text{-}1,\quad 2\times2=1+3.$$

⊕ is the **direct sum** of Hilbert space in mathematics and the **accidental degeneracy** in physics.

Direct sum \oplus = accidental degeneracy

- Consider two spin- $\frac{1}{2}$ particles. If we view the two particle as one particle spin- $\frac{1}{2} \otimes \text{spin}-\frac{1}{2} = ?$ What is the spin of the bound state?
- The bound state is a degeneracy of spin-0 particle and spin-1 particle:

$$\mathsf{spin}\text{-}\frac{1}{2}\otimes\mathsf{spin}\text{-}\frac{1}{2}=\mathsf{spin}\text{-}0\oplus\mathsf{spin}\text{-}1,\quad 2\times2=1+3.$$

- is the direct sum of Hilbert space in mathematics and the accidental degeneracy in physics.
- Fusion of the ends of string-net φ:

$$\varphi \otimes \varphi = \mathbf{1} \oplus \varphi, \quad \varphi \otimes \varphi \otimes \varphi = (\mathbf{1} \oplus \varphi) \otimes \varphi = \mathbf{1} + 2\varphi.$$

A bound state of 2 φ 's = an accidentical degeneracy of an **1** and a φ . A bound state of 3 φ 's = an accidentical degeneracy of an 1, a φ , and a φ .

Compute the degeneracy of excitations on S^2

Consider n topological excitations (string ends) on a sphere. What is the ground state degeneracy? (GSD = 0 means not allowed)

- Consider the loop liquid (ie the \mathbb{Z}_2 topological order).
- Trivial particle $\mathbf{1} \to \mathbf{a}$ state with no string ends, allowed $GSD = \mathbf{1}$.
- One e particles \rightarrow a state with 1 string ends, not allowed GSD = 0.
- Two e particles \rightarrow a state with 2 string ends, allowed GSD = 1.
- Three *e* particles \rightarrow a state w/ 3 string ends, not allowed *GSD* = 0.
- Fusion $e \otimes e = 1$, $e \otimes e \otimes e = e \rightarrow \mathsf{GSD} = \#$ of 1's.

Compute the degeneracy of excitations on S^2

Consider n topological excitations (string ends) on a sphere. What is the ground state degeneracy? (GSD = 0 means not allowed)

- Consider the loop liquid (ie the \mathbb{Z}_2 topological order).
- Trivial particle $1 \rightarrow$ a state with no string ends, allowed GSD = 1.
- One *e* particles \rightarrow a state with 1 string ends, not allowed *GSD* = 0.
- Two e particles \rightarrow a state with 2 string ends, allowed GSD = 1.
- Three *e* particles \rightarrow a state w/ 3 string ends, not allowed *GSD* = 0.
- Fusion $e \otimes e = 1$, $e \otimes e \otimes e = e \rightarrow \mathsf{GSD} = \#$ of 1's.

e

- Consider the string-net liquid.
- Trivial particle 1 o a state with no string ends, allowed GSD = 1
- One arphi particles ightarrow a state with 1 string ends, not allowed GSD=0
- Two arphi particles ightarrow a state with 2 string ends, allowed $\emph{GSD}=1$
- Three arphi particles ightarrow a state with 3 string ends, allowed $\emph{GSD}=1$
- Fusion $\varphi \otimes \varphi = \mathbf{1} \oplus \varphi$, one allowed state GSD = 1. $\varphi \otimes \varphi \otimes \varphi = \mathbf{1} \oplus \varphi \oplus \varphi$, one allowed state GSD = 1.

Internal degrees of freedom – quantum dimension

• Let D_n be the number of locally indistinguishable states for n φ -particles on a sphere. The internal degrees of freedom of φ – quantum dimension – $d = \lim_{n \to \infty} D_n^{1/n}$

$$\underbrace{\varphi \otimes \cdots \otimes \varphi}_{n} = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{D_{n}} \oplus \underbrace{\varphi \oplus \cdots \oplus \varphi}_{F_{n}}$$

 $D_n =$ the degeneracy of ground states, $F_n =$ the degeneracy of φ ,

Internal degrees of freedom – quantum dimension

• Let D_n be the number of locally indistinguishable states for n φ -particles on a sphere. The internal degrees of freedom of φ – quantum dimension – $d = \lim_{n \to \infty} D_n^{1/n}$

$$\underbrace{\varphi \otimes \cdots \otimes \varphi}_{n} = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{D_{n}} \oplus \underbrace{\varphi \oplus \cdots \oplus \varphi}_{F_{n}}$$

 D_n = the degeneracy of ground states, F_n = the degeneracy of φ ,

$$\underbrace{\varphi \otimes \cdots \otimes \varphi}_{n} \otimes \varphi = \underbrace{\mathbf{1} \oplus \cdots \oplus \mathbf{1}}_{F_{n}} \oplus \underbrace{\varphi \oplus \cdots \oplus \varphi}_{F_{n} + D_{n}}$$

$$D_{n+1} = F_n, \quad F_{n+1} = F_n + D_n = F_n + F_{n-1}, \qquad D_1 = 0, \ F_1 = 1.$$

The internal degrees of freedom of φ is (spin- $\frac{1}{2}$ electron d=2)

$$d = \lim_{n \to \infty} F_{n-1}^{1/n} = \frac{1 + \sqrt{5}}{2} = 1.61803398874989 \cdots$$

Double-Fibonacci topological order = double G_2 Chern-Simon theory at level 1

$$L(a_{\mu}, \tilde{a}_{\mu}) = \frac{1}{4\pi} \text{Tr}(a_{\mu}\partial_{\nu}a_{\lambda} + \frac{\mathrm{i}}{3}a_{\mu}a_{\nu}a_{\lambda})\epsilon^{\mu\nu\lambda} \\ - \frac{1}{4\pi} \text{Tr}(\tilde{a}_{\mu}\partial_{\nu}\tilde{a}_{\lambda} + \frac{\mathrm{i}}{3}\tilde{a}_{\mu}\tilde{a}_{\nu}\tilde{a}_{\lambda})\epsilon^{\mu\nu\lambda}$$

 a_{μ} and \tilde{a}_{μ} are G_2 gauge fields.

String-net liquid can also realize a gauge theory of a finite group ${\it G}$

- Trivial type-0 string \rightarrow trivial represental of G
- Type-*i* string \rightarrow irreducible represental R_i of G
- Triple-string join rule If $R_i \otimes R_j \otimes R_k$ contain trivial representation \rightarrow type-i type-k strings can join.
- String reconnection rule:

$$\Phi\left(\bigvee_{m \mid l}^{i \neq j \neq k}\right) = \sum_{n=0}^{1} F_{kln}^{ijm} \Phi\left(\bigvee_{l}^{i \neq j \neq k}\right), \qquad i, j, k, l, m, n = 0, 1$$

with F_{kln}^{ijm} given by the 6-j simple of G.

Topo. qubits and topo. quantum computation

Four fixed Fibonacci anyons on S²
has 2-fold topological degeneracy
(two locally indistinguishable states)
 → topological qubit

• Exchange two Fibonacci anyons induce a 2×2 unitary matrix acting on the topological qubit \rightarrow non-Abelian statistics also appear in $\chi^3_{\nu=2}(z_i)$ FQH state, and the non-Abelian statistics is described by $SU_2(3)$ CS theory

Wen PRL 66 802 (91)

→ universal **Topo. quantum computation** (via CS theory)

Time

Freedman-Kitaev-Wang quant-ph/0001071; Freedman-Larsen-Wang quant-ph/0001108

Topological order is the natural medium (the "silicon") to do topological quantum computation

MIT OpenCourseWare https://ocw.mit.edu

8.513 Modern Quantum Many-body Physics for Condensed Matter Systems Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.